'™ forests

Article

Benchmark for Automatic Clear-Cut Morphology Detection
Methods Derived from Airborne Lidar Data

Zlatica Melichova *, Stano Pekar 2

check for
updates

Citation: Melichov4, Z.; Pekar, S.;
Surovy, P. Benchmark for Automatic
Clear-Cut Morphology Detection
Methods Derived from Airborne
Lidar Data. Forests 2023, 14, 2408.
https:/ /doi.org/10.3390/£14122408

Academic Editor: Qiaolin Ye

Received: 13 October 2023
Revised: 21 November 2023
Accepted: 6 December 2023
Published: 11 December 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Peter Surovy !

Department of Forest Management, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences
Prague, Kamyckd 129, 16500 Prague, Czech Republic

Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlatska 2,

61137 Brno, Czech Republic

Correspondence: melichovaz@fld.czu.cz

Abstract: Forest harvest detection techniques have recently gained increased attention due to
the varied results they provide. Correctly determining the acreage of clear-cut areas is crucial
for carbon sequestration. Detecting clear-cut areas using airborne laser scanning (ALS) could be
an accurate method for determining the extent of clear-cut areas and their subsequent map display
in forest management plans. The shapes of ALS-detected clear-cut areas have uneven edges with
protrusions that might not be readable when displayed correctly. Therefore, it is necessary to sim-
plify these shapes for better comprehension. To simplify the shapes of ALS-scanned clear-cut areas,
we tested four simplification algorithms using ArcGIS Pro 3.0.0 software: the retain critical points
(Douglas-Peucker), retain critical bends (Wang-Miiller), retain weighted effective areas (Zhou—Jones),
and retain effective areas (Visvalingam-Whyatt) algorithms. Ground-truth data were obtained from
clear-cut areas plotted in the forest management plan. Results showed that the Wang—Miiller algo-
rithm was the best of the four ALS algorithms at simplifying the shapes of detected clear-cut areas.
Using the simplification algorithm reduced the time required to edit polygons to less than 1% of the
time required for manual delineation.

Keywords: multitemporal laser scanning data; harvest detection; simplification polygons; clear-cut areas

1. Introduction

In Europe, sustainable forest management has become a prominent topic, as man-
agement decisions impact forest growth, composition, and structure, as well as wood
production, carbon sequestration, and nature conservation in both temporal and spatial
contexts [1]. Forestry has been recognized as an important way to reduce CO, emissions
and combat global warming, as highlighted in the Paris Agreement [2]. Nevertheless,
forestry harvesting practices may adversely affect the benefits of forest CO, capture. Re-
search comparing the impact of reducing carbon sequestration through harvesting versus
natural disturbances has shown that harvesting has a greater impact. Notably, incidental
harvesting, in which the effects of harvesting cannot be easily distinguished from those of
natural disturbances, must also be considered [3].

Various techniques and methods for detecting harvests and clear-cuts deserve atten-
tion, as their accurate evaluation is crucial. Incorrect use of techniques or reference data can
result in erroneous conclusions. Ceccherini et al. (2020) [4] focused on harvest detection
in Europe using satellite data. They tracked the increase in harvested forests and biomass
losses for 2016-2018 and compared them to those for 2011-2015. Their findings indicated
that harvesting had increased by 34% on average, potentially impacting biodiversity, soil
erosion, and water regulation. Their study suggested that the expansion of the timber
market, wood-based bioenergy, and international trade had led to an increase in harvesting
speed. The authors warned that continued high harvesting rates could impede forest-based
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efforts to mitigate climate change impacts. Picard et al. (2021) [5] investigated claims re-
garding increased harvesting in European countries and re-examined France using original
data reported in [4]. They found that the rate of change in harvested area depended on
the comparison period used, and that data regarding extraction volumes from different
sources produced varied results. Responding to an investigation in Finland and Sweden,
which found only marginal or no harvesting increase after 2015 [6], the authors suggested
that sensitivity and detection of harvesting areas and overburden were increasing [4].
Ceccherini et al.’s (2020) [4] study highlighted the potential for inaccurate results when
inappropriate estimates and reference data are used in satellite data analysis.

Remote sensing technologies and three-dimensional data offer increasingly accurate
options for estimating growth rates and forest information. Lidar, satellites, and unmanned
aerial vehicles (UAVs) are remote sensing methods used for gap mapping, including size
and spatial distribution parameters [7]. ALS technology enables 3D characterization of
forest canopies, allowing digital terrain model (DTM) and digital surface model (DSM)
calculations to describe treetops from the original point cloud [8]. An advantage of using
lidar data is the resulting accuracy of DTMs, which are often available for public use [9].
Subtracting an area’s digital surface model from its digital terrain model produces a canopy
height model (CHM), which is widely used as the basis for various forestry analyses [10].

Forest metrics can be computed using lidar directly from the point cloud or rasterized
point cloud data (a rasterized point cloud is a raster in which each cell is described by
height value) [11]. Rasterized clouds are usually faster and easier to process [12]; however,
they offer less information (metrics) than point clouds. Therefore, rasterized clouds are
more suitable for clear-cut detection.

Two approaches are generally used to derive forest information: the area-based ap-
proach (ABA) and individual tree detection (IDT) [13]. These methods are typically used to
estimate forest characteristics, stand-level biomass, volume, or basal area. For estimation
purposes, these variables mostly use the plot-level method, which involves calculating var-
ious descriptive statistics, such as mean, maximum, standard deviation, and height metrics,
counting height percentiles. These statistics can be used to characterize different aspects of
the point cloud’s structure, such as density or point distribution [14]. In comparing point
clouds from different time steps, it is possible to measure changes in vegetation variables
such as growth, increment, and site index [15].

An important aspect of map creation using lidar sources (either point clouds or
rasterized clouds) is map readability and the balance between the amount of detail and
readability. A higher level of detail includes more information, but such maps are not
easily readable, which can lead to erroneous conclusions, as noted in [4]. Therefore, there is
aneed for standardized and objective simplification of map products (usually called feature
generalization or simplification).

Generalizing a map involves simplifying, removing details from, enlarging, or mod-
ifying a map so that its final form is as legible and understandable as possible, while
preserving source data and essential map attributes [16]. In this study, we evaluated four al-
gorithms for polygon simplification created by the automatic subtraction of two consecutive
lidar scans: the Douglas—-Peucker, Visvalingam-Whyatt, Zhou—Jones, and Wang-Miiller
algorithms.

The Douglas—-Peucker algorithm reduces the number of points in a curve that is ap-
proximated by a series of points, depending on the maximum distance between the original
curve and the simplified curve. The algorithm recursively eliminates points that are closer
to the line connecting the two endpoints of the curve than the specified tolerance [17].
This algorithm is also known as the Ramer-Douglas-Peucker algorithm, after Urs Ramer
in addition to David Douglas and Thomas Peucker, who independently developed it in
1972 and 1973, respectively. The algorithm is widely used in computer graphics, cartog-
raphy, and GIS applications. Despite the fact that the Douglas—Peucker algorithm was
developed to simplify watercourse lines so that redundant points could be removed while
preserving information, it also has applications in digital cartography [18]. It is a vertex
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subsampling algorithm that independently alters individual polylines using a simplifica-
tion process that considers only the sequence of vertices within the polyline itself, without
considering surrounding features. The algorithm’s output consists of a subsequence of
the original polyline’s vertices that represents the simplified output polyline’s vertices in
their original order [19]. The Douglas—Peucker algorithm and the Visvalingam-Whyatt
algorithm are prone to remove small bends, resulting in less accurate representations of
small watercourses [20]. Unlike these algorithms, the Wang—Miiller algorithm preserves
the characteristic properties of natural features [21]. In addition to line simplification, the
Douglas—Peucker and Visvalingam—-Whyatt algorithms are also suitable for line segmen-
tation [21] or generalization [22]. The Visvalingam-Whyatt algorithm also preserves the
geometry of an area while smoothing its contours [23].

To evaluate the accuracy of these algorithms, one can interpret their results as a raster
classification result. The classification process is widely used to transform image data into
map products; each pixel is categorized into one of multiple categories: typically two or
more [24]. A confusion matrix is commonly used to describe thematic map accuracy and to
compare accuracies. However, it can also be used to derive more useful information, such
as refining estimates of the areal extent of classes in a region and optimizing a thematic
map for a particular user. This can be accomplished by using the matrix together with
information regarding actual error costs of the map’s value. The reliability of the confusion
matrix is important, as issues such as sample design and ground data accuracy can affect
its accuracy [25].

In this study, we identified and estimated clear-cuts using ALS data and compared
them to clear-cuts indicated on a forest management plan created by a human operator.
Four polygon simplification algorithms were compared with each other, and their accuracies
were assessed using the forest management plan, which served as ground-truth data.
The automatic map creation method provides consistency and repeatability, and it can
significantly decrease the time required for manual delineation.

2. Materials and Methods
2.1. Study Site

Our research area of interest was the School Forest Enterprise in Kostelec nad Cernymi
lesy. SLP Kostelec nad Cernymi lesy is a university forestry estate of the Czech University
of Agriculture in Prague. It is located 25-50 km southeast of Prague (Figure 1). The area’s
altitude varies from 210 to 528 m, its average annual temperature is 8.14 °C, and its average
annual precipitation is 663 mm [26]. The area is approximately 6000 ha, and it is actively
managed. The area is in beech-oak (21%), oak-beech (53.8%), and beech (25.2%) vegetation
stages. Its tree species composition includes Norway spruce (Picea abies (L.) H. Karst.) (55%),
Scots pine (Pinus sylvestris L.) (18%), European beech (Fagus sylvatica L.) (12%), Sessile oak
(Quercus petraea (Matt.) Liebl.) (9%), European silver fir (Abies alba Mill.) (2%), hornbeam
(Carpinus betulus L.) (1%), and other woods (3%). There are also several protected areas
within the SLP territory, of which the Vodéradské Butiny National Nature Reserve, with an
area of 683 ha, is one of the most important.

2.2. Data Processing

Data from airborne laser scanning (ALS) were processed in the Anaconda program-
ming environment (Anaconda, Inc., Austin, TX, USA), using the Python programming
language, version 3.11.1 (Python Software Foundation, Beaverton, OR, USA). The Point
Data Abstraction Library (PDAL), version 2.6.0 (Hobu, Inc., Iowa City, IA, USA), a library
equipped with prebuilt commands for various analyses, was employed to interpret laser
data. With the help of this library, data were filtered, classified, and converted from laser
point clouds to raster data; the PDAL was used to classify ground returns using the simple
morphological filter (SMRF) technique, version 2.6.0 (Hobu, Inc., lowa City, IA, USA). This
algorithm effectively discriminated points into two distinct groups: ground and nonground.
Initially, an outlier filter was applied to classify outliers with a classification value of 7.
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These outliers were subsequently excluded during SMRF processing using the “ignore”
option. Finally, a range filter was implemented to extract the ground returns, identified by
a classification value of 2 [27].

Clear-cut area detected
from Airborne laser
scanning.

Clear-cut area from Forest
management plan.

Figure 1. The study area.

Rasterization

We used the PDAL to create a raster surface utilizing a fully classified point cloud via
PDAL'’s writers.gdal functionality [28]. ArcGIS Pro 3.0.0 software (Environmental Systems
Research Institute (ESRI), Redlands, CA, USA) was used for subsequent data processing.

The readability problem originates in the actual shapes of detected clear-cut areas.
Although the maps are geometrically and positionally correct, they appear strange to the
human observer and may become illegible, for example, in larger scale contour maps. Thus,
a simplification of their shape is inevitable.

Two processes were needed to simplify and smooth surfaces to solve the two problems
visible in Figure 2. The first was to close the holes in the polygons. These holes represented
individual standing trees around which the parent growth had already been removed. The
second problem was the polygon’s shape, which contained complicated curvatures. The
“eliminate polygon part” tool was used to address the first problem; we used this tool to
close holes created inside the polygons (Figure 2a).

A sample of polygons of clear-cut areas was selected for evaluation. The shapes of
clear-cut areas in the forest management plan were used as validation data. Figure 2 shows
a comparison of the shape of one clearing sample resulting from airborne laser scanning
and the validated clear-cut area from the forest management plan.

In this study, we used multitemporal laser datasets from 2021, 2020, and 2019. We
subtracted the 2021 and 2020 laser datasets from each other to form the 2021 clear-cut
areas, and we used the same approach for the 2020 and 2019 laser datasets to form the 2020
clear-cut areas. In the first step, we removed the 2020 and 2021 ALS shape overlap using
the “erase” tool and then combined them using the “merge” tool. We did not separately
evaluate the clear-cut area for each year because the 2021 forest management plan plotted
the clear-cut area and also included the 2020 clear-cut area. Clear-cut area classification
results from the laser data contain holes (small polygons) that characterize individual trees
or vegetation that are mapped at a greater resolution than the established threshold for
classifying clear-cuts (Figure 3).
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Figure 2. (a) Shape of the clear-cut area identified using ALS; (b) shape of the clear-cut area identified
using the forest management plan. The green areas are the year 2020 and the purple areas are year 2021.
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Figure 3. Clear-cut area classified using ALS data.

We closed these parts using the “eliminate polygon parts” tool and used the merged
2020 and 2021 clear-cut areas as an input layer. For the “condition”, we selected an area
that removed parts smaller than the specified value; in our case, the threshold value was
4000 m? and was selected based on the rule that units below 0.4 ha are not distinguished.
After these steps, the polygons were ready for simplification.

The “simplify polygons” tool was used to remove multiple polygon curvatures and
simplify shapes. This tool uses four algorithms to simplify polygons as follows:

1. The retain critical points algorithm (Douglas—Peucker) functions based on the concept
of reducing the number of points while preserving those that are crucial for defining
the polygon’s shape. It iteratively eliminates points by dividing the line segment and
repeating the process until no more points can be removed. Initially, it creates a line
segment by connecting the first and last points. Next, it identifies the point on the line
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segment that is farthest from the straight line connecting the endpoints. If the distance
between this point and the straight line is smaller than the specified epsilon value
(tolerance), the point is discarded. The algorithm then restarts the process with the
remaining points between the endpoints, as proposed by Visvalingam and Whyatt in
1990 [18]. This simplified version of the Douglas—Peucker algorithm is demonstrated
graphically in Figure 4.

Figure 4. The simplification procedure according to the Douglas—Peucker algorithm. In the first step,

the first and the last points are connected by a line. In the second step, the algorithm identifies the

point that is farthest from the line and then creates a new line originating from that point. In the third

step, if the point’s distance from the line is less than epsilon, the point is removed. In the fourth step,

a new line is created.

2.

The Visvalingam-Whyatt algorithm, also known as the retain effective areas algorithm,
identifies triangles with effective area and uses that information to remove vertices
to simplify the polygon’s outline while preserving its overall shape characteristics.
This method shares similarities with the Douglas—Peucker algorithm, but instead
of a distance-based tolerance, it utilizes a triangle’s area as the tolerance criterion.
The algorithm starts by identifying the smallest triangle and compares its area to
a predefined value also called epsilon [29]. The areas of triangles are continuously
compared to the tolerance value. The algorithm removes triangles whose areas are
smaller than epsilon. This process is repeated until all triangles with areas smaller
than the tolerance value are eliminated [18]. The simplification process using this
algorithm is illustrated in Figure 5.

Figure 5. The polygon simplification procedure according to the Visvalingam-Whyatt algorithm. In

the first step, triangles are formed between the points. In the second step, the smallest triangle is

identified, and whether its area is smaller or larger than the specified epsilon is determined. In the

third step, if the area is less than epsilon, the point associated with this triangle is discarded. In the

fourth step, a new line is created.

3.

The Zhou—Jones algorithm (Figure 6), known as the weighted effective area preserva-
tion algorithm, assesses the effective areas of triangles associated with each vertex.
These effective areas are determined by considering the shape of the triangle and
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various metrics, such as flatness, skewness, and convexity [30]. The computation
of effective areas for triangles involves applying a weight factor to the initial ef-
fective area. This weight factor serves to capture certain aspects of the triangle’s
shape. Consequently, the introduction of weighted effective area values allows for
the distinction between triangles that share the same area but exhibit different shape
characteristics. Utilizing various weight definitions enables highlighting of differ-
ent aspects of triangle shapes. In this context, the functions serve as filters. These
filters designate certain triangles as “standard forms” by assigning them a weight
of 1, making their effective areas equal under the filter. When examining a trian-
gle’s shape characteristics, parameters such the base line length (W), height (H), and
length of the middle line (ML) are considered. These parameters allow the measure-
ment of a triangle’s flatness, skewness (deviation from an isosceles triangle with the
same W and H values), and convexity (orientation relative to a predefined vertex
order). There are two models that measure flatness. The first model, which constitutes
a high-pass filter, gives priority to taller triangles and reduces the significance of flatter
triangles. The second model, a low-pass filter, is identified as a symmetric version of
the previously described high-pass filter; its purpose is to eliminate extreme points.
The skewness filter is designed to retain points using effective triangles close to being
isosceles. The convexity filter is characterized by a constant. If this constant is less than
1, the convexity filter tends to retain points with convex effective triangles. Otherwise,
points with concave effective triangles are retained [30]. After weighted areas are
calculated, the algorithm strategically eliminates vertices to achieve the maximum
possible simplification of the line while still preserving its essential characteristics to
the greatest extent possible [31].

N T
AR N

Figure 6. The polygon simplification procedure according to the Zhou-Jones algorithm [31]. The

algorithm first identifies triangles of effective area for each vertex (1). These triangles are then

weighted using a set of metrics to compare the flatness, skewness, and convexity of each area (2). The

weighted areas guide the removal of their corresponding vertices to simplify the line while retaining

as much character as possible (3). In the last step (4), a new line is created [30].

4.

The retain critical bends algorithm (Wang—Miiller) aims to eliminate insignificant
bends in polygons. Figures 7-9 depict the process for outline simplification. The
minimum diameter for a semicircular bend is set as the tolerance and reference for
bend removal. One of the operations in this algorithm is bend elimination (Figure 7);
a curved segment is replaced with a straight line. As consecutive straight lines
representing bends are not connected, the elimination process must be iteratively
performed by removing local minimal bends in each loop. A local minimal bend refers
to a bend smaller than both of its neighboring bend points, whereas at the endpoints
it is assumed that bends are larger than their neighbors.
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Figure 7. Bend elimination by iteration [32]. Numbers B0-B7 are line bends.

(@ (b)

Figure 8. Combination of bends [32]. This figure shows three consecutive bends (a), and the goal of
generalization is to combine the first and the third bends as one (b). There are three peaks labelled A,
B, and C. Point D is the centre of line AC, and point D" is the peak of the combined bend.

Original e _JL
Results __/_\_ _/—\__

Figure 9. Exaggeration using the Gaussian distribution [32].

A second possible operation is bend combination (Figure 8). To determine the bend
vertex, distances between the vertices and the two endpoint bend points are calculated,
and the vertex with the largest sum is identified as the bend vertex. Subsequently, point D’



Forests 2023, 14, 2408

9of 14

is created, representing the midpoint in the bend line, and becomes the new vertex. Finally,
the left half of bend 1 and the right half of bend 3 are moved toward the new vertex D’.

The third operation is exaggeration (Figure 9). In this case, shape modification is
achieved by enlarging and partially modifying the form. This method uses the Gaussian
distribution. During the operation, a central point for translation is found, and instead of
moving the endpoints farther from the center, the translation diminishes gradually from
the center to the edge [32].

In the “simplify polygon” tool, in addition to establishing the simplification algorithm
itself, the so-called simplification tolerance needs to be set. The simplification tolerance
parameter is different for each algorithm, and it is referred to later in this text as “parameter”
(occasionally it is referred to in the literature as “number”). In the retain critical points
(Douglas—Peucker) algorithm, the tolerance parameter refers to the maximum perpendic-
ular distance between each vertex and the resulting simplified line. In the retain critical
bends algorithm (Wang-Miiller), the tolerance parameter corresponds to the diameter of
a circle that approximately represents a significant bend. In the retain weighted effective
areas algorithm (Zhou—Jones algorithm), the tolerance square parameter represents the
area of a significant triangle formed by three consecutive vertices. The more the triangle
deviates from equilateral, the more weight it receives, so it is less likely to be removed. In
the retain effective areas (Visvalingam—Whyatt) algorithm, a tolerance square parameter
corresponds to the area of a significant triangle formed by three consecutive vertices [31].

Each step was automatically processed using the Python programming code within
ArcGIS Pro (Figure 10).

Douglas-Peucker
Clear-cut area
from forest

management
o plan
Visvalingam- \ True positive
Whyatt
Automatic clear- Intersect True negative
cut area & ER—
Erase Omission
Zhou-Jones Comission
Simplified
Polygon
Wang-Miiller

Figure 10. The schematic model of data processing in ArcGIS Pro and the creation of evaluation metrics.

2.3. Statistical Analysis and Accuracy Assessment

We used error metrics to assess accuracy. We calculated the error of omission and the
error of commission.

Classification results were used to estimate accuracy. The confusion matrix was used
to evaluate correctly identified clear-cut areas; the matrix provided a summary of two
types of errors [25]. Commission errors refer to areas characterized as clear-cut areas by the
algorithm that are not actual clear-cut areas. Omission errors refer to actual clear-cut areas
not identified as such by the algorithm [33]. Overall accuracy describes how many p pixels
(of the total) are classified correctly for all classes [34].

R 4.2.3 software was used to perform the statistical analysis [35]. The accuracy of each
algorithm type in relation to the parameter value was compared using generalized additive
models (GAMs) in the mgcv package v1.8.42 [36] (Wood, 2017) due to strong nonlinear
relationships. GAMs with Gaussian errors were used because the accuracy measurements
had a restricted range, and the variance was homoscedastic. We fitted an ANCOVA model
with the parameter as a covariate and the algorithm type as a factor. We compared a model
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with and without interaction using the AIC. Thin-plate spline was used to fit the nonlinear
trend. The resulting model was plotted using the visreg package v2.7.0 [37].

3. Results

The analysis showed that the polygon simplification method was suitable for simplify-
ing polygons in forest-clearing detection.

There was a significant interaction between the parameter and algorithm type. Com-
parison of the accuracies among the four algorithms revealed a significant difference (GAM,
F; = 5507, p < 0.0001, R%=0.98, Figure 11). For parameter values less than 10, the accuracies
of the four algorithms were similar, but for values higher than 10, the Wang-Miiller algo-
rithm outperformed the other three algorithms. The Wang-Miiller algorithm’s maximum
accuracy was achieved for a parameter value of 22.

| | | | | 1 1 | | | | |
Wang-Muller Zhou-Jones

0.76

0.74 B

0.72 L

0.70 -
Douglas-Peucker Visvalingham-Whyatt

Accuracy

0.76

0.74

0.72

0.70 r
T T T T T T 1 T T T T T

0 20 40 60 80 100 0 20 40 60 80 100

Parameter

Figure 11. The relationship between the parameter values and accuracies for the four algorithm types.
The parameters selected were the Douglas—-Peucker algorithm’s new line, the Wang-Miiller algorithm’s
circle diameter, the Zhou—Jones algorithm’s significant triangle area, and the Visvalingam-Whyatt
algorithm’s significant triangle area. Estimated curves (blue) with their 95% confidence bands (gray)
are shown. The parameters were the numerical settings for each algorithm’s simplification tolerance.

When comparing commission and omission errors, matrices showed that the Wang—
Miiller algorithm had the highest commission error but also the smallest omission
error (Figure 12).
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Figure 12. (a) Commission and (b) omission errors in the individual methods.

4. Discussion

Cartographic generalization is a crucial phase in the map production process [38].
Our study demonstrated, in a forestry application, the use of simplification algorithms in
ArcGIS Pro. Previous studies focused on simplifying roof shapes when using ALS and
vector maps to create 3D building models, in which the authors used the Douglas—Peucker
algorithm first, followed by the partitioning method, combining step edges with footprint
maps [7]. Other articles focused on the simplification of urban residential area plans using
raster and vector models with mathematical morphology and pattern recognition assisted
by applying a neural network [39]. Using a simplification algorithm was also found to
be appropriate when diluting data and preserving the trajectory curve of acquired in-
vehicle GPS data, for which the Douglas—Peucker algorithm was found to be suitable [40].
Another article described utilizing generalization algorithms in an ArcGIS environment [41];
these authors used the same algorithms as in our analysis. After using the simplification
algorithm, they smoothed the polygons in the GIS environment. Their results showed
that the Douglas-Peucker algorithm was suitable for data compression and the removal of
redundant polygon details. The disadvantage of this algorithm is that the resulting line
contains sharp angles and spikes. Compared with the Douglas—-Peucker algorithm, the
Wang-Miiller algorithm prioritizes the input geometry to a greater extent, which requires
additional processing time [42]. Their article describes the development of a new algorithm
to simplify polygons and lines representing hydrographic lakes and streams. To assess
their new algorithm, they compared it with the well-known Douglas-Peucker algorithm
and the Wang-Miiller bend simplification algorithm. Their algorithm has no user-defined
parameters, and it defines an error band that does not allow the simplified line to cross
it. This ensures the accuracy of the resulting line. We also used the Douglas—-Peucker and
Wang-Miiller algorithms, and ArcGIS uses two additional algorithms, the Zhou—Jones
and Visvalingam-Whyatt algorithms, as described above. Previous studies compared the
Douglas—Peucker and Wang-Miiller algorithms, showing that the point-remove (Douglas—
Peucker) algorithm could remove more points from the line, resulting in a more streamlined
and adaptable database for users. However, it also led to the loss of the original line’s
topological characteristics. The bend-simplify (Wang-Miiller) algorithm removed fewer
points from the line, and it preserved a topology closer to that of the original line. When
combined with other topological elements on a map to assess proximity and adjacency, the
Wang-Miiller algorithm demonstrated better adjustment [43].

Modification of the clear-cut areas created by airborne laser scanning is essential for
cartographic display. Manual processing is tedious and does not provide any significant
advantages in cases with a large number of clear-cut polygons. In our study, 29 polygons
had, in summary, 16,649 ALS vertices that required adjustment, leading to 841 plotted ver-
tices that were illustrated in the forest management plan. Implementing the simplification
algorithm enhanced the efficiency of polygon editing; manual modification is as much as
two orders of magnitude slower than using this simplification tool.
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5. Conclusions

Most of the published literature to date addresses the simplification of polygons in
cartography, focusing on simplifying lines or polygons that represent watercourses, build-
ings, or land-unit boundaries. In this study, we addressed the problem of excessive detail
displayed in forest clear-cut areas that occurs after autodetection data are extracted from
airborne laser scanning. Polygon simplification is a suitable method to simplify the shapes
of clear-cut areas when creating forest base maps. We used the ArcGIS Pro “geoprocessing”
tool to simplify polygons in order to estimate and compare the accuracy of individual
algorithms when compared with ground-truth data from the forest management plan. This
tool used four simplification algorithm parameters: retain critical points (Douglas—Peucker
algorithm), retain critical bends (Wang-Miiller algorithm), retain weighted effective areas
(Zhou-Jones algorithm), and retain effective areas (Visvalingam-Whyatt algorithm). Our
results show that the Wang—Miiller algorithm performed best when using a parameter in
the 20 to 25 m range.

Author Contributions: Conceptualization, Z.M. and P.S.; methodology, Z.M., S.P. and PSS.; software,
ZM. and PS.; validation, Z.M., S.P. and P.S.; formal analysis, Z.M.; investigation, Z.M.; resources,
PS.; data curation, Z.M. and PSS.; writing—original draft preparation, Z.M. and P.S.; writing—review
and editing, Z.M. and P.S,; visualization, Z.M.; supervision, P.S.; project administration, P.S.; funding
acquisition, P.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Agriculture of the Czech Republic, grant
number QK21010435.

Data Availability Statement: Data are available on request for research purposes.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

Schelhaas, M.].; Fridman, J.; Hengeveld, G.M.; Henttonen, H.M.; Lehtonen, A ; Kies, U.; Krajnc, N.; Lerink, B.; Dhubhain, AN,;
Polley, H.; et al. Actual European Forest Management by Region, Tree Species and Owner Based on 714,000 Re-Measured Trees in
National Forest Inventories. PLoS ONE 2018, 13, e0207151. [CrossRef] [PubMed]

Luyssaert, S.; Marie, G.; Valade, A.; Chen, Y.Y.; Njakou Djomo, S.; Ryder, J.; Otto, J.; Naudts, K.; Lanse, A.S.; Ghattas, J.; et al.
Trade-Offs in Using European Forests to Meet Climate Objectives. Nature 2018, 562, 259-262. [CrossRef] [PubMed]

Pilli, R.; Grassi, G.; Kurz, W.A.; Moris, J.V.; Vifias, R.A. Modelling Forest Carbon Stock Changes as Affected by Harvest and
Natural Disturbances. II. EU-Level Analysis. Carbon Balance Manag. 2016, 11, 20. [CrossRef] [PubMed]

Ceccherini, G.; Duveiller, G.; Grassi, G.; Lemoine, G.; Avitabile, V.; Pilli, R.; Cescatti, A. Abrupt Increase in Harvested Forest Area
over Europe after 2015. Nature 2020, 583, 72-77. [CrossRef] [PubMed]

Picard, N.; Leban, ].M.; Guehl, ].M.; Dreyer, E.; Bouriaud, O.; Bontemps, ].D.; Landmann, G.; Colin, A.; Peyron, J.L.; Marty, P.
Recent Increase in European Forest Harvests as Based on Area Estimates (Ceccherini et Al. 2020a) Not Confirmed in the French
Case. Ann. For. Sci. 2021, 78, 1-5. [CrossRef]

Breidenbach, J.; Ellison, D.; Petersson, H.; Korhonen, K.; Henttonen, H.; Wallerman, J.; Fridman, J.; Gobakken, T.; Astrup, R.;
Neesset, E. No “ Abrupt Increase in Harvested Forest Area over Europe after 2015 "—How the Misuse of a Satellite-Based Map
Led to Completely Wrong Conclusions. In Proceedings of the vEGU21, The 23rd EGU General Assembly, Online, 19-30 April
2021; Volume 77, p. 13243.

Zielewska-Biittner, K.; Adler, P.; Ehmann, M.; Braunisch, V. Automated Detection of Forest Gaps in Spruce Dominated Stands
Using Canopy Height Models Derived from Stereo Aerial Imagery. Remote Sens. 2016, 8, 175. [CrossRef]

Yu, X.; Maltamo, M. Methods of Airborne Laser Scanning for Forest Test Site and Applied Laser Scanner Data. In Proceedings of
the Workshop on 3D Remote Sensing in Forestry, Vienna, Austria, 14-15 February 2006; pp. 1-16.

Su, J.; Bork, E. Influence of Vegetation, Slope, and LiDAR Sampling Angle on DEM Accuracy. Photogramm. Eng. Remote Sens.
2006, 72, 1265-1274. [CrossRef]

Maltamo, M.; Eerikdinen, K,; Pitkdnen, J.; Hyypp4, J.; Vehmas, M. Estimation of Timber Volume and Stem Density Based on
Scanning Laser Altimetry and Expected Tree Size Distribution Functions. Remote Sens. Environ. 2004, 90, 319-330. [CrossRef]
Mielcarek, M.; Sterericzak, K.; Khosravipour, A. Testing and Evaluating Different LIDAR-Derived Canopy Height Model
Generation Methods for Tree Height Estimation. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 132-143. [CrossRef]

Stereniczak, K. Factors Influencing Individual Tree Crowns Detection Based on Airborne Laser Scanning Data. For. Res. Pap. 2014,
74, 323-333. [CrossRef]

Raty, M.; Kankare, V.; Yu, X.; Holopainen, M.; Vastaranta, M.; Kantola, T.; Hyypp4, J.; Viitala, R. Tree Biomass Estimation Using
ALS Features. In Proceedings of the SilviLaser 2011, Hobart, Australia, 16-20 October 2011; pp. 1-8.


https://doi.org/10.1371/journal.pone.0207151
https://www.ncbi.nlm.nih.gov/pubmed/30418996
https://doi.org/10.1038/s41586-018-0577-1
https://www.ncbi.nlm.nih.gov/pubmed/30305744
https://doi.org/10.1186/s13021-016-0059-4
https://www.ncbi.nlm.nih.gov/pubmed/27635153
https://doi.org/10.1038/s41586-020-2438-y
https://www.ncbi.nlm.nih.gov/pubmed/32612223
https://doi.org/10.1007/s13595-021-01030-x
https://doi.org/10.3390/rs8030175
https://doi.org/10.14358/PERS.72.11.1265
https://doi.org/10.1016/j.rse.2004.01.006
https://doi.org/10.1016/j.jag.2018.05.002
https://doi.org/10.2478/frp-2013-0031

Forests 2023, 14, 2408 13 of 14

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Nijland, W.; Coops, N.C.; Ellen Macdonald, S.; Nielsen, S.E.; Bater, C.W.; John Stadt, ]. Comparing Patterns in Forest Stand
Structure Following Variable Harvests Using Airborne Laser Scanning Data. For. Ecol. Manage. 2015, 354, 272-280. [CrossRef]
Tompalski, P.; Coops, N.C.; White, J.C.; Goodbody, T.R.H.; Hennigar, C.R.; Wulder, M.A.; Socha, J.; Woods, M.E. Estimating
Changes in Forest Attributes and Enhancing Growth Projections: A Review of Existing Approaches and Future Directions Using
Airborne 3D Point Cloud Data. Curr. For. Rep. 2021, 7, 1-24, Correction in Curr. For. Rep. 2021, 7, 25-30. [CrossRef]

Ruas, A. Map Generalization. In Encyclopedia of GIS; Springer: Boston, MA, USA, 2008; pp. 631-632. [CrossRef]

Pfaltz, ].L.; Rosenfeld, A. Computer Representation of Planar Regions by Their Skeletons. Commun. ACM 1967, 10, 119-122.
[CrossRef]

Visvalingam, M.; Whyatt, ].D. The Douglas-Peucker Algorithm for Line Simplification: Re-evaluation through Visualization.
Comput. Graph. Forum. 1990, 9, 213-225. [CrossRef]

Saalfeld, A. Topologically Consistent Line Simplification with the Douglas-Peucker Algorithm. Cartogr. Geogr. Inf. Sci. 1999, 26,
7-18. [CrossRef]

Jakstys, M. Wang—Miiller Algorithm Realization for Cartographic Line Generalization. 2021, p. 54. Available online: https:
/ /gitjakstys.lt/motiejus/wm/raw /branch/main/mj-msc-full.pdf. (accessed on 7 December 2023).

Garcia Balboa, ].L.; Ariza Lopez, EJ. Sinuosity Pattern Recognition of Road Features for Segmentation Purposes in Cartographic
Generalization. Pattern Recognit. 2009, 42, 2150-2159. [CrossRef]

Blaszczak-Bak, W.; Janowski, A.; Kamifiski, W.; Rapifiski, ]. Optimization Algorithm and Filtration Using the Adaptive TIN
Model at the Stage of Initial Processing of the ALS Point Cloud. Can. J. Remote Sens. 2012, 37, 583-589. [CrossRef]

Costa, R.L.C.; Miranda, E.; Dias, P.; Moreira, ]. Evaluating Preprocessing and Interpolation Strategies to Create Moving Regions
from Real-World Observations. ACM SIGAPP Appl. Comput. Rev. 2020, 20, 46-58. [CrossRef]

Shao, G.; Tang, L.; Liao, J. Overselling Overall Map Accuracy Misinforms about Research Reliability. Landsc. Ecol. 2019, 34,
2487-2492. [CrossRef]

Kamusoko, C. Land Cover Classification Accuracy Assessment. Springer Geogr. 2022, 80, 105-118. [CrossRef]

Available online: https://arboretum.czu.cz/en/r-12506-o0-arboretu/r-12526-prirodni-a-klimaticke-podminky (accessed on 7
December 2023).

Available online: https:/ /pdal.io/workshop/exercises /analysis/ground /ground.html (accessed on 7 December 2023).
Available online: https://pdal.io/en/2.4.3/workshop/exercises/analysis/dtm/dtm.html (accessed on 7 December 2023).
Botto-Tobar, M.; Barzola-Monteses, J.; Santos-Baquerizo, E.; Espinoza-Andaluz, M.; Yanez-Pazmifio, W. Preface. In Computer and
Communication Engineering, First International Conference, Proceedings of the ICCCE 2018, Guayaquil, Ecuador, 25-27 October 2018;
Springer: Berlin/Heidelberg, Germany, 2019; p. 959. [CrossRef]

Zhou, S.; Jones, C.B. Shape-Aware Line Generalisation With Weighted Effective Area. In Developments in Spatial Data Handling, Pro-
ceedings of the 11th International Symposium on Spatial Data Handling, Leicester, UK, 23-25 August 2004; Springer: Berlin/Heidelberg,
Germany, 2006; pp. 369-380. [CrossRef]

Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/cartography/simplify-line.htm (accessed on 7
December 2023).

Wang, Z.; Miiller, J.C. Line Generalization Based on Analysis of Shape Characteristics. Cartogr. Geogr. Inf. Sci. 1998, 25, 3-15.
[CrossRef]

Lu, M.; Chen, B,; Liao, X.; Yue, T.; Yue, H.; Ren, S.; Li, X.; Nie, Z.; Xu, B. Forest Types Classification Based on Multi-Source Data
Fusion. Remote Sens. 2017, 9, 1153. [CrossRef]

Shao, G.; Wu, J. On the Accuracy of Landscape Pattern Analysis Using Remote Sensing Data. Landsc. Ecol. 2008, 23, 505-511.
[CrossRef]

R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2023; Available online: https:/ /www.R-project.org/ (accessed on 7 December 2023).

Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2017.
Breheny, P.; Burchett, W. Package ‘Visreg’: Visualization of Regression Models. R J. 2017, 9, 56-71. [CrossRef]

Allouche, M.K.; Moulin, B. Amalgamation in Cartographic Generalization Using Kohonen'’s Feature Nets. Int. J. Geogr. Inf. Sci.
2005, 19, 899-914. [CrossRef]

Wang, H.L.; Wu, F; Zhang, L.L.; Deng, H.Y. The Application of Mathematical Morphology and Pattern Recognition to Building
Polygon Simplification. Acta Geod. Cartogr. Sin. 2005, 34, 269-276.

Wang, X.; Liu, S. Vehicle Trajectory Optimization Based on Limiting Average Algorithm. IEEE Access 2021, 9, 9595-9599.
[CrossRef]

Badea, G.; Eng, P; Bucharest, E. On the Generalization Algorithms Applied in Gis Environment. 2021, pp. 15-22. Available online:
https:/ /www.researchgate.net/publication/342658887_On_the_Generalization_Algorithms_Applied_in_GIS_Environment (ac-
cessed on 7 December 2023).


https://doi.org/10.1016/j.foreco.2015.06.005
https://doi.org/10.1007/s40725-021-00139-6
https://doi.org/10.1007/978-0-387-35973-1_743
https://doi.org/10.1145/363067.363120
https://doi.org/10.1111/j.1467-8659.1990.tb00398.x
https://doi.org/10.1559/152304099782424901
https://git.jakstys.lt/motiejus/wm/raw/branch/main/mj-msc-full.pdf.
https://git.jakstys.lt/motiejus/wm/raw/branch/main/mj-msc-full.pdf.
https://doi.org/10.1016/j.patcog.2009.02.004
https://doi.org/10.5589/m12-001
https://doi.org/10.1145/3412816.3412820
https://doi.org/10.1007/s10980-019-00916-6
https://doi.org/10.1007/978-981-16-5149-6_6
https://arboretum.czu.cz/en/r-12506-o-arboretu/r-12526-prirodni-a-klimaticke-podminky
https://pdal.io/workshop/exercises/analysis/ground/ground.html
https://pdal.io/en/2.4.3/workshop/exercises/analysis/dtm/dtm.html
https://doi.org/10.1007/978-3-030-12018-4
https://doi.org/10.1007/3-540-26772-7_28
https://pro.arcgis.com/en/pro-app/latest/tool-reference/cartography/simplify-line.htm
https://doi.org/10.1559/152304098782441750
https://doi.org/10.3390/rs9111153
https://doi.org/10.1007/s10980-008-9215-x
https://www.R-project.org/
https://doi.org/10.32614/RJ-2017-046
https://doi.org/10.1080/13658810500161211
https://doi.org/10.1109/ACCESS.2020.3047386
https://www.researchgate.net/publication/342658887_On_the_Generalization_Algorithms_Applied_in_GIS_Environment

Forests 2023, 14, 2408 14 of 14

42. Gokgoz, T; Sen, A.; Memduhoglu, A.; Hacar, M. A New Algorithm for Cartographic Simplification of Streams and Lakes Using
Deviation Angles and Error Bands. ISPRS Int. J. Geo-Inf. 2015, 4, 2185-2204. [CrossRef]

43. Alves, M,; Santo, D.; De Oliveira, EH. Algorithms for Automated Line Generalization in GIS. In Proceedings of the Twenty-Eighth
Annual ESRI User Conference, San Diego, CA, USA, 4-8 August 2008.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.3390/ijgi4042185

	Introduction 
	Materials and Methods 
	Study Site 
	Data Processing 
	Statistical Analysis and Accuracy Assessment 

	Results 
	Discussion 
	Conclusions 
	References

