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Abstract: Currently, studies investigating the carbon balance in forest ecosystems are particularly
relevant due to the global increase in CO2 content in the atmosphere. Due to natural reforestation over
the past 25–30 years, birch (Betula pendula Roth.) forests were extensively grown and established on
abandoned agricultural lands in Bashkir Cis-Ural (Republic of Bashkortostan, Russia). The significant
positive aspect of reforestation on fallow lands is the carbon sequestration that takes place in the
tree phytomass, especially at the growth stage of stand formation. The aim of this article is to
test the approach of using a UAV-mounted LiDAR camera to estimate the phytomass and carbon
stocks in different-aged birch forests growing on abandoned arable lands in Bashkir Cis-Ural. The
methodology was developed using 28 sample plots, where the LiDAR survey was performed using a
DJI Matrice 300 RTK UAV. Simultaneously, the stand characteristics and phytomass of stem wood
were also estimated, using traditional methods in the field of forest science. The regression equations
of phytomass dependence on stand characteristics at different stages of reforestation were constructed
using data obtained from LiDAR imagery. It was shown that the above-ground tree biomass could be
precisely estimated using the index obtained by multiplying the number of trees and their average
height. A comparison of the data obtained using traditional and LiDAR survey methods found that
the accuracy of the latter increased in conjunction with stand density. The accuracy of estimation
ranged from 0.2 to 6.8% in birch forests aged 20 years and over. To calculate carbon stocks of the
above-ground tree stands, the use of regional conversion coefficients is suggested, which could
also be applied for the estimation of carbon content in trunk wood and leaves. An equation for
the calculation of above-ground biomass carbon stocks of birch forests on abandoned arable lands
is proposed.

Keywords: 3D laser scanning; above-ground biomass; Betula pendula; carbon sequestration; regression
models

1. Introduction

In the second half of the 20th century, abandoned agricultural lands increased sig-
nificantly in North America, the former Soviet Union and South Asia, and subsequently
Europe, South America and China, due to the reduction in agriculture intensity [1–8]. An
analysis of the History Database of Global Environment 3.0 (HYDE) database of Campbell,
Lobell and Field [9] showed that 269 million ha of croplands and 479 million ha of pastures
were abandoned globally over the last three centuries. However, after accounting for forest
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regrowth and urbanization, the total area of abandoned agricultural lands ranged from
385 to 472 million ha [10]. Many reasons led to the abandonment of croplands, such as the
dismantling of the state administration system, the introduction of free market principles,
the end of state regulation and support, and land reforms [11].

Russia ranks first in the world in terms of lands excluded from agricultural use,
which, according to various estimates, ranges from 76 to 97.2 million ha [12,13]. In the last
20–30 years, many areas of abandoned cropland have been actively reforested. In most
cases, abandoned croplands have become overgrown with fast-growing tree species with
high seed production. The species diversity of trees on abandoned arable lands depends
mainly on the availability of seed sources, the species composition of the adjacent forest
stands, soil fertility, and the utilization regime before and after cessation of plowing [14,15].

Among the regions of Russia, the Republic of Bashkortostan has the highest percentage
of unused arable agricultural lands overgrown with forest vegetation, the area of which
is more than 4 million ha [16]. In different districts of Bashkortostan, overgrowth occurs
in terms of different tree species, including the Scots pine (Pinus sylvestris L.), silver birch
(Betula pendula Roth.), and European aspen (Populus tremula L.), and less frequently, the
European oak (Quercus robur L.) and Norway maple (Acer platanoides L.). In some cases, an
overgrowth of Box Elder (Acer negundo L.) is observed [17]. However, the silver birch is one
of the main forest-forming species on fallow lands and rapidly occupies treeless areas after
the abandonment of agricultural activities, due to its strong juvenile growth, abundant seed
production, and large soil seed bank [18,19]. Over the last three decades, forest plantations
dominated by this species have formed on large areas of abandoned arable lands in Cis-Ural.
In the region, the average carbon stocks in 25–30-year-old birch tree stands on abandoned
agricultural land is 74.9 t/ha [20], which is close to that in Scandinavia for a 32-year-old
birch tree stand (87.7 t/ha) [21]. Silver birch also demonstrates a wide natural distribution
on the European part of the continent [22], and abandoned arable lands overgrown with
this species can also be identified in Poland [23], Estonia [24–26], Sweden [27], and other
European countries.

The positive aspect of reforestation on fallow lands is carbon sequestration that
76 takes place in tree phytomass, especially at the stages of stand formation [28–30]. In-
creased plant biomass after the cessation of plowing contributes to increased organic matter
content by integrating plant litter and roots, thereby increasing soil organic carbon con-
tent [31–34]. Thus, abandoned agricultural lands are large carbon stores and contribute to
the reduction in greenhouse gas emissions; thus, playing an important role in the global
climate change processes [35–37].

The increasing succession of silver birch on abandoned farmlands and the emerging
need to manage these areas has necessitated research into the structure of birch forests [38].
Mapping of the above-ground woody biomass (AGB) on abandoned agricultural land is
required in terms of the relevant stakeholders to monitor the spatial dynamics of farm-
land afforestation, assess carbon sequestration, and establish appropriate natural resource
management [39,40].

Trunk diameter at breast height, individual tree height, and crown base height are
typically measured for stand inventories and forest management. Although traditional field
measurements are still widely practiced, they have some disadvantages because they are
time-consuming and limited in terms of spatial scale. Since the early 2000s, LiDAR has been
used worldwide as an alternative to traditional forest inventory methods of observations.
Unmanned aerial vehicle (UAV) surveys provide objective and maximally accurate data
concerning forest stands, including tree heights, crown diameters, and volume, and the
number of trees per unit area [23,41–49]. Tree height estimation using a laser approximated
more closely to the real height of felled trees than traditional field measurements [50]. Since
the literature indicates a reasonably high efficiency in using LiDAR imagery for operational
applications in simple forest structures (e.g., single-tier stands) [51,52], we hypothesized
that this approach would be applicable to the study of secondary reforestation successions
on abandoned farmlands.
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This research aimed to test a method using a UAV-mounted LiDAR camera to estimate
the phytomass and carbon stocks of birch forests of different ages growing on abandoned
arable lands in Bashkir Cis-Ural.

2. Materials and Methods

The research was conducted in Cis-Ural on the “Mishkinsky carbon polygon” (Mishkin-
sky district, Republic of Bashkortostan, Russia). The climate in the study area is temperate,
continental, and relatively humid (Dfb according to Köppen–Geiger climate classification).
The annual average air temperature is +3.8 ◦C and precipitation is 589 mm. The soil cover
consists mostly of grey forest soil and less frequently of dark grey forest soils (to deter-
mine soil type and its morphological properties, the soil profiles were excavated on each
sample plot).

The method for estimating phytomass and carbon stocks of forest vegetation was con-
ducted on 28 sample plots (sized 30 × 30 m) located on abandoned arable land overgrown
with silver birch (Figure 1).
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The sample plots for carbon stock calculations were selected and identified using
traditional field reconnaissance and LiDAR surveys. The sample plots were distinguished
according to the stages of reforestation. Five main stages of natural reforestation were
identified, within which two variants with different stand and crown density (variant
1 with relatively low coverage, and variant 2 with higher coverage) were distinguished
(Table 1). At stage I, only variant 1 with two sample plots was found, but there were no
birch forests belonging to stage V, which has a sparse tree layer.

The above-ground biomass and the productivity of birch stands were estimated at
the end of summer (August) when the biomass formation processes were completed. The
model tree method was used to estimate the timber stock. In order to obtain the results
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of the phytomass reserves in the trees stands, we were guided by the generally accepted
methods of sampling plots and taking an inventory of tree stands. The biomass of living
trees, dead, and fallen wood was estimated using the data of the number of trees, their
diameter at breast height (DBH, i.e., 1.3 m height above the ground), and information about
the selected model trees within each sample plot [53,54]. Samples of biomass were crushed
with cutting mills of the VLM series (Vilitek LLC, Moscow, Russia) to a particle size of less
than 0.5 mm. The carbon content in the samples was determined using a CHNS EA-3100
elemental analyzer (Eurovector, Pavia, Italy). Conversion coefficients were calculated from
the carbon content of the samples to estimate carbon stocks in stem wood and leaves [20].

Table 1. The characteristics of Betula pendula tree stands at different stages of reforestation in the
study area.

Stage of
Reforestation

Trees
Height, m

Age of
Trees, Years

Diameter of
Trunks, cm

Variant 1
(Projective

Coverage, %)

Number of
Plots Variant 1

Variant 2
(Projective

Coverage, %)

Number of
Plots Variant 2

I 0.5–1.5 3–8 – 1–5 2 7–10 –
II 2–3 9–14 1–3 10–20 1 30–50 5
III 5–8 15–20 6–8 30–50 3 60–80 1
IV 9–14 20–25 10–14 50–60 4 75–90 3
V 15–18 25–30 16–20 50–60 – 75–90 6

Laser scanning of tree stands was conducted using a DJI Matrice 300 RTK UAV
equipped with a Zenmuse L1 LiDAR camera (SZ DJI Technology Co., Shenzhen, China)
from a 100 m altitude. The Zenmuse Lidar L1 combines a Livox Lidar module, a high-
precision IMU and a 1-inch CMOS camera on a 3-axis stabilized system (covering up to
2 km2 in a single span, with a vertical accuracy of 5 cm, a horizontal accuracy of 10 cm, a
point rate of 240,000 pts/s, and a detection range of 450 m). In the preparatory phase, a
flight mission was planned—the survey area was set in KML format, which was loaded
into the DJI Pilot 2 UAV’s control panel software (v.2). After the flight plan was uploaded,
the drone performed image acquisition in automatic mode. The images were saved in JPG
format and, in parallel, the georeferenced coordinates of the images were recorded using
the D-RTK2 mobile station. The resulting images were imported into the DJI Terra program
and stitched together automatically. The 3D point cloud in the LAS format with a density
ranging from 300 to 950 pcs/m2 was formed. The post-processing of the stitched images
was performed in the program LiDAR 360 Version 4.5 (Green Valley International, Berkeley,
CA, USA) [55,56]. In the first stage, each UAV flyover section was cleared of points located
outside the main scanning area (“outliers”). Next, the set of points was classified and
divided into two types: points of the Earth’s surface and other points above them. A digital
elevation model (DEM) was built using the points of the first type. The remaining points
were used to create a digital terrain model (DTM), which contained spatial information
about the surface position of all objects in the areas above the Earth’s surface. By excluding
DEM data from the DEM, a digital forest canopy model (DFM) was created, which is an
image of the crowns of trees. The pixel size of the resulting images was 4.0 cm. The number
and height of trees, their geometric coordinates on the image, crown diameters, their areas
and volumes were calculated in the ASL Forest module of the LiDAR 360 program, which
was required to obtain digital forest canopy models that represent the image of tree crowns
(Figure 2).

Regression equations of the dependence of phytomass and carbon stocks on stand
characteristics obtained by the LiDAR survey were constructed. Regression analysis was
carried out in “Statgraphics centurion XV”. The “Comparison of Alternative Models”
algorithm was used to select the optimal regression models [57]. The coefficients of the
correlation (R) and determination (R2) and the estimation standard error (ESE) were used
as model quality criteria. The R2 coefficient reflects the proportion of the variance of the
dependent variable explained by the model under consideration. The ESE is a measure
of the mean error variance, the difference between the indicator values predicted by the
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regression model and the indicator values in the sample. In other words, the standard
error of regression is the average distance by which the observed values deviate from the
regression line.
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model of the stand crowns (b).

3. Results

Table 2 shows the results of the regression models of the phytomass of stem wood with
branches and the phytomass of leaves, dependent on the stand characteristics calculated
from the results of the LiDAR survey. All models are described using nonlinear equations.

The values of R between the phytomass of stem wood with branches and stand
characteristics calculated from the LiDAR survey (for almost all of the cases) are greater
than 0.90 for all cases, and R2 is greater than 88%.

Table 2. Regression models for calculating phytomass of stem wood with branches and phytomass
of leaves based on stand characteristics calculated from LiDAR survey results.

Stand Characteristics Regression Model Equation R R2 ESE

Phytomass of stem wood with branches

Multiplying the sum of tree crowns
diameters by their average height

Square root-Y model:
Y = (6.25464 + 0.0320395 × X)2 0.98 95.5 9.8

Multiplying the number of trees by their
average height

Square root-Y model:
Y = (3.33595 + 0.1372 × X)2 0.97 94.4 10.9

Multiplying the sum of tree crown area by
their average height

Square root-Y model:
Y = (7.46822 + 0.00848049 × X)2 0.97 93.5 11.7

Trees average height Square root-Y squared-X model:
Y = (9.49088 + 0.430736 × X2)2 0.96 92.1 12.9

Sum of trees crown diameters Logarithmic-Y square root-X model:
Y = exp(0.875185 + 0.576223 ×

√
X) 0.94 89.2 1.2

Multiplying the sum of tree crown
volumes by their average height

Double square root model:
Y = (3.98812 + 0.486332 ×

√
X)2 0.94 88.8 15.4

Sum of tree crown areas Logarithmic-Y square root-X model:
Y = exp(1.64388 + 0.270862 ×

√
X) 0.92 84.0 1.5

Sum of tree crown volumes Logarithmic-Y square root-X model:
Y = exp(2.16932 + 0.138317 ×

√
X) 0.88 78.0 1.7
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Table 2. Cont.

Stand Characteristics Regression Model Equation R R2 ESE

Phytomass of leaves

Multiplying the sum of tree crown
diameters by their average height

Double square root model:
Y = (1.98201 + 0.3495 ×

√
X)2 0.92 85.4 3.4

Multiplying the number of trees by their
average height

Square root-Y model:
Y = (3.38375 + 0.0254409 × X)2 0.92 84.4 3.5

Sum of tree crown diameters Logarithmic-Y square root-X model:
Y = exp(0.656103 + 0.377484 ×

√
X) 0.91 83.6 1.0

Multiplying the sum of tree crown areas
by their average height

Double square root model:
Y = (2.79809 + 0.172115 ×

√
X)2 0.91 82.3 3.8

Tree average height Square root-Y model:
Y = (1.32037 + 1.37447 × X)2 0.90 81.0 3.9

Sum of tree crown areas Double square root model:
Y = (1.70192 + 0.641025 ×

√
X)2 0.88 78.2 4.2

Multiplying the sum of tree crown
volumes by their average height

Double square root model:
Y = (3.70018 + 0.0880252 ×

√
X)2 0.87 76.0 4.4

Sum of tree crown volumes Double square root model:
Y = (2.91063 + 0.328646 ×

√
X)2 0.86 73.2 4.7

Note: R—correlation coefficient; R2—coefficient of determination; ESE—estimation standard error.

Figure 3 shows the above-described regression equations used to calculate the phy-
tomass of stem wood with branches from the stand characteristics obtained from the LiDAR
survey. In the graphs, the green lines indicate confidence intervals for the mean response
of the variable, which reflect how accurately the position of the line was estimated with
the existing data sample. The gray lines on the graphs indicate the prediction limits for
new observations, allowing us to describe how accurately we can predict where the new
observations will lie, which will vary around the true line with a standard deviation. Table 2
and Figure 3 show that regression models built via the multiplication of the sum of tree
crown diameters by their average height, as well as by the multiplication of the number
of trees by their average height are optimal for calculating the phytomass of stem wood
with branches.

Separate regression models were utilized to calculate the phytomass of leaves. Table 2
and Figure 4 show that all models are described using nonlinear equations as well as
stem wood models. The values of R between the phytomass of the leaves and stand
characteristics calculated via the LiDAR survey are (for almost all of the cases) greater than
0.86, and R2 is greater than 73%. Thus, the calculated regression equations used to estimate
the phytomass of leaves from stand characteristics obtained using LiDAR imagery are quite
close in accuracy to the estimates of stem wood with branches. The phytomass of leaves,
as in the case with the the phytomass of stem wood with branches, is most accurately
estimated via the multiplication of the sum of tree crown diameters by their average height
and via the multiplication of the number of trees by their average height (Table 2).

Figure 4 shows that the phytomass of leaves has more variability than the phytomass
of stem wood with branches due to changes in the crown volume at the same tree height;
this change is caused by stand projective cover. However, since most carbon storage occurs
in the stem wood with branches, this variability does not play a major role in calculating
the total above-ground carbon stocks in the stand.

The previously calculated conversion coefficients were used to estimate the carbon
stocks in the above-ground phytomass of the tree stands [58]. The carbon content in the
phytomass of birch stem wood with branches within the studied polygon is fairly constant
regardless of tree age and averages at 48.5%. The variability in this indicator at different
sample plots did not exceed 3% [59]. Therefore, in order to obtain the carbon stock in stem
wood with branches, it is sufficient to multiply the phytomass value obtained using one of
the regression equations by 0.485. Similarly, the mean carbon content of the leaves is 48.8%,
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with a maximum variation from 46.3 to 51.6%. Therefore, the carbon stocks in leaves were
calculated by multiplying the phytomass by 0.488.
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Furthermore, the difference between the values of carbon stocks in the above-ground
part of the stand (including stem wood with branches and leaves) calculated from the
LiDAR survey data and the values obtained when using the traditional method using a
model tree was assessed (Table 3). The phytomass of the leaves and phytomass of stem
wood with branches were calculated in each case using the same parameters (e.g., the
multiplication of the number of trees by their average height, average height, etc.).

Table 3. Carbon stocks in the above-ground part of the forest stand on abandoned arable lands in the
Cis-Ural area overgrown with silver Birch calculated using the traditional method and using different
indicators obtained from the LiDAR data.

Stage (S) and Variant (V) of Overgrowth

S1V1 S2V1 S2V2 S3V1 S3V2 S4V1 S4V2 S5V2

Carbon stocks in above-ground biomass of tree layer based on traditional field measurement, kg/ha *

24.7
±15.2

299.2
±136.5

1410.5
±379.4

10,579.4
±4581.9 19,431.4 26,726.6

±5204.4
33,781.2
±2291.9

77,554.0
±8589.4

Carbon stocks in above-ground biomass of tree layer based on LiDAR data, kg/ha

By multiplying the sum of trees crown diameters and their average height

278.1
±27.1

302.7
±18.5

711.3
±243.0

7519.6
±2187.0 26,308.7 28,233.4

±7708.9
40,836.7
±2720.3

71,634.1
±3841.3

(1023.5) (1.2) (−49.6) (−28.9) (35.4) (5.6) (20.9) (−7.6)

By multiplying the number of trees and their average height

196.5
±45.4

447.3
±98.3

1298.8
±327.4

8564.0
±3066.8 15270.5 26,680.0

±5377.8
36,091.6
±6731.6

76,492.4
±5032.5

(694.0) (49.5) (−7.9) (−19.0) (−21.4) (−0.2) (6.8) (−1.4)

By multiplying the sum of tree crown areas and their average height

369.6
±17.2

366.5
±5.4

641.8
±189.2

6619.4
±1762.6 26,631.0 31,554.6

±10467.7
46,109.7
±3009.1

65,251.1
±3981.3

(1393.6) (22.5) (−54.5) (−37.4) (37.1) (18.1) (36.5) (−15.9)

Based on average tree height

1059.6
±258.8

880.0
±9.7

951.6
±34.5

4403.7
±1182.2 26,308.7 28,412.1

±9950.9
33,896.3
±2241.2

74,375.6
±6267.3

(4181.4) (194.1) (−32.5) (−58.4) (35.4) (6.3) (0.3) (−4.1)

Based on the sum of tree crown diameters

52.8
±14.8

85.5
±17.0

1396.2
±1016.0

18,130.1
±7350.6 26,308.7 27,004.2

±5356.4
43,901.0
±3578.2

62,994.7
±5616.1

(113.2) (−71.4) (−1.0) (71.4) (35.4) (1.0) (30.0) (−18.8)

By multiplying the sum of tree crown volumes and their average height

285.1
±78.1

244.7
±18.1

868.4
±389.6

11,368.6
±2471.3 26,308.7 39,368.9

±12,250.0
49,310.2
±9213.0

53,160.7
±2234.8

(1052.2) (−18.2) (−38.4) (7.5) (35.4) (47.3) (46.0) (−31.5)

Based on the sum of tree crown areas

87.4
±26.4

94.5
±11.3

922.1
±627.4

14,299.1
±5619.1 26,308.7 32,552.9

±9417.0
59,917.2
±12695.8

50,500.3
±3386.7

(253.3) (−68.4) (−34.6) (35.2) (35.4) (21.8) (77.4) (−34.9)

Based on the sum of tree crown volumes

136.0
±24.8

129.8
±7.6

423.3
±195.6

7423.4
±2628.4 26,308.7 66,205.1

±30,663.3
142,022.3
±94,361.9

41,472.7
±4110.0

(449.4) (−56.6) (−70.0) (−29.8) (35.4) (147.7) (320.4) (−46.5)

Note: the difference between the measurement results is provided in brackets, %. * More details in the publication [58].
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Table 3 shows that as stand projective cover increases, the accuracy of LiDAR estimates
increases. The best model for calculating the above-ground biomass of birch forests is the
model that multiplication the number of trees by their average height:

AGB = (3.33595 + 0.1372 × X)2 + (3.38375 + 0.0254409 × X)2 (1)

where AGB represents the above-ground biomass of a birch stand, and X—multiplication
of the number of trees by their average height.

Using conversion coefficients, carbon stocks in the above-ground part of birch forests
can be calculated according to the formula:

CS = (3.33595 + 0.1372 × X)2 × 0.485 + (3.38375 + 0.0254409 × X)2 × 0.488 (2)

where CS represents the carbon stock in the birch stand, and X—multiplication of the
number of trees by their average height.

The accuracy of carbon stock estimates using this formula in birch forests that are of
20 years of age and older ranges from 0.2 to 6.8%, and in birch forests of 9–20 years old
with projective cover greater than 30%, it ranges from 7.9 to 21.4% (Table 3). At stage I of
overgrowth, there are very strong discrepancies between the results of calculations using
the traditional method and LiDAR data. However, the values at this stage are on average
only 24.7 kg of carbon per ha, and unlike the other stages, the main carbon storage occurs
not in the tree layer but in the herb layer.

4. Discussion

Our results coincide with the literature data in providing a sufficiently accurate es-
timation of the phytomass of stands of trees with high projective cover and their carbon
stocks using LiDAR imagery [56]. The relationship between stand characteristics obtained
using LiDAR and biomass calculated via traditional field measurements are, in all cases,
described by using nonlinear equations, which is also consistent with the literature data [58].
Comparing the results of carbon stock estimation in the above-ground part of the stand
using the traditional methods and LiDAR survey data, we found that the best model for
calculating the phytomass of stem wood with branches, as well as the phytomass of leaves,
is the model of multiplication of the number of trees by their average height. The tree height
included in the calculation formula is a key parameter whose relationship to above-ground
biomass has also been reported in other studies [59]. In our investigation, the average
height of trees is important due to its correlation with the stages of reforestation, differing
according to the age and the above-ground biomass of trees. However, in stands with low
projective cover, height is less important because at the same height, depending on stand
density, crown size can vary greatly. Therefore, at stage III of overgrowth (tree heights of
5–8 m and a crown densities of 40–65%), multiplication of the number of trees by the aver-
age stand height and multiplication of the sum of diameters by the average stand height
provide more accurate estimates of biomass and carbon stocks than average stand height
on its own. The results explained more than 94% of the variance, which is very good and
consistent with the accuracy of the model using the LiDAR Biomass Index (LBI) calculated
from the estimated crown volume of individual trees [60]. The choice of this indicator is
also justified, as among the five main forest stand parameters (number of trees, tree average
height, sum of tree diameters, area, and volumes of tree crown), only the number of trees
and their average height are independent. The sum of crown diameters and the sum of
crown areas depend on the average height of the trees, which increases with age, and with
the number of trees. The sum of tree crown volumes also depends on the average height
of the trees because it is related to the age of the stand. Therefore, the three parameters
(multiplication of the sum of tree crown diameters by their average height, multiplication
of the sum of tree crown areas by their average height, and multiplication of the sum of tree
crown volumes by their average height) may provide an inaccurate estimate because the
formula includes dependent variables. Thus, the multiplication of the number of trees by
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their average height is the most appropriate. The proposed method for calculating carbon
stocks in the above-ground part of the stand on abandoned agricultural lands using the
multiplication of the number of trees by the average height provides sufficiently accurate
estimates for birch forests that are more than 9 years old with projective cover of more
than 30%.

As noted above, as the density of forest stand increases, the accuracy of the LiDAR
survey estimates also increases. The greater discrepancy between the results of carbon stock
calculation using traditional methods and LiDAR methods in sparse stands is due to the
fact that in stages II-III of reforestation, trees of the same age may have strong differences in
the size and shape of their crowns. The influence of stand density on the living crown ratio
in silver birch stands has also been revealed in other studies [61]. This coincides with the
findings in the literature showing that the relative deviations of UAV estimates increased
in those stands consisting of isolated groups of trees, indicating the potential limitations of
the approach and the need for its further development [2,62].

The strongest discrepancies are at stage I of reforestation. This is explained by the fact
that the birch stand of this stage is represented by 3–5-year-old trees with heights ranging
from 0.5 to 1.5 m, which grow mosaically and may be inadequately distinguished from
shrubs and large herbaceous plants on LiDAR images. This may be the reason for the
significant overestimation of results. At this stage, the main carbon storage is not in the
woody understory but in the herbaceous layer. Thus, the plant communities of stage I and
the sparse variant 1 of stage II of reforestation should not be classified as forests. At the
initial stage of reforestation succession, the main carbon storage occurs in the herbaceous
layer. Probably, in this case, it will be more effective to use regression equations based
on vegetation indices calculated from high-resolution multispectral images from UAVs or
space satellites [63].

In addition, the differences between biomass estimated by using traditional measure-
ments and using LiDAR data may be explained by the fact that the centers of the sample
plots were marked using a GPS navigator with an accuracy of 3 m. The UAV imagery
may have shifted the boundaries of the sample plots, which increased the influence of the
mosaic distribution of birch trees in the early stages of reforestation. However, birch forests
younger than 15 years old occupy insignificant areas in the Cis-Ural; therefore, the method
can be used to estimate carbon stocks in birch forests in the region.

In the Cis-Ural, abandoned arable lands are overgrown not only with silver birch but
also with Scots pine, which dominates in the close-quartered presence of its stands. The
growth rate of pine is much slower than that of birch; so in the early stages of reforestation,
pine forests with sparse stands are more common than in the early stages of birch forests. In
this regard, the method of calculating the biomass of individual trees 341 using the LiDAR
biomass index (LBI) can be used for the above-ground biomass of sparse pine forest stands,
which takes into account the crown area of model trees at different heights [60]. In forests
with high projective cover, the use of the latter method is technically difficult. It is worth
noting that during LiDAR imagery analyses, the ravines, temporary watercourses, and
places of sediment accumulation were easily detected; thus, LiDAR survey data could also
be potentially used to identify soil erosion processes, and this requires further research in
the study region. In other natural and climatic conditions, this method has already shown
its effectiveness [64,65].

Given the high prevalence of abandoned agricultural lands overgrown with birch
trees, the LiDAR remote sensing approach has great potential in the determination of
carbon sequestration and greenhouse gas balance in the ecosystems [66]. The investigations
and mapping changes in live above-ground biomasses in space and time using LiDAR
can provide critical insights into the drivers of carbon flux and ecological change during
forest community succession [67–69] and will enable predictions of future soil–reforestation
interactions under climalic and land use transformations [70].
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5. Conclusions

Since the estimation of carbon stocks in birch forests older than 9 years (stages III–V of
reforestation) is quite accurate, our proposed regression equations can be used to analyze
the dynamics of biomass and carbon stocks in stands across large areas, both in the Cis-Ural
and in other regions. The conversion coefficients for converting biomass to carbon stocks in
other regions need to be verified and, if necessary, refined. Birch succession on abandoned
agricultural land necessitates the management of these areas, including the selection of
their future use. In the cases of low productivity or low density in terms of the trees,
the overgrown lands can be used as hayfields and pastures or even as arable land (after
clearing). Highly productive birch forests require silvicultural measures, such as thinning
at high stand densities. Such communities can be used as timber sources and as carbon
farms established for carbon sequestration. In the latter case, additional activities will be
required to increase the rate of carbon sequestration. Following this proposed, utilization
of birch forests, our proposed approach for estimating stored carbon stocks can be used as
an additional method for controlling the effectiveness of forest management measures.
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23. Jagodziński, A.M.; Zasada, M.; Bronisz, K.; Bronisz, A.; Bijak, S. Biomass conversion and expansion factors for a chronosequence
of young naturally regenerated silver birch (Betula pendula Roth) stands growing on post-agricultural sites. For. Ecol. Manag. 2017,
384, 208–220. [CrossRef]

24. Uri, V.; Varik, M.; Aosaar, J.; Kanal, A.; Kukumägi, M.; Lohmus, K. Biomass production and carbon sequestration in a fertile silver
birch (Betula pendula Roth) forest chronosequence. For. Ecol. Manag. 2012, 267, 117–126. [CrossRef]

25. Varik, M.; Kukumagi, M.; Aosaar, J.; Becker, H.; Ostonen, I.; Lohmus, K.; Uri, V. Carbon budgets in fertile silver birch (Betula
pendula Roth) chronosequence stands. Ecol. Eng. 2015, 77, 284–296. [CrossRef]

26. Jonczak, J.; Jankiewicz, U.; Kondras, M.; Kruczkowska, B.; Oktaba, L.; Oktaba, J.; Olejniczak, I.; Pawłowicz, E.; Polláková, N.;
Raab, T.; et al. The influence of birch trees (Betula spp.) on soil environment—A review. For. Ecol. Manag. 2020, 477, 118486.
[CrossRef]

27. Rytter, R.M.; Rytter, L.; Hogbom, L. Carbon sequestration in willow (Salix s) plantations on former arable land estimated by
repeated field sampling and C budget calculation. Biomass Bioenergy 2015, 83, 483–492. [CrossRef]

28. Smith, J.O.; Smith, P.; Wattenbach, M.; Gottschalk, P.I.A.; Romanenkov, V.A.; Shevtsova, L.K.; Lisovoi, N.V. Projected changes in
the organic carbon stocks of cropland mineral soils of European Russia and the Ukraine, 1990–2007. Glob. Chang. Biol. 2007, 13,
342–356. [CrossRef]

29. Vuichard, N.; Ciais, P.; Wolf, A. Soil carbon sequestration or biofuel production: New land-use opportunities for mitigating
climate over abandoned soviet farmlands. Environ. Sci. Technol. 2009, 43, 8678–8683. [CrossRef] [PubMed]

30. Ryzhova, I.M.; Erokhova, A.A.; Podvezennaya, M.A. Alterations of the carbon storages in postagrogenic ecosystems due to
natural reforestation in Kostroma oblast. Russ. For. Sci. 2015, 4, 307–317. [CrossRef]

31. Gong, J.; Chen, L.; Fu, B.-J.; Huang, Y. Effect of land use on soil nutrients in the loess hilly area of the Loess Plateau, China. Land
Degrad. Dev. 2006, 17, 453–465. [CrossRef]

32. Yanagawa, A.; Tamura, K.; Fujimaki, H.; Asano, M.; Ose, K.; Higashi, T. Effects of crop abandonment and grazing exclusion on
available soil water and other soil properties in a semi-arid Mongolian grassland. Soil Tillage Res. 2009, 105, 228–235. [CrossRef]

33. Novara, A.; Gristina, L.; Sala, G.; Galati, A.; Crescimanno, M.; Cerdà, A.; Badalamenti, E.; La Mantia, T. Agricultural land
abandonment in Mediterranean environment provides ecosystem services via soil carbon sequestration. Sci. Total Environ. 2017,
576, 420–429. [CrossRef]

34. Bell, S.M.; Barriocanal, C.; Terrer, C.; Rosell-Melé, A. Management opportunities for soil carbon sequestration following
agricultural land abandonment. Environ. Sci. Policy 2020, 108, 104–111. [CrossRef]

35. Kurganova, I.; De Gerenyu, V.L.; Kuzyakov, Y. Large-scale carbon sequestration in post-agrogenic ecosystems in Russia and
Kazakhstan. Catena 2015, 133, 461–466. [CrossRef]

36. Kurganova, I.; Lopes de Gerenyu, V.; Six, J.; Kuzyakov, Y. Carbon cost of collective farming collapse in Russia. Glob. Chang. Biol.
2014, 20, 938–947. [CrossRef]

37. Lal, R. Carbon sequestration. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 815–830. [CrossRef]
38. Bronisz, K.; Lauri, M. Mixed-effects generalized height–diameter model for young silver birch stands on post-agricultural lands.

For. Ecol. Manag. 2020, 460, 117901. [CrossRef]

https://doi.org/10.1080/15324981003635461
https://doi.org/10.3897/oneeco.7.e77969
https://doi.org/10.23670/IRJ.2021.103.2.028
https://doi.org/10.17223/19988591/37/5
https://doi.org/10.1093/forestry/cpp035
https://doi.org/10.12841/wood.1644-3985.S07.02
https://doi.org/10.3390/agriculture13071427
https://doi.org/10.1016/S0961-9534(99)00078-1
https://doi.org/10.1016/j.foreco.2016.10.051
https://doi.org/10.1016/j.foreco.2011.11.033
https://doi.org/10.1016/j.ecoleng.2015.01.041
https://doi.org/10.1016/j.foreco.2020.118486
https://doi.org/10.1016/j.biombioe.2015.10.009
https://doi.org/10.1111/j.1365-2486.2006.01297.x
https://doi.org/10.1021/es901652t
https://www.ncbi.nlm.nih.gov/pubmed/20028070
https://doi.org/10.37482/0536-1036-2021-1-46-59
https://doi.org/10.1002/ldr.701
https://doi.org/10.1016/j.still.2009.07.009
https://doi.org/10.1016/j.scitotenv.2016.10.123
https://doi.org/10.1016/j.envsci.2020.03.018
https://doi.org/10.1016/j.catena.2015.06.002
https://doi.org/10.1111/gcb.12379
https://doi.org/10.1098/rstb.2007.2185
https://doi.org/10.1016/j.foreco.2020.117901


Forests 2023, 14, 2392 14 of 15
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