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Abstract: Combining tree ring data with remote sensing data can help to gain a deeper understanding
of the driving factors that influence vegetation change, identify climate events that lead to vegetation
change, and improve the parameters of global vegetation index reconstruction models. However,
it is currently not well understood how climate change at different elevations in the central Tian-
shan Mountains affects radial tree growth and the dynamics of forest canopy growth. We selected
Schrenk spruce (Picea schrenkiana) tree core samples from different elevations in the central Tianshan
Mountains. We analyzed the relationships of various tree-ring parameters, including tree-ring width,
maximum latewood density (MXD), and minimum earlywood density (MID) chronologies, with
1982–2012 GIMMS (Global Inventory Modelling and Mapping Studies) NDVI (Normalized Differ-
ence Vegetation Index), 2001–2012 MODIS (moderate resolution imaging spectroradiometer) NDVI,
and meteorological data. (1) There were strong correlations between tree-ring width chronologies
and the lowest temperatures, especially in July. Tree-ring width chronologies at higher altitudes
were positively correlated with temperature; the opposite pattern was observed at lower altitudes.
MID chronologies were positively correlated with July temperature in high-altitude areas and mean
temperature and highest temperature from May to September in low-altitude areas, and negatively
correlated with precipitation during this period. MXD chronologies were mainly negatively corre-
lated with precipitation. MXD chronologies were mainly positively correlated with temperature in
April and May. (2) The correlations between MXD chronologies at each sampling point and NDVI in
each month of the growing season were strong. Both MID and MXD chronologies were negatively
correlated with GIMMS NDVI in July. The overall correlations between tree-ring parameters and
MODIS NDVI were stronger than the correlations between tree-ring parameters and GIMMS NDVI
in high-altitude areas; the opposite pattern was observed in low-altitude areas. Drought stress may
be the main factor affecting tree ring parameters and NDVI. In the future, we should combine tree
ring parameters with vegetation index to investigate a larger scale of forests.

Keywords: tree-ring parameters; climatic elements; vegetation index; climate response; NDVI

1. Introduction

The normalized difference vegetation index (NDVI) and tree-ring parameters are
often used markers in research on the ecology of forests and their reactions to climate
change [1–5]. Tree-ring characteristics give long-term historical information on tree growth
processes and their reactions to environmental changes at an annual time resolution by
integrating both biological (ecophysiological responses) and non-biological (climate and
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site circumstances) components [6–8]. However, obtaining tree-ring data for a larger forest
area requires a significant amount of effort and resources [9].

As remote sensing technology has advanced, satellite remote sensing data inversion
of the vegetation index has become an effective means to quantitatively present global
and regional vegetation coverage and growth changes [10]. Currently, there are more than
40 types of remote sensing vegetation indices and some types of product sets, such as
NDVI, Enhanced Vegetation Index (EVI), etc. [11–13]. Among them, NDVI is a popular
vegetation index for remote sensing and has been widely applied in research on regional
vegetation coverage, vegetation growth status, vegetation productivity estimation, and
extreme climate prediction [14–17]. MODIS (Moderate Resolution Imaging Spectroradiome-
ter) NDVI is thought to be an enhancement of the AVHRR NDVI, with increased spatial
resolution and chlorophyll sensitivity, elimination of atmospheric water vapor interference,
and adjustment of synthesis methods. It is an advancement and continuation of the AVHRR
NDVI. The main advantages of NDVI data obtained from remote sensing satellite imagery
include their accessibility, wide coverage, and temporal resolution [18–20]. However, the
collection of NDVI data via remote sensing has a short history [21,22].

Photosynthesis in the vegetation canopy affects the production of plant carbohydrates
and controls carbon storage in the woody parts of trees. This consequently influences the
plants’ radial growth. NDVI can accurately reflect vegetation greenness and photosynthetic
activity [23,24]. The radial growth of trees reflects their growth status, and the width
and density are the best indicators of radial growth [25,26]. The integration of tree-ring
data with NDVI permits studies of tree-ring ecology from individual trees or forests to
be conducted at a regional scale. This has ramifications for ecological research and forest
management as well as improving our knowledge of how forests grow and adapt to climate
change. Currently, many NDVI studies based on tree ring data have been carried out by
researchers and yielded different results. The initial focus of the research was primarily on
combining coarse-resolution NDVI with tree ring data. For instance, studies have shown
a relationship in regions south of 40◦ latitude between tree ring width and the NDVI in
the early spring and late autumn. Nonetheless, there is a relationship between summer
NDVI and tree ring width in regions north of 40◦ latitude [27]. On a growing season
scale in arid regions of Asia, approximately 77.4% of the variation in NDVI is found to be
synchronous with changes in tree-ring width parameters [28]. However, coarse-resolution
NDVI tends to overlook the heterogeneity of landscape patterns. It could cause the spatial
scale of the NDVI and tree ring chronologies to diverge, thereby weakening the correlation
between the two. Tree-ring growth and annual fluctuations in the high spatial resolution
(1.21 km2) NDVI were found to be positively correlated [29]. Bhuyan et al. compared the
response of tree growth using a random forest model between MODIS NDVI and GIMMS3g
NDVI [30]. The findings demonstrated that the MODIS NDVI growth signal outperformed
the GIMMS3g NDVI in coniferous forest areas. Vicente-Serrano et al. showed that while
there may be variations in the association between tree rings and NDVI at different spatial
resolutions, there are similarities in the patterns of correlation between tree rings and
NDVI over a range of NDVI periods and months. The spatial resolution of the NDVI
sequence is mostly insensitive to the consistency of tree rings and NDVI [31]. Furthermore,
Brehaut et al. discovered that tree rings and the GIMMS3g NDVI (8 km) and the Alaska
Composite (1 km) have a poor association, suggesting that elevation may be the cause of
their erratic correlation [32].

Elevation primarily influences the relationship between tree ring and NDVI through
temperature and precipitation. Coulthard et al. found that in high-elevation forest areas,
there are no common climatic driving factors between the NDVI and tree ring chronolo-
gies. However, standardized tree ring chronologies and NDVI are closely correlated with
low-elevation dry regions that are dominated by grasslands and shrublands [33]. In ad-
dition, Wen et al. found that as the altitude increases, the positive correlation between
tree ring width and NDVI gradually decreases. The primary component causing this
association could be drought stress [34]. Yuan et al. discovered that as altitude rises, the
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relationship between the canopy and trunk progressively becomes less significant. In
high mountain regions, the correlation coefficient is 0.371; in valley regions, it is 0.413; in
desert regions, it is 0.583 [35]. In conclusion, a variety of factors can affect how radial tree
growth and vegetation canopy interact. Additionally, the indicators that show a significant
relationship between tree ring and NDVI index vary in different regions. Therefore, it is
necessary to use multiple tree ring parameters and NDVI with different spatial resolutions
for research purposes.

To investigate how the middle Tianshan Mountains’ environment affects tree canopy
and radial growth, we collected data from the Schrenk spruce (Picea schrenkiana) in Shawan
Forest Farm. We established minimum earlywood density (MID), maximum latewood
density (MXD), and tree-ring width using tree-ring samples gathered at eight distinct
altitudes to explore how vegetation changes in response to climate change and how tree
rings respond to it. Specifically, we aimed to (1) analyze the relationship between tree
growth and the vegetation canopy, as well as the climate parameters that restrict tree
growth, using climate variables related to tree-ring parameters; (2) evaluate differences
in the relationships of vegetation index with different spatial resolutions with tree-ring
width, MXD, and MID chronologies. Our findings provide new insights into ecological and
environmental changes in the Tianshan Mountains’ center region and will aid predictions
of future changes in this region.

2. Materials and Methods
2.1. Study Area

The study location is situated in Shawan County’s STG Forest location, in the middle
of the Tianshan Mountains (Figure 1). In this region, the north has lower topography,
while the south has higher terrain. The southern part is dominated by the Yilianhabierga
Mountains, a branch of the Tianshan Mountains, and the northern part comprises the
Gurban Tongut Desert. The area has a continental temperate arid climate, with cold
winters, hot summers, short spring and autumn seasons, large temperature differences
between winter and summer, abundant sunshine, low precipitation, and high evaporation.
The primary forest is mainly concentrated on the windward slopes of the middle mountain
belt at an elevation of 1700–2600 m. The vertical zonation of vegetation is quite distinct;
grasses and shrubs are the main vegetation types in the forest. The soil is black-brown
forest soil. P. schrenkiana forests are the predominant and extensively distributed type of
forest on the Chinese northern slopes of the Tianshan Mountains.

2.2. Tree-Ring Data

We developed tree-ring width, MXD, and MID from P. schrenkiana. The sampling
points were located in the STG Forest Area of Sha Wan City. The tree-ring samples were
gathered during three separate periods from late August 2012 to August 2014. In 2012, one
sample point was collected in the upper tree line area of the STG Forest Area. Samples were
collected from five additional points at altitudes between 1740 and 2300 mm in the STG
in late September 2013 considering the preliminary samples that had been collected at the
top elevation of the STG in 2012 and the distribution of existing sampling points in Shaw
Wan Forest Farm. The sampling points in STG had thin soil layers and steep slopes and
lacked continuous slopes. The sampling points were mainly located on the steep slopes
on the west side of the valley. High-altitude forests were covered in snow when samples
were taken. The terrain in the STG Forest Area is steep; the thick snow, coupled with the
slick roads, increases the difficulty of collecting tree samples between 2400 and 2500 m.
Therefore, samples were taken from two further sites (stg 7 and stg 8) in the high-altitude
forest area of STG in August 2014. The information on sampling points is shown in Table 1.
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According to normal dendrochronological techniques, the core samples were trans-
ferred back to the laboratory for drying, fixing, grinding, and visual age determination 

Figure 1. Map displaying the locations of meteorological stations and tree-ring collection sites in
China’s Tianshan Mountains.

Table 1. Tree-ring sampling site information.

Site Latitude (N) Longitude (E) Elevation (m) Aspect Slope (◦) Canopy
Density

No. of
Trees/Cores

stg 1 43◦52′59.5′′ 85◦30′56.1′′ 2606 N 47 0.1 27/54
stg 7 43◦53′02.7” 85◦31′11.7′′ 2531 NW 40 0.3 20/40
stg 8 43◦53′06.63” 85◦31′09.46′′ 2400 NE 35 0.5 22/44
stg 2 43◦53′11.5′′ 85◦31′4.4′′ 2318 NE 35 0.3 22/44
stg 3 43◦53′25.6′′ 85◦31′4.8′′ 2206 NE 20 0.3 21/42
stg 4 43◦53′54.7′′ 85◦31′0.8′′ 2095 ENE 45 0.2 21/41
stg 5 43◦54′10.3′′ 85◦31′11.4′′ 1942 NNW 20 0.3 19/38
stg 6 43◦54′42.2′′ 85◦31′17.2′′ 1761 N 30 0.2 21/42

According to normal dendrochronological techniques, the core samples were trans-
ferred back to the laboratory for drying, fixing, grinding, and visual age determination [36].
With a Velmex Measuring System, the sanded cores were measured at a resolution of
0.001 mm while being viewed under a binocular microscope. We used the COFECHA
application to ensure the quality of the cross-dating results, identify false rings and missing
rings, eliminate errors in dating and measurement, remove unsuitable samples, ensure
that the formation year of each tree ring is accurately determined, and keep the necessary
documentation of this process [37].

The previously measured width samples were then desugared and defatted, and the
samples were cut into trapezoidal blocks according to the angle of the wood fiber direction
and fixed on the board. Using the DendroCut instrument, the core sample was cut into
thin slices of 1 mm. Finally, X-ray transmission imaging was used to produce the film. The
Dendro 2003 density measurement system was used to measure tree ring density values.
When measuring the density of the overlapping sections, multiple tree rings were marked
on the paper to indicate the overlapping part being measured and compared with the
corresponding position on the test sample, in order to identify the overlapping tree rings
and connect the segmented core samples. Finally, a data file is generated for each core
sample [38,39].

Ultimately, the tree growth pattern was fitted and eliminated using the ARSTAN
chronology development program by employing a negative exponential function in the fit-
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ting process. Ultimately, standardized chronologies (STD), differenced chronologies (RES),
and autoregressive chronologies (ARS) for three tree ring parameters were established. This
study is limited to a standardized tree-ring chronology of 8 sampling points. We further
investigated using tree-ring width standardized chronologies, tree-ring maximum density
standardized chronologies, and tree-ring minimum density standardized chronologies [40].
The sub-sample signal strength (SSS) greater than 0.85 was used to determine the reliable
length of the chronology [41].

2.3. Meteorological Data

Shawan meteorological stations provided the meteorological data used in this study.
(44◦20′ N; 85◦37′ E; altitude: 523 m a.s.l.; 48 km away from STG), which was close to the
study area. We used precipitation (PCP), mean temperature (Tmean), mean maximum
temperature (Tmax), and mean minimum temperature (Tmin) per month from 1961 to 2012.
The above climatic data were from the Xinjiang Climate Center.

Analysis of changes in monthly PCP and average temperature at Shawan Meteoro-
logical Station (Figure 2) revealed that the average temperature in the region from 1961 to
2012 was approximately 7.69 ◦C. The average temperature of the hottest month (July) was
25.89 ◦C. The variation between the highest and lowest values for many years was only
approximately 5 ◦C, indicating that the temperature was relatively stable. The average
temperature in the coldest month (January) was −15.54 ◦C. The temperature difference
was approximately 10 ◦C for many years, and changes in temperature over the years
were significant. The average annual PCP was approximately 196 mm, and most PCP fell
between April and July during the spring and summer seasons. Variation in PCP during
the spring and summer seasons was much greater than that during the autumn and winter
seasons.
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Figure 2. Climate data of the study area: (a) Precipitation, mean temperature, mean minimum
temperature, and mean maximum temperature per month. Bars indicate precipitation (in mm),
and curves with different colors indicate mean temperature (blue), mean minimum temperature
(green), and mean maximum temperature (red) (in ◦C), (b–d) annual mean temperature, annual
mean maximum temperature, and annual mean minimum temperature during 1961–2012, (e) annual
precipitation during 1961–2012. Dashed lines indicate trends.
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2.4. NDVI Data

We employed the Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI
and the Global Inventory Modeling and Mapping Studies 3g (GIMMS3g) NDVI, two NDVI
datasets with varying spatial resolutions.

MODIS data were obtained from the MODIS products (MOD13Q1 product in HDF
format, 16 days, 250 m, strip number: h24v04, http://glovis.usgs.gov/, accessed on 16
October 2021). Compared with AVHRR, MODIS has a narrower spectral channel and
lacks the water vapor absorption band in the near-infrared band, which reduces the effects
of water vapor and improves the ability to detect sparse vegetation. We analyzed data
from 2001 (the first complete year of NDVI data) until 2012, the last year of our assembled
tree-ring dataset.

With a temporal resolution of 15 days and a spatial resolution of 8 km, GIMMS3g
is produced with the Advanced Very High Resolution Radiometer (AVHRR). This yields
two maximum-value composites per month and 24 observations annually (http://ecocast.
arc.nasa.gov/data/pub/gimms/3g.v0/, accessed on 16 October 2021). These data have
undergone radiation correction and geometric coarse correction. Compared with GIMMS
NDVI data, the improved GIMMS NDVI3g data have undergone satellite orbit drift cor-
rection, which eliminates common associations between the solar zenith angle and NDVI
time series and improves the calibration procedure. The GIMMS3g NDVI data were first
collected in July 1981. We analyzed data from 1982 (the first complete year of NDVI data) to
the end of 2012 to maximize the overlap with the assembled tree-ring dataset. The latitude
and longitude of each of the tree-ring sites were used to select corresponding pixels from
the GIMMS3g and MODIS NDVI datasets.

Figure 3 shows that the values of GIMMS NDVI were highest from May to September,
with a June peak. The annual average change was relatively stable. The MODIS NDVI
values were higher at each sampling point than the GIMMS NDVI values; MODIS NDVI
values were highest from May to September and peaked in July. As the elevation increased,
the MODIS NDVI values gradually decreased (Figure 3).
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2.5. Statistical Analyses

The MOD13Q1 product first uses MRT V.4810 software to complete projection trans-
formation and data format conversion and extract NDVI. The image output format is TIFF.
Then, ArcGIS10.8 is used to batch clip the study area and exclude outliers, and finally,
ArcGIS is used to synthesize monthly average NDVI values using the maximum synthesis
method and extract the data to Excel v2019. The GIMMS NDVI3g product first uses Matlab
R2022b to convert and project the downloaded NC data into a .tif format for image output.
The study area is batch-cropped using ArcGIS, and the maximum composite method is
used to extract the monthly average NDVI values of the study area. All data products use
the Albers equal-area conic projection.

To analyze the relationships between connections between tree-ring at different al-
titudes and NDVI, using Pearson correlation analysis, the relationships between MXD,

http://glovis.usgs.gov/
http://ecocast.arc.nasa.gov/data/pub/gimms/3g.v0/
http://ecocast.arc.nasa.gov/data/pub/gimms/3g.v0/
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tree-ring width, and remote sensing vegetation index for all the sampling points were
assessed. To determine whether climate had an impact on the relationship between tree-
ring and NDVI, the relationships between climate and several tree growth indicators were
examined. Given that the growth of trees might be affected by the climate conditions of the
previous year, we conducted a monthly correlation analysis of the monthly Tmean, monthly
mean Tmin, monthly mean Tmax, and PCP from April of the previous year to October of
the current year, tree-ring width, MXD and MID, GIMMS NDVI, and MODIS NDVI.

3. Results
3.1. Statistical Characteristics of Chronologies

Tables 2–4 show that the tree-ring width normalized chronologies had mean sensitivity
values ranging from 0.11 to 0.27. Below 2200 m, the average sensitivity is higher than the
average sensitivity beyond this altitude. This indicates that tree-ring width chronologies in
low-altitude regions are more sensitive to changes in climate factors. The mean sensitivity
of MID was lower than that of tree-ring width chronologies. The MXD chronologies show a
lower mean sensitivity and standard deviation in comparison to the MID chronologies. No
significant changes in the mean sensitivity of the three chronologies with elevation were
observed.

The first-order autocorrelation (AC1) between tree-ring width and MID chronologies
was relatively high, and values were greater than 0.75 for all sampling points, with the
exception of stg 4, stg 5, and stg 6. This suggests that the previous year’s climate had a
significant impact on tree growth, with high-altitude locations experiencing a longer-lasting
effect on tree growth than low-altitude ones. However, the AC1 of MXD chronologies was
lower compared with that of the other two chronologies, and values were relatively small
in stg 4, stg 5, and stg 6. This indicates that the MID and tree-ring width of this year’s tree
rings are more influenced by changes in the previous year’s climate characteristics than by
the MXD, and the effect on tree-ring maximum density was greater in low-altitude regions
than in high-altitude regions.

Table 2. Statistics of the STG tree-ring width standardized chronologies.

Statistic stg 1 stg 7 stg 8 stg 2 stg 3 stg 4 stg 5 stg 6

Chronology length 513 350 242 213 146 142 132 172
Mean index (MI) 0.842 0.744 0.796 0.801 1.007 1.039 1.148 0.919

Mean sensitivity (MS) 0.159 0.166 0.121 0.152 0.119 0.268 0.236 0.262
Standard deviation (SD) 0.339 0.368 0.332 0.377 0.278 0.384 0.538 0.302

First-order autocorrelation (AC1) 0.878 0.911 0.931 0.911 0.849 0.564 0.818 0.556
Mean within-tree correlation 0.474 0.645 0.640 0.533 0.569 0.719 0.664 0.645
Signal-to-noise ratio (SNR) 11.357 10.694 19.295 12.305 19.921 14.796 7.721 17.032

Expressed population signal (EPS) 0.919 0.914 0.951 0.925 0.952 0.937 0.885 0.945
The first principal component (PC#1) 30.3 38.6 48.9 58.1 47.7 41.0 29.6 49.5

First year of SSS > 0.85 1646 1819 1851 1861 1875 1886 1932 1900

Table 3. Statistics of the STG MID standardized chronologies.

Statistic stg 1 stg 7 stg 8 stg 2 stg 3 stg 4 stg 5 stg 6

Chronology length 513 350 242 213 146 142 132 172
Mean index (MI) 1.056 1.228 1.108 1.099 1.036 1.029 1.039 1.114

Mean sensitivity (MS) 0.064 0.105 0.149 0.102 0.097 0.136 0.101 0.141
Standard deviation (SD) 0.128 0.352 0.416 0.260 0.202 0.185 0.135 0.261

First-order autocorrelation (AC1) 0.755 0.889 0.883 0.817 0.743 0.416 0.434 0.669
Mean within-tree correlation 0.318 0.368 0.377 0.321 0.316 0.406 0.436 0.462
Signal-to-noise ratio (SNR) 8.891 5.679 5.140 4.742 5.879 16.250 6.235 5.645

Expressed population signal (EPS) 0.899 0.850 0.837 0.826 0.855 0.942 0.862 0.850
The first principal component (PC#1) 30.9 29.2 30.7 26.3 33.2 42.4 25.0 25.4

First year of SSS > 0.85 1651 1847 1872 1874 1882 1884 1933 1934
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Table 4. Statistics of the STG MXD standardized chronologies.

Statistic stg 1 stg 7 stg 8 stg 2 stg 3 stg 4 stg 5 stg 6

Chronology length 513 350 242 213 146 142 132 172
Mean index (MI) 47 40 35 35 20 45 20 30

Mean sensitivity (MS) 0.057 0.070 0.051 0.047 0.036 0.046 0.045 0.044
Standard deviation (SD) 0.070 0.083 0.066 0.053 0.049 0.065 0.072 0.064

First-order autocorrelation (AC1) 0.392 0.351 0.480 0.233 0.543 0.590 0.670 0.595
Mean within-tree correlation 0.430 0.398 0.490 0.412 0.396 0.405 0.381 0.335
Signal-to-noise ratio (SNR) 9.884 9.295 8.979 13.395 11.008 9.406 5.901 5.157

Expressed population signal (EPS) 0.908 0.903 0.900 0.931 0.917 0.904 0.855 0.838
The first principal component (PC#1) 29.4 30.5 37.3 38.5 37.1 33.8 23.9 25.0

First year of SSS > 0.85 1651 1819 1874 1858 1879 1888 1933 1934

The signal-to-noise ratio is a statistical measure of the amount of environmental
information contained in a sample, and it is generally considered good if it is greater than
4 [41]. In this study, the signal-to-noise ratio of tree-ring width chronologies ranged from
7.8 to 20, the signal-to-noise ratio of MID ranged from 4.7 to 16.3, and the signal-to-noise
ratio of MXD ranged from 5.1 to 13.4. These ranges indicate that the chronologies contain a
significant amount of climate information and are suitable for dendroclimatology research.

Expressed population signals (EPSs) of all chronology samples were greater than
0.85, and the highest EPS value was observed at sampling point stg 1, indicating that the
sampled cores provide an accurate representation of the study area.

3.2. Effects of Temperature and Precipitation on Forest Growth

Climate factors during the previous growing season have a major impact on tree-ring
growth. Considering the physiological characteristics of trees and the fact that elevation
results in a drop in temperature [42], we conducted a correlation analysis of Climate data
from April of the previous year to October of the present one with the standardized tree-ring
chronology (Figures 4–6).

The response of tree-ring width to Tmean, Tmin, and Tmax varied at different eleva-
tions. Overall, there were strong correlations between tree-ring width and Tmin. Reaching
an extremely significant level of Tmin in July. Specifically, tree-ring width at higher ele-
vations was positively linked with temperatures; the opposite pattern was observed at
lower elevations (Figure 7a–c). Tree-ring width at upper elevations (stg 1, stg 7, and stg 8)
responded positively to temperature factors in the previous spring and current year. Low-
altitude tree-ring width (stg 5 and stg 6) responded negatively to temperature factors in the
fall of the prior year and in the summer and fall of the current year.

However, the responses of tree-ring width in the forested zone to different temperature
factors vary, especially the responses to Tmax and Tmin. The responses of stg 2 and stg 4
to the Tmin during the growing seasons, and their response to Tmax mostly shifted from
positive to negative. This proves that at the same height, the impact of various temperature
parameters on tree-ring width varies.

The responses of tree-ring to PCP differed at high and low elevations. There was a
high correlation between the width of the tree rings at the upper forest boundary (stg 1,
stg 7, and stg 8) and July PCP. By contrast, there was a significant positive relationship
between May and September PCP in the previous year and September precipitation in the
previous year, as well as tree-ring width at lower elevations.

From December to March of the previous year, MID was significantly negatively
linked to temperature, indicating that low temperatures before the growing season favor
the formation of higher MID. From April to May, there was an upward relationship between
MID and temperature and an adverse connection with PCP. There was a large and robust
association between the May temperature and the tree-ring width of stg 8.
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In high-altitude areas, MID chronologies had a negative correlation with PCP through-
out this time and a positive correlation with July’s Tmean and Tmax. In low-altitude areas,
from May to September, there was a positive correlation between MID and temperature,
and a negative correlation between MID and PCP (Figure 8). At every sampling location,
MID showed a positive correlation with PCP in April and November of the preceding
year and a negative correlation with PCP in July of that same year, as well as in May
and July–September of the current year. Specifically, the correlations between MID in
high-altitude areas (stg 1, stg 7, and stg 8) and Tmean in July were significant, and the
correlations between MID chronologies and average temperature were weaker at other
altitudes. Between April of the previous year and February of the present year, there was a
negative correlation between the MID at stg 2 and the Tmin; there was a positive correlation
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with the minimum temperature from April to October of the current year, this correlation
was particularly significant for Tmin s in May and June. The MID of all sampling sites
was negatively correlated with the Tmax in December of the previous year and positively
correlated with the Tmax in July. With the exception of stg 3, MID was positively correlated
with the Tmax from March to May of the current year. Specifically, MID in high-altitude
areas was positively correlated with Tmax from March to October, and this correlation
was significant in July; the correlations between MID in low-altitude areas and Tmax were
weak (Figure 8).
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Figure 7. Pearson correlations between tree-ring width standardized chronologies and climatic data
(monthly Tmean, monthly mean Tmin, monthly mean Tmax, and PCP). Lowercase and capital letters
indicate months of the previous and current years, respectively.

Except for November, MXD was mainly negatively correlated with PCP (Figure 9a–c)
and positively correlated with temperature factors in April and May of the current year,
and negatively correlated with PCP during the same period. MXD chronologies at high
altitudes were significantly positively correlated with the Tmean in April of the current year.
MXD was negatively weakly correlated with the Tmean from November of the previous
year to February of the current year and positively weakly correlated with the temperature
from April to October of the current year (Figure 9).
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Figure 8. Pearson correlations between MID standardized chronologies and climatic data (monthly
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Statistical analysis of NDVI and climate data (monthly Tmean, monthly Tmax, monthly
Tmin, and monthly PCP) for the 12 months revealed variation in the correlations between
NDVI and climate data (Figures 10 and 11). Overall, the effect of temperature and PCP from
the previous year on the GIMMS NDVI from April to July was weak and not statistically
significant. In April, the GIMMS NDVI and temperature showed a strong positive associa-
tion, with the Tmax showing an especially significant connection. In May and June, the
influence of temperature on the GIMMS NDVI was low. A remarkable positive connection
was seen between the May GIMMS NDVI and the April–May PCP. Both the July GIMMS
NDVI and Tmean and Tmax in May, as well as the July GIMMS NDVI and Tmin in May
and June, showed a highly significant negative connection. A statistically significant posi-
tive connection was seen between the July GIMMS NDVI and the May PCP. The GIMMS
NDVI for August of the previous year showed a strong positive association with the April
temperature, and significant negative correlations of GIMMS NDVI with temperature in
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April of the current year and PCP in November of the previous year. September GIMMS
NDVI showed an important positive relationship with PCP of the current year in August
and a significant negative correlation with the Tmin of the previous year in August. There
were significant positive correlations between October NDVI and the temperature of the
previous year from April to June and the temperature of the current year from February
to March and August. Additionally, there was a significant opposite correlation between
the October NDVI and the June and September PCP of the previous year. There were
significant positive correlations between May to August GIMMS NDVI with the Tmean
and Tmax of the previous year in August; there was also a highly significant positive
correlation between May to August GIMMS NDVI and PCP in April.
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Figure 10. Correlations between GIMMS NDVI and climate factors (monthly Tmean, monthly mean
Tmin, monthly mean Tmax, and PCP). The ordinate shows the monthly GIMMS NDVI from April to
October, as well as the average NDVI from May to August. Lowercase and capital letters indicate
months of the previous and current years, respectively. Deep red and deep blue indicate significance
at p < 0.01; red and blue indicate significance at p < 0.05; light red and light blue indicate significance
at p < 0.1.
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Figure 11. Correlations of MODIS NDVI with climate factors (monthly Tmean, monthly mean Tmin,
monthly mean Tmax, and PCP). The ordinate shows the monthly MODIS NDVI from April to October,
as well as the average NDVI from May to August. (a–h) shows the correlations between MODIS
NDVI and climate factors at stg 1, stg 7, stg 8, stg 2, stg 3, stg 4, stg 5, and stg 6. Lowercase and
capital letters indicate months of the previous and current years, respectively. Deep red and deep
blue indicate significance at p < 0.01; red and blue indicate significance at p < 0.05; light red and light
blue indicate significance at p < 0.1.
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MODIS NDVI at high altitudes (stg 1, stg 7, stg 8, and stg 2) was correlated with
temperature and PCP (Figure 11). May MODIS NDVI was significantly positively cor-
related with April PCP. July MODIS NDVI was significantly negatively correlated with
April and July temperatures of the previous year. For stg1 and stg 7, July MODIS NDVI
was significantly positively correlated with October temperatures of the previous year
and significantly negatively correlated with the highest temperature in May of the same
year; July MODIS NDVI was also positively correlated with May PCP of the same year.
Among high-altitude sampling points, August MODIS NDVI was weakly correlated with
temperature but significantly positively correlated with June PCP. The correlation between
May to August MODIS NDVI and temperature was weak. Only MODIS NDVI at stg 1
was significantly negatively correlated with Tmean and Tmin of April in the current year.
In the low-altitude region, April MODIS NDVI was significantly negatively correlated
with January average temperature and Tmin. The correlation between April MODIS NDVI
and PCP was weak and not significant. October MODIS NDVI was highly significantly
negatively correlated with May temperatures of the current year, and its correlation with
PCP was weak.

3.3. Relationships between Tree-Ring Parameters and NDVI

Figure 12 shows the correlations of tree-ring width, MXD, and MID chronologies with
GIMMS NDVI and MODIS NDVI at different altitudes. Overall, the tree-ring width at all
sampling sites was positively correlated with the GIMMS NDVI in July and December of
the previous year and MODIS NDVI in February of the current year. The MID chronologies
had a significant association with the MODIS NDVI of June of the past year and March of
the current year, and a negative correlation with the GIMMS NDVI of October–December
of the previous year and June to August of the current year. At each site, The GIMMS NDVI
in January to February, July to August, and the growing season (May to August) showed
negative correlations with the MXD chronologies, whereas the MODIS NDVI in June of
both the prior and current year showed positive correlations.

There was a major positive association between tree-ring width at low altitudes (stg 4
and stg 5) and the GIMMS NDVI in October of that prior year, July of this present year, and
during the growing period (May to August) of the current year. (Figure 12a). The response
of tree-ring width to GIMMS NDVI at high altitudes (stg 1, stg 7, and stg 9) was not
significant; however, in December of the prior year, there was a strong positive association
between tree-ring width and GIMMS NDVI. Figure 12c illustrates the considerable negative
correlation between GIMMS NDVI and MID chronologies at low altitudes in October of
the preceding year and June to July of the current year. In January and February of this
year, there was a substantial negative correlation between the MXD chronologies and the
GIMMS NDVI (Figure 12e). MID and MXD chronologies at high altitudes responded
weakly to GIMMS NDVI; highly significant correlations between MID chronology and
GIMMS NDVI in April of the previous year and between MXD chronology and GIMMS
in July of the current year were only observed at stg 1. Tree-ring parameters were more
strongly correlated with MODIS NDVI than GIMMS NDVI at higher elevations. Tree-ring
width at high altitudes (stg 1 and stg 7) was significantly positively correlated with MODIS
NDVI in July (Figure 12b), and MID and MXD chronologies were significantly positively
correlated with MODIS NDVI in June of the previous year (Figure 12d,f). However,
the response of tree-ring parameters to MODIS NDVI and GIMMS NDVI differed in
low-altitude areas. Tree-ring width and MID chronologies were significantly negatively
correlated with MODIS NDVI in November of the previous year, and MXD chronologies
were significantly positively correlated with MODIS NDVI in June of the current year. This
indicates that the relationships between vegetation index with different spatial resolutions
and tree-ring parameters varied with altitude. In high-altitude areas, the relationships
between tree-ring parameters and MODIS NDVI were stronger than the relationships
between tree-ring parameters and GIMMS NDVI; the opposite pattern was observed in
low-altitude areas.
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Figure 12. Relationships between tree-ring parameters and NDVI. (A) shows the correlations be-
tween tree-ring width standardized chronologies and NDVI. (B) shows the correlations between
MID standardized chronologies and NDVI. (C) shows the correlations between MXD standardized
chronologies and NDVI.

4. Discussion
4.1. Factors Affecting the Relationships between Tree-Ring Parameters and NDVI

This study revealed a correlation between monthly climatic parameters and the tree-
ring width, MXD, and MID chronologies at various altitudes. The correlations between
tree-ring width chronologies and Tmin were generally strong; the positive correlations



Forests 2023, 14, 2362 18 of 22

between tree-ring width chronologies at high altitudes and Tmin in July were highly
significant. The growth of tree rings requires suitable temperatures. In the research region,
higher average low temperatures in July encourage photosynthesis in trees, which raises
net nutrient accumulation, promotes cambial cell division, and ultimately causes the
construction of larger tree rings. Higher temperatures during the growing season also
accelerate the melting of ice and snow, which provides sufficient water for tree growth.
Lower average temperatures in July can decrease the photosynthesis of trees, hinder the
division of cambial cells, and even cause freezing or frost damage to trees, which results
in narrower tree rings [43,44]. The tree-ring width chronology of stg 3 was negatively
correlated with temperature. This might stem from the location of the sampling site in the
PCP zone of the middle mountain belt on the northern slope of the Tianshan Mountains. The
water and thermal conditions vary greatly in this region. Higher temperatures in this area
lead to a decrease in soil moisture, an increase in the respiration of trees at night, a decrease
in net photosynthesis, and ultimately the occurrence of narrower tree rings. MID and MXD
chronologies were positively correlated with the temperature in the early growing season
(April and May) and negatively correlated with PCP in April and May. April is a critical
period for trees because it coincides with the transition from dormancy to an active state
of growth. Moderate warming benefits trees by allowing them to break dormancy earlier,
which stimulates the division of cells, improves photosynthetic efficiency, and promotes the
buildup of carbohydrates. This gives plants enough energy to flourish. Additionally, higher
temperatures in April can enhance snow melting, increase the soil moisture content, and
thus improve the growth rate of plants during the growing season [45]. The MID shows
a negative response to the temperature from December of the previous year to March of
the current year. This negative response indicates that low temperatures have an adverse
impact on tree growth and development. The higher temperatures during this period, from
December to March, contribute to an accelerated photosynthesis process, which promotes
the differentiation of cambial cells in trees and facilitates tree growth. As a result, the tree
cells become larger and the cell walls thinner, leading to a smaller earlywood density value
in the tree [46].

4.2. Relationships between Tree-Ring Parameters and NDVI with Different Spatial Resolutions

There is a mutual dependence between tree rings and tree crowns. Trees convert carbon
dioxide, water, and mineral salts into organic compounds through photosynthesis in the
canopy leaves, generating the nutrients necessary for their own growth and promoting
radial tree growth. At various spatial resolutions, we detected inconsistencies in the
connections between tree-ring characteristics and NDVI. This might be due to MODIS
data’s high spatial resolution, which is superior to GIMMS data’s coarse spatial resolution
(8 km) in capturing local climate and other information reflecting changes in vegetation
or tree rings; at this resolution, the heterogeneity of vegetation landscape patterns, stand
density, age structure, and other differences result in a spatial decoupling of NDVI and
tree-ring chronology data, which weakens the relationship between the two [47,48]. Our
research indicates that the correlations between tree-ring parameters and MODIS NDVI are
generally stronger in high-altitude areas than the correlations between tree-ring parameters
with GIMMS3g NDVI; however, the opposite pattern was observed in low-altitude areas.
Bhuyan et al. [30] found similar results by comparing the response of tree growth to high
spatial resolution (MODIS, 250 m) and coarse spatial resolution (GIMMS3g NDVI, 8 km)
data using a random forest model. Specifically, they showed that the growth signal of
MODIS NDVI was stronger than that of GIMMS3g NDVI in areas with coniferous forests.
We analyzed the relationships between three tree-ring parameters and NDVI and found
that the MXD chronologies of each sampling point were more strongly correlated with the
NDVI of each month during the growing season than tree-ring width and MID chronologies.
The MXD chronologies were negatively correlated with NDVI in July and August, which
might stem from carbon allocation during the growing season to support bud growth (leaf
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area) and the initiation of cambial activity, given that cell division and expansion (resulting
in wider tree rings) are prioritized over the thickening of the cell walls [49–51].

Although previous studies have demonstrated an increase in the strength of the cor-
relation between NDVI and tree-ring width as the spatial resolution increases from 8 km
to 250 m [32,52], our findings demonstrate the value of high-resolution dense time series
for monitoring tree productivity and retrospective modeling. However, recent studies
have observed correlation coefficients between tree-ring width and 30 m resolution NDVI
ranging from −0.27 to 0.50. The use of 30 m resolution NDVI data did not enhance the
correlations between tree-ring parameters and NDVI compared with 250 m resolution
NDVI. Therefore, a 250 m spatial resolution might be sufficient for characterizing correla-
tions between tree-ring and NDVI [53]. To improve our comprehension of the connection
between the local canopy and cambial activity and evaluate the possible impacts of climate
change on the development and productivity of forest trees, more research is required.
Factors that might affect the NDVI signal such as soil moisture, topography, and vegetation
type should be considered in future studies.

Compared with high elevations, there is a strong correlation between tree rings and
GIMMS NDVI at low elevations; this is consistent with what Wen et al. found. According
to research, it is possible to establish a mathematical relationship between tree rings and
NDVI within the same region and period in order to effectively deduce historical changes in
the NDVI when common external environmental factors influence the growth of trees and
regional vegetation and when other non-climatic factors do not interfere [33]. In this study,
the tree ring width chronology at higher altitudes is positively correlated with temperature,
while at lower altitudes, it is the opposite. Due to its coarse spatial resolution, GIMMS
NDVI fails to show the trend of altitude changes, but it is primarily positively correlated
with temperature from April to August. The central part of the Tianshan Mountains may
be a common environmental factor affecting tree ring parameters and NDVI under drought
stress [54,55].

5. Conclusions

We analyzed the relationships between standardized tree-ring chronologies and NDVI
in the central Tianshan Mountains. We found that the correlations between the two were
generally weak, which might be explained by the lack of a consistent response of the
radial growth of P. schrenkiana to climate factors. High-resolution tree-ring width data
might not accurately reflect the changes in NDVI. Additional studies that use tree-ring
parameters to reconstruct NDVI in this region are needed. Only eight sites were sampled in
our study, and only climate factors, such as temperature and precipitation, were considered
in our analysis. However, other factors, such as atmospheric CO2 concentrations, drought,
fire, forest pests and diseases, volcanic eruptions, earthquakes, glacier movement, and
human-induced environmental pollution, can also affect tree growth. Therefore, additional
research examining the effects of a wider range of factors on the relationships between
tree-ring and NDVI at large scales and over a long time would be particularly valuable.
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