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Abstract: Long-term tectonic movements have shaped the geomorphological features and hydrother-
mal conditions of mountains, influencing their vegetation growth patterns in both positive and
negative ways. However, little is known about the effect of fault development on the spatio-temporal
variation in vegetation along the elevation gradient in mountainous regions. To address this issue of
montane tectonic ecology, this study selected the tectonically active mid-altitude zone (1000–3500 m)
of the Chinese Western Tianshan Mountains. The role of tectonics is investigated by fault length
density maps calculated from zonal statistics of region-scale fault survey data (1:250,000). The normal-
ized difference vegetation index (NDVI) was chosen as an indicator to analyze the growth status of
vegetation. The spatial distribution of fault length density, elevational, and interannual characteristics
of the NDVIs from 2000 to 2020 and their relationships along the elevation gradient were investigated.
The results show that the faulting zone accounts for 32.6% of the study area and the high faulting
zone exhibits a unimodal distribution along the elevation gradient, with the maximum occurring
at elevations of approximately 2000 m. The NDVIs of forests and high-coverage grassland show a
unimodal distribution with elevation, with the maximum occurring at elevations of approximately
2000 m, coinciding with that of fault length density. In the elevation range of 1000–2500 m, the NDVI
of the faulting zone is lower than that of the non-faulting zone, whereas that of the elevation range of
2500–3500 m is higher—a difference that is particularly evident in forests. This elevation-dependent
contrasting effect of faults on vegetation growth could be attributed to more favorable hydrother-
mal conditions for vegetation in fault valleys and reduced landslide susceptibility with increasing
elevation. This study highlights the need to consider fault distribution in understanding vegetation
distribution and growth in tectonically active mountains.

Keywords: Chinese Western Tianshan Mountains; mid-altitude mountain regions; NDVI; fault length
density; tectonic ecology

1. Introduction

Terrestrial vegetation plays a crucial role as the primary producer in terrestrial ecosys-
tems, significantly influencing land surface processes, carbon/nitrogen cycles, and water
and heat fluxes through biogeochemical processes [1]. The distribution, composition, and
growth of vegetation across landscapes on a large scale are commonly explained by climatic
gradients, which have a primary influence on water and energy availability [2,3]. Particu-
larly, in mountainous regions, which are generally created by plate tectonic orogeny, steep
climatic gradients of both temperature and atmospheric pressure lead to the appearance of
different climate zones and altitude vegetation belts at reduced distances [4]. Mountainous
lithosphere dynamics, including exhumation, surface uplift, and relief development, as
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well as related climate change and variability, create diverse environments [5,6]. Therefore,
biological and geological processes are closely linked in shallow-soil mountain regions. No-
tably, mountainous bedrock lithology could affect the productivity of the ecosystem, as well
as its response to climatic variability through variations in the storage of plant-available
water [7,8]. Therefore, it is important to identify how the vertical distribution of vegetation
in mountain regions is shaped by both geological processes and tectonic setting [9,10].

Tectonic-related mountain building establishes topographic heterogeneity and changes
the regional hydrothermal state, thus creating new habitats where species evolve and
diversify [11,12]. The emergence of critical zone science research helps to clarify these
biogeological links, which encompasses not only the soil but also the chemically and
physically weathered bedrock that lies beneath, extending into the rhizosphere through its
comprehensive scope [13]. In this context, the role of bedrock lithology (e.g., composition,
geochemistry, or weathering) in determining mountain vegetation growth has been well
documented [7,14–16]. For example, recent field evidence highlights the dependence
of vegetation on rock moisture during periods of dryness or extended droughts [15].
However, another important aspect of geologic processes, tectonics, and their relationship
with geological, topographic, and ecological processes in tectonically active regions have
rarely been considered.

Geologic tectonism, a product of Earth’s internal movements that determines the
distribution pattern of geomorphology and mountain building/folding, strongly influences
the altitudinal zonation of soils and biota [6,17,18]. It is broadly understood that tectonic
forces influence the pace and pattern of landscape evolution by controlling landscape
relief and the physical and chemical processes that move sediment and dissolve bedrock,
respectively [19]. Recent studies have revealed both beneficiary and disadvantageous ef-
fects of tectonic activity on ecosystems, particularly in tectonically active landscape [17,20].
For example, rock fracturing resulting from tectonic faulting determines the distribution
of plant-available water and nutrients stored in soils, thereby enhancing the local water
holding capacity [21]. On the other hand, tectonism-related earthquakes and landslides
are major sources of ecological disturbances, which affect vegetation structures and dy-
namics [22]. Notably, the effects of tectonic activity on the heterogeneity of the local
ecosystem in a fault-controlled river basin (also known as a tectonic basin) have been
well illustrated [17,23]. However, the limited understanding of how tectonic processes
influence vegetation growth along the elevation gradient in tectonically active mountains
is a significant gap.

The Tianshan, which is a large system of mountain ranges in Central Asia, has been
reactivated by the collision of the India-Eurasia plate since the Cenozoic era and is one of
the typical intracontinental convergent orogenic belts in central Eurasia [24]. The frequent
occurrence of strong earthquakes and extensive active tectonics are evidence of strong
present-day tectonic deformation in the Tianshan [25,26]. This tectonically active region is
characterized by complex landscapes comprising soils with heterogeneous physicochemical
properties [21]. In this study, we address the question of how mountainous vegetation
distribution and dynamics vary with fault distribution along an elevational gradient in
the tectonically active Chinese Western Tianshan Mountains (CWTM). The purposes of
this study were (i) to reveal the spatial distribution pattern of tectonic fault in the mid-
altitude CWTM; (ii) to quantify the spatiotemporal variation in the normalized difference
vegetation index (NDVI) of the study area in the year range of 2000 to 2020; and (iii) to
preliminarily explore the relationship between vegetation growth and fault distribution
along the elevation gradient.

2. Materials and Methods
2.1. Study Area

The Tianshan Mountains are a large mountain range in Central Asia stretching approx-
imately 2500 km in length and 200–400 km in width. It is the largest mountain chain and
the largest isolated east-west mountain in the world’s temperate arid region, constituting
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a major segment of the southern part of the Central Asia Orogenic Belt. The Chinese
segment of the Tianshan mountain range (its eastern portion), located in northwest China’s
Xinjiang Uygur Autonomous Region, spans 1700 km from east to west, with an average
elevation of approximately 2300 m above sea level (asl.) [27]. The Chinese Tianshan Moun-
tains are geographically divided into eastern and western parts along the Urumqi-Korla
line [28]. Our study focuses on the western part of Chinese Tianshan Mountains, CWTM
(79◦45′ E to 86◦58′ E, 41◦46′ N to 45◦24′ N; Figure 1), which cover an area of approximately
248 × 103 km2 and include lofty mountains and steep hills, as well as broad intermoun-
tain basins and river valley plains (e.g., the Yili Basin). The CWTM extend across dif-
ferent bioclimatic zones, all belonging to a semi-arid climate, located between the Tarim
Basin (warm–temperate desert) to the south and the Junggar Basin (temperate desert) to
the north.
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As a major part of the Tianshan Mountains, the CWTM have rich and diverse natural
landscapes, such as glaciers, permanent snow cover, virgin forests, grasslands, and deserts,
and thus form the most complete mountain altitudinal vegetation belts in a temperate arid
region in the world. With the increase in altitude, it transitions into a montane steppe belt,
a coniferous forest belt, an alpine meadow belt, an alpine cushion vegetation belt, and a
nival belt [27]. The mean annual temperature is approximately 8 ◦C, and the mean annual
precipitation varies from approximately 200 mm in the lower land to 500–700 mm in the
mountain area, with most precipitation occurring during the wet season (June–September).
The dominant vegetation type on the CWTM is grassland, including three grassland
types: montane steppe, meadows, and desert steppe, consisting of Stipa capillata, Kobresia
capillifolia, and Carex melanantha, respectively [29]. The major forest is the boreal forest Picea
schrenkiana var. tianshannica. The main soil types of the western part of the Tianshan range
are chernozems and kastanozems, with a thickness of generally <80 cm, derived from the
soil parent material of uneven-thickness loess-like substances [30].
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The Tianshan range is a classical resurgence orogenic belt produced by the far-field
effects of the Indian–Eurasian continent collision, experiencing multi-stage episode uplift
and deformation [31]. The Tianshan range is characterized by widely distributed active
Cenozoic thrust faults, which present along the boundaries of all the basins [24]. The
CWTM orogen is sandwiched between the Junggar Terrane to the north and the Tarim
Block to the south. This orogen and its adjacent regions from north to south, including
the Northern Tianshan Accretionary Complex, the Yili Block, the Central Tianshan Arc
Terrane, and the Tarim Block, are separated by the North Tianshan Fault, the Nikolaev
Line-North Nalati Fault, the Atbashi-Inylchek-South Nalati-Qawabulak Fault, and the
North Tarim Fault, respectively [32]. Numerous active faults and folds are developed in
the basin–mountain boundary zone and have caused highly fragmented rocks and a series
of thrust earthquakes in these areas [25].

2.2. Data and Processing

Geological fault data were obtained from the 1:250,000 geological map provided by
the GeoClound3.0 (https://geocloud.cgs.gov.cn) (Table 1). The 1:250,000 geological map
contains fault line distribution with relevant attributes (i.e., fault segment length and style).
A high density of faults indicates that the rock is relatively broken, and more fractures
are conducive to the dissolution of carbonate rocks, thus accelerating the infiltration of
water. Advanced spaceborne thermal emission and reflection radiometer (ASTER) global
digital elevation model (DEM) data were downloaded from the Geospatial Data Cloud
site (http://www.gscloud.cn/). The data were extracted and resampled with a spatial
resolution of 90 m using a bilinear method to match the other datasets. Soil depth data
with a spatial resolution of 1 km were extracted from a Chinese dataset of soil properties
for land surface modeling (https://poles.tpdc.ac.cn/) [33].

Table 1. Data description and source.

Data Data Type Spatial
Resolution

Temporal
Range Data Source

Faults (Spatial Database of 1:250,000 Digital
Geologic Map of Xinjiang) Line vector - -

GeoCloud3.0
(https://geocloud.cgs.gov.cn, accessed

on 16 July 2023)

DEM (ASTER) Raster 90 m -
Geospatial Data Cloud site

(https://www.gscloud.cn/, accessed on
16 July 2023)

Soil depth (A China dataset of soil properties
for land surface modeling) Raster 1000 m -

A Big Earth Data Platform for Three
Poles (https://poles.tpdc.ac.cn/,

accessed on 23 July 2023)

Land Cover (China National Land Use and
Cover Change dataset) Raster 1000 m

2000, 2005,
2010, 2015,

2020

Resources and Environmental Sciences
Data Center (https://www.resdc.cn/,

accessed on 30 June 2023)

NDVI (MOD13A2) Raster 500 m 2000–2020
Google Earth Engine

(https://code.earthengine.google.com/,
accessed on 7 July 2023)

Annual temperature and precipitation (ERA5,
Latest Climate Reanalysis Produced by

ECMWF)
Raster 0.1◦ 2000–2020

Google Earth Engine
(https://earthengine.google.com/,

accessed on 20 July 2023)

This study used the China National Land Use and Cover Change (CNLUCC) dataset
from the Resources and Environmental Sciences Data Center of the Chinese Academy of Sci-
ences (http://www.resdc.cn/) [34]. The dataset was derived from the visual interpretation
of Landsat Enhanced Thematic Mapper Plus (ETM+) images, with standard procedures
and references to the well-established national land use and land cover remote sensing clas-
sification system. There are six land use and land cover categories in CNLUCC, including
farmland, forestland, grassland, water, urban land, and unused land. Grassland is further
classified into high-coverage (>50%), medium-coverage (20% to 50%), and low-coverage
(5% to 20%) grassland according to the vegetation coverage. The classification accuracy of
CNLUCC was validated using nationwide field verification. The CNLUCC dataset was

https://geocloud.cgs.gov.cn
http://www.gscloud.cn/
https://poles.tpdc.ac.cn/
https://geocloud.cgs.gov.cn
https://www.gscloud.cn/
https://poles.tpdc.ac.cn/
https://www.resdc.cn/
https://code.earthengine.google.com/
https://earthengine.google.com/
http://www.resdc.cn/


Forests 2023, 14, 2336 5 of 19

shown to be suitable for conducting relevant long-term time series research due to its long
time span, high data accuracy, and relatively higher accuracy when upscaled [35]. The
CNLUCC data from 2000, 2005, 2010, 2015, and 2020 are averaged to represent the steady
state of the regional cover.

To detect the spatial and temporal variations of vegetation growth in the study area,
satellite-based NDVIs derived from a moderate resolution imaging spectroradiometer
(MODIS) were employed. The MODIS-NDVI products named MOD13A2—with the spatial
and temporal resolutions of 500 m and 16 days, respectively, from 2000 to 2020—were
collected from Google Earth Engine (GEE). The monthly mean NDVI from April to October
was used to calculate the annual growing season (GS) NDVI [29]. The Savitzky–Golay
filter was used to eliminate the mixed noise in the image and improve the NDVI band
quality [36].

Air temperature and precipitation data were obtained from the European Centre
for Medium-Range Weather Forecast Reanalysis v5 (ERA5), which was relatively well
constrained with satellite radiance observation through data assimilation. The temperature
at 2 m and precipitation from January 2000 to December 2020 were extracted from the
ERA5 dataset on the GEE online platform, then processed as an annual mean value for
usage (shown in Figure A1).

Using the ArcGIS Desktop 10.8 (Esri Co. Ltd., Redlands, CA, USA), all the data
were projected on the WGS 1984 coordinate system of the Mercator projection (Universal
Transverse Mercator, UTM), and the index band was selected to be 45◦ N. The boundary of
the CWTM was cropped to a unified range according to the previous section for processing
and analysis. Through the fishing net tool in the ArcGIS software, multi grids with different
sizes (1 km × 1 km, 2 km × 2 km, 3 km × 3 km, 5 km × 5 km, 10 km × 10 km) were
created (Figure 2). Considering the size of forestland patches and the influence range of the
faults, 3 km × 3 km grid units were chosen. For faults, the sum of fault lengths within each
grid was counted, and the fault length density (FLD; their length (km) per km2, km/km2)
within the grid was calculated; for LUCCs, the plurality within the grid cell was counted;
and for the DEMs, NDVIs, meteorological elements, and environmental elements of soil
properties, the mean value within the cell was counted. Extraction tools in the ArcGIS
software were used to generate multiple attributes for individual grids, which were then
analyzed, processed, and plotted in Microsoft Excel; some plots were drawn in Chiplot
(https://www.chiplot.online/, accessed on 28 August 2023). Maps were drawn in the
ArcGIS software.
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2.3. Analysis Methods
2.3.1. Derivation of the Effect of the Individual Factor by the Boundary Line Approach

One environmental variable can be influenced jointly by many other variables, which
limits the analysis and derivation of the relation between one dependent variable and
one independent variable from the noncontrolled field data. To solve this problem, the
boundary line approach (BLA) was developed, in which scatter plots are drawn between
one dependent variable and each individual independent variable [37].

2.3.2. Correlation and Trend Analysis

Determination coefficients (R2) were used to analyze the correlation between the NDVI
and elevation and year in this study. The Theil–Sen median (Sen’s slope estimation method)
is a robust non-parametric statistical trend analysis method for evaluating the trend of long
time series data [38]. This method has high computational efficiency and is insensitive to
measurement error and discrete data, and it has been widely applied in the trend analysis
of long time series. The Theil–Sen median can indicate the change trend of the NDVI in
long time series at the pixel scale, and it can be calculated using the following formula:

SNDVI = Median
(

NDVIj −NDVIi

j− i

)
, 2000 ≤ i < j ≤ 2020 (1)

where SNDVI is the value of the slope estimated by the Theil–Sen median; NDVIx is the
value of the NDVI of each year in this study; and i and j are the different years between
2000 and 2020. When SNDVI > 0, it represents an uptrend, and when SNDVI < 0, it represents
a downtrend.

The Mann–Kendall test is a nonparametric statistical test method that was first pro-
posed by Mann in 1945 and further improved by Kendall and Sneyers. This test method has
been widely used in trend significance tests of long time series data such as hydrological
data, meteorological data, and climate data [38]. Trend index can be calculated using the
following formulas:

Z =


S−1√
V(S)

S > 0

0 S = 0
S+1√
V(S)

S < 0

(2)

S = ∑n−1
j=1 ∑n

i=j+1 sgn
(
NDVIj −NDVIi

)
(3)

sgn =


1 NDVIi −NDVIj > 0
0 NDVIi −NDVIj = 0
−1 NDVIi −NDVIj < 0

(4)

V(S) = n(n− 1)(2n + 5)/18 (5)

where Z is the standardized test statistic; n is the number of time series data, which is
21 in this study; and sgn indicates the function symbol. When n ≥ 8, the test statistic
S is approximately normally distributed, and its mean and variance are as follows: if
|Z| ≥ Z1−α/2 at an α level, it indicates that the assumption that there is no trend is rejected
and there is an obvious trend change in the NDVI in the time series. Z1−α/2 is the value
corresponding to the distribution table of the standard normal distribution function at the
α confidence level. When |Z| > 1.65, |Z| >1.96, and |Z| > 2.58, it indicates that the trend
passes the significance test of 90%, 95%, and 99%, respectively. We set α = 0.05 in this study
(Table 2).
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Table 2. NDVI variation type and scales.

NDVI Variation Type Scales

Significant increase SNDVI > 0, |Z| ≥ 1.96
Significant decrease SNDVI < 0, |Z| ≥ 1.96

No trend |Z| < 1.96

3. Results
3.1. Spatial Distribution of Faults
3.1.1. Fault Length Density

Regional distribution of FLD provides a good representation of the fault direction
in CWTM, with the principal fault directions observed being northwest–southeast and
northeast–southwest (Figure 3). The faulting area accounts for 66.9% of the total area,
whereas the non-faulting zone accounts for 33.1%. The faulting zone is further divided into
subintervals based on FLD intervals of 0.01 km/km2. Within these intervals, the areas dis-
tributed among the ranges of 0–0.01 km/km2, 0.01–0.02 km/km2, and 0.02–0.03 km/km2

are similar, with grid cells ranging from 800 to 900. The interval of 0.3–0.4 km/km2 ex-
hibits the highest peak, covering 32.7 × 103 km2. As the FLD value exceeds 0.4 km/km2,
the number of rasters decreases sequentially. The maximum FLD recorded is 1.63 km2,
observed where 10 faults intersect.
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The Jenks natural breaks classification method is a data classification technique de-
signed to maximize the differences between classes. Using this method, the faulting zones
are categorized into three classes: low-faulting, medium-faulting, and high-faulting, with
corresponding FLD ranges of 0–0.25, 0.25–0.5, and >0.5 km/km2, respectively (Table 3). The
respective areas covered by these classes are 1.8 km2, 3.9 km2, and 0.9 × 104 km2. Among
these, the medium-faulting zones have the largest area, accounting for 19.7% of the total
region. The average FLD values for these classes are 0.10 km/km2, 0.33 km/km2, and
0.59 km/km2, with average elevations of 2361 m, 2427 m, and 2350 m, respectively. It is
worth noting that the elevations of faulting zones are significantly higher than those of
non-faulting zones.
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Table 3. Faulting classes and properties.

Faulting Class: Fault Length
Density Range (km/km2)

Area
(104 km2)

Area
Percentage (%)

Average Fault Length
Density (km/km2) Average Elevation (m)

Non-faulting (0) 13.2 66.9 0 2283
Low-faulting (0–0.25) 1.8 8.9 0.10 2361

Medium-faulting (0.25–0.5) 3.9 19.7 0.33 2427
High-faulting (>0.5) 0.9 4.4 0.59 2350

3.1.2. Variation of FLD with Elevation

The distribution of low- and medium-faulting zones is not affected by variations in
elevation, whereas the distribution of high-density faulting zone is closely related to eleva-
tion (Figure 4). Faulting zones with FLDs exceeding 1.4 km/km2 are primarily distributed
at elevations of 2000–2500 m. The upper boundary line illustrates the relationship between
FLD and elevation, with minimal influence from other factors. The maximum FLD in
the study area exhibits an increasing-then-decreasing (convex) trend with elevation: it
increases from 1 km/km2 at 1000 m to a peak value of 1.6 km/km2 around 2200 m, and
then gradually decreases to 0.8 km/km2 at 3500 m. The study area is subsequently divided
into 500 m elevation bands, and the percentages of faulting area are calculated for each
band. Likewise, a higher faulting area percentage (%) appears at elevations of 2000–2500 m.
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3.2. NDVI Variations
3.2.1. Spatio-Temporal Patterns of NDVI

Figure 5 shows the spatial distribution of multi-year mean NDVI values for forest and
grass vegetation in the mid-altitude CWTM from 2000 to 2020. The results of hierarchical
statistical analysis reveal that 27.1% of the area exhibits an NDVI of less than 0.3, whereas
NDVI ranges from 0.3 to 0.5 for 40.5% of the area. Additionally, 32.4% of the area displays
an NDVI value greater than 0.5. Due to the study area being located in a temperate arid and
semi-arid climate, the spatial distribution of NDVI is significantly influenced by regional
topographic and geomorphic factors. The low-vegetation zone primarily occupies lower-
elevation areas distributed along the edges of the mountains. The medium-vegetation zone
is predominantly found in the Bayanbulak Grassland and Keguqin Mountain. On the other
hand, the high-vegetation zone is mainly located in the Tangbra Grassland on the southern
slopes of the Borohoro Mountains (NW-SE trending), the forested areas of the mid-altitude
mountains, including Wusun, Yishijilike, and Atengtao in the southern Yili Basin (near EW
trend), as well as the Narati Grassland, Karajun Grassland, and Kurdning Forest on the
northern slopes of the Narati and Halketawu Mountains. Notably, the high-coverage areas
of the three zones correspond with the distribution of the principal faults, namely, the Kash
River Fault, the North Wusunshan Fault, and the Narati Fault.
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Figure 5. Spatial distribution of average normalized difference vegetation index (NDVI) from 2000
to 2020.

During the period from 2000 to 2020, the NDVI of forest and grass vegetation in the
study area remained relatively constant, as shown in Figure 6. Zones with no apparent
change covered 85.0% of the total area, with an average rate of change of 0.6 × 10−3 per
year. Zones with a significant increase accounted for 13.5% of the total area and were mainly
distributed in the northern slopes of the Tianshan, the Zhaosu Grassland, and the southern
slopes of the Tianshan, with an average rate of change of 3.1 × 10−3 per year.. Additionally,
1.5% of the total area showed a significant decrease in NDVI, sporadically distributed in
the grassland areas of the Keguqin Mountain and the Tangbra Grassland on the southern
slope of the Borokonu Mountain, with an average rate of change of −3.5 × 10−3 per year.
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3.2.2. Relationship between NDVI Variation and Elevation

The mean multi-year NDVI values of different vegetation types exhibit a strong
relationship with elevation (Figure 7). Both forest and high-coverage grassland display
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a convex distribution pattern, with NDVI values initially increasing and then decreasing
with increasing elevation (R2 = 0.93 and 0.97, p < 0.01). The highest NDVI values for
forest and high-coverage grassland are relatively similar at approximately 0.56. Moreover,
the elevation bands corresponding to the maximum NDVI values are similar for both
forest and grassland, located at elevations of 1800–2000 m. Grassland at higher elevations
(>2000 m) present more sensitivity in NDVI changes compared to forested land. Medium-
coverage grassland and low-coverage grassland exhibit relatively larger changes in NDVI
with increasing elevation, but the overall trend indicates a decrease (R2 = 0.69 and 0.40,
p < 0.05). Specifically, the NDVI of medium-coverage grassland decreases from 0.35 to 0.2
at 1000 m, whereas that of low-coverage grassland decreases from 0.24 to 0.15. Therefore,
medium-covered grassland exhibits higher sensitivity to elevation changes.
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The NDVI trends observed between 2000 and 2020 for different vegetation types are
mainly characterized by no-change trends, and their distributions vary with elevation
(Figure 8). In the case of forests, the percentage of area with an increasing NDVI trend
significantly decreases with increasing elevation. Specifically, it decreases from 61.4% at
relatively lower elevations of 1000–1500 m to 9.1% at higher elevations of 3000–3500 m.
Conversely, the percentage of area exhibiting no significant change trend notably increases
with increasing elevation. Regarding high-coverage and medium-coverage grasslands, the
area with increasing NDVI values initially increases and then decreases with elevation. At
elevations of 1500–2000 m, high-coverage grasslands reach their maximum NDVI value of
14%, whereas at higher elevations of 3000–3500 m, it decreases to 4%. Similarly, medium-
coverage grasslands reach their maximum NDVI of 6.4% in the lower middle elevation zone
and decrease to 2% at higher elevations of 3000–3500 m, demonstrating relative insensitivity
to elevation variation. As for low-coverage grasslands, the percentage of areas with an
increasing NDVI trend is highest (17%) at lower elevations of 1500–2000 m, whereas it
remains low (<10%) in all other higher elevation zones.

3.3. Elevation-Dependent Relationship between NDVI Variation and FLD

Multi-year mean vegetation NDVI of different faulting classes in various elevation
bands shows certain variations (Figure 9). At elevations of 1000–1500 m, the NDVI is
higher in the low-faulting and medium-faulting zones compared to the non-faulting zone,
while it is lowest in the high-faulting zone. At elevations of 1500–2000 m, the NDVI in the
faulting zone is lower than that in the non-faulting zone. At elevations of 2000–2500 m, the
NDVI value is similar in the non-faulting, low-faulting, and medium faulting zones, while
it is lowest in the high-faulting zone. At elevations of 2500–3500 m, the NDVI is higher
in the faulting zone compared to the non-faulting zone. Therefore, the influence of fault
development on vegetation growth varies along the elevation gradient.
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Figure 9. Comparison of the multi-year mean NDVIs of different faulting classes in different elevation
bands. The error bars display the standard error of the mean for each bin.

Elevation influences the interannual variability in NDVI within different faulting zones
(Figure 10). Across all elevation subzones, the multi-year NDVI exhibits a non-significant
increasing trend (p > 0.05). At elevations of 1000–2500 m, the NDVI is lower in the faulting
zone compared to the non-faulting zone. Conversely, at elevations of 2500–3500 m, the
NDVI is higher in the faulting zone compared to the non-faulting zone. It is important to
note that the presence of faults does not alter the multi-year trend in NDVI.

Different fault densities have varying impacts on the trends of NDVI variation across
different elevations and vegetation types (Figure 11). Notably, forests with decreasing
NDVI trends are consistently located at elevations below 2500 m. The percentage of
area with increasing NDVI trends within this elevation range decreases progressively
with increasing fault density, reaching its lowest value (<10%) in regions characterized
by a high fault density. Conversely, for forests at elevations above 2500 m, the highest
percentage of areas with increasing NDVI trends (accounting for 60%) is found in regions
characterized by a high density of faults. For grasslands, areas with decreasing NDVI
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trends are predominantly located at elevations below 2500 m. The density of faults did not
significantly affect the variation in vegetation state.
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Figure 10. Interannual variations of average NDVI in different faulting zones and elevation bands
(1000–1500 m, 1500–2000 m, 2000–2500 m, 2500–3000 m and 3000–3500 m above sea level). The grey
and blue dashed lines represent the trend lines for linear regression in non-faulting and faulting
zones, respectively.
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4. Discussion
4.1. Elevational Patterns of Vegetation Growth and Its Links with Tectonic Faults

The Tianshan region constitutes the principal ecological barrier in the arid northwest
of China, characterized by its complete mountain altitudinal vegetation belts and complex
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geological and geomorphological setting. Previous studies showed that the elevational
patterns of vegetation are caused by differences in temperature, humidity, radiation inten-
sity, soil properties, and human activities [39]. With increasing elevation, temperature and
soil depth usually decrease, whereas precipitation follows a trend of initially increasing
and subsequently slightly decreasing (Figure A1). Additionally, the transition of vege-
tation types progresses gradually from desert to montane steppe, coniferous forest, and
alpine meadow [27]. These dynamic factors exhibit regular variation along the vertical axis,
thereby shaping the formation of altitudinal vegetation belts.

This investigation highlighted that the vegetation growth (characterized by NDVI) of
forests and high-coverage grasslands within the CWTM region displays a unimodal (or
convex) pattern that increases and then decreases as elevation increases (Figures 5 and 7).
NDVI reaches its peak value at an elevation of 1800–2000 m and subsequently decreases.
This elevation-associated unimodal pattern is consistent with previous research in mountain
ecology, both through ground surveys and remote sensing [39,40]. Nevertheless, the
elevation distribution of the NDVI peak is slightly different from that of the nearby dryland
mountains. For example, the highest NDVI elevation zone of the Altai Mountains in the
north is 2100–2200 m [41], whereas that of the Qilian Mountains in the east is 2700–3200
m [42]. This difference may be attributed to variations in climate zones, soil zones, regional
atmospheric water vapor, mountain heights, and slope orientations [40]. Besides, this study
indicated that the NDVI of medium- and low-coverage grasslands in the CWTM showed a
general decreasing trend with increasing elevation, consistent with the results of previous
studies on grasslands in the mid-altitude Qinling Mountains [43].

According to our results, the elevation zones of optimal forest and high-coverage
grassland are basically consistent with the high faulting zone, which are all around an
elevation of 2000 m (Figures 4 and 7). This consistency in vegetation growth and the
high-density fault zone distribution has been less frequently reported in previous studies,
most of which focus on the impact of climatic factors (such as temperature and precipita-
tion) or human activities to vegetation variations [44,45]. In accordance with the present
findings, a previous study conducted along a 3000 m elevation gradient with tectonic
faults on the Tibetan Plateau (Galongla and Gongga Mountains) showed that the eleva-
tional breakpoints (2000–2800 m asl.) of biological communities and ecosystem functions
surprisingly coincided with the locations of faults [10]. This research also indicated that,
across the Indus-Yalu suture zone fault in southwestern Tibet, most chemical characteristics,
including minerals, weathering indices, and soil properties, were significantly different.
This difference could be explained by the phenomenon that active faulting leads to the
exposure of buried bedrock, which then can be physically and chemically weathered to
produce mineral-rich soils [46]. Hence, this consistency may have some eco-geological
significance that should be validated through further field surveys.

4.2. Temporal Variations of Vegetation Growth

This study revealed that the area with no trend of vegetation variation in the study
area covered almost 90% of the total area (Figure 6). In contrast, recent research has
highlighted the browning of vegetation on the Tianshan during the period from 1998 to
2015, attributing this phenomenon to soil water deficits [25]. This inconsistency could be
explained by the fact that precipitation in the study region has increased since 2015, and
Northwestern China experienced a “warming-wetting” trend in recent years [47]. The
increased precipitation in recent years implies that the intensified interannual variability of
precipitation has complicated the trend in vegetation variation [48].

Notably, the area with a significant greening trend, which accounted for approximately
10% of the total area, was predominantly located on the northern slopes of North Tianshan
(Figure 6). This result is consistent with previous research and is mainly attributed to
climate change [49]. Furthermore, it is important to highlight the influence of elevation on
vegetation state. For example, the proportion of improved forest area showed a notable
decrease as elevation increased (Figure 8). This observation could potentially be linked
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to human activities, such as the application for UNESCO World Heritage Site status of
the Tianshan, which was initiated in 2010 and concluded in 2013 [49]. Interestingly, our
results were consistent with a previous study indicating that the strongest positive NDVI
trends occurred at lower elevations, which could be attributed to vegetation restoration
activities [50]. In contrast, the area with the most degraded vegetation is also located at low-
elevation regions, primarily in the grassland surrounding the Yili Basin (Figures 6 and 11).
Notably, the decreasing rate of the NDVI in these regions was notably high (Figure 6),
suggesting that overgrazing may continue to be a challenge in this area [51]. These results
suggested that human activities had a significant effect on vegetation growth in the low-
elevation region.

4.3. Elevation-Dependent Contrasting Effects of Fault Distribution on Vegetation Growth

The results indicated that the NDVI of the faulting zone in the elevation range of
1000–2500 m is lower compared to the non-faulting zone, whereas that of the faulting zone
in the elevation range of 2500–3500 m is higher (Figure 9). This phenomenon is particularly
significant for forests and could be attributed to changes in fault-induced slope instability
and hydrothermal conditions.

Ecological disturbances resulting from fault-induced landslides can exhibit variations
along the elevation gradient. Disadvantageous ecological effects of tectonic events have
been addressed. In southern Chile and New Zealand, the effects of tectonic disturbances,
especially those associated with strong earthquakes, play a crucial role in determining forest
structure and composition [20]. These landslide-related disturbances (e.g., earthquake-
triggered mass movements) impact plant communities directly, causing damage to plant
biomass by either killing entire plants or removing parts of them, which is particularly
severe within faulting zones [22]. Previous studies have shown that earthquake-induced
landslides within active fault zones have led to significant losses in local vegetation net pri-
mary productivity [52,53]. In comparison to higher elevations, bedrock in lower-elevation
slopes within fault zones undergoes more pronounced physical and chemical weather-
ing [54]. This process increases rock fracture and porosity, augments regolith thickness,
and enhances slope instability and susceptibility to landslides [55]. Notably, a previous
study showed that fault-induced landslides in the CWTM region were concentrated in
the elevation range of 1000–2500 m. Specifically, there were 602, 814, and 78 incidents
recorded at 1000–1500 m, 1500–2000 m, and 2000–2500 m, respectively [56]. In contrast,
the total number of fault-induced landslides occurring in the 2500–3500 m elevation range
was less than 30. Consequently, ecosystems in lower-elevation slopes (<2500 m asl.) within
fault zones experience higher levels of disturbance, including an increased risk of tree falls.
These areas face challenges in achieving normal ecological succession, resulting in lower
vegetation cover.

Meanwhile, faulting can result in the rapid incision of valleys and the erosion of
hillslopes. These changes not only alter local humidity and thermal conditions but also
give rise to “catenas,” which are sequences of soil variations extending from hilltop to
middle slope and the valley bottom [17,57]. Vegetation experiences differences in insulation,
wind shear, and local evapotranspiration between hilltops and valleys, which could affect
vegetation growth [58]. Within fault valleys at higher elevations (>2500 m asl.), water
and soil accumulate, and there is limited heat exchange compared to the other hillslope
positions (e.g., ridge) [59]. As a result, vegetation flourishes in the fault-induced valley. Pre-
vious study found that the mean forest carbon loading consistently decreased from valley
bottoms to ridges [60]. Notably, faults in the study area predominantly exhibit an east-west
orientation, leading to the formation of north-facing shaded slopes and south-facing sunny
slopes [61]. The slope aspect significantly influences microclimate factors, including air and
soil temperature, evapotranspiration, and wind speed [12]. In the northern hemisphere,
north-facing slopes exhibit higher biomass, greater coverage, and increased vegetation
height compared to south-facing slopes [60]. Consequently, the formation of fault valleys
contributes to enhanced vegetation growth.



Forests 2023, 14, 2336 15 of 19

Moreover, the presence of fault-induced valleys, characterized by reductions in ele-
vation, could have contrasting impacts on vegetation along the elevation gradient. Since
vegetation growth exhibits a unimodal distribution (shown in Figure 7, with the peak value
around 2000 m asl.) Reductions in elevation at lower elevations (<2000 m asl.) could lead to
a deviation from the optimal environmental conditions. In contrast, reductions in elevation
could have more advantageous effects on vegetation growth at higher elevations (>2000 m
asl.) of the NDVI-elevation unimodal curve.

Previous studies have illustrated the beneficial ecological effects of tectonic phenomena
in tectonic river basins. For example, a local-scale study in a semi-arid fault-controlled
river basin in Africa (~1500 m asl.) indicated that active normal faulting is an important
factor in stabilizing vegetation growth patterns, which creates favorable hydrological and
pedological conditions along the escarpment [17]. Tectonic basin and associated alluvial fan
(~1000 m asl.) contain porous aeolian sands and a significant number of transported fines,
indicating its potential for groundwater buffering [23]. This fault-induced landscape serves
as an environmental hydro-refugia for local vegetation. Consistent with the literature,
this research suggested that fault valleys in high-elevation mountains could also serve as
environmental refugia for local vegetation.

Notably, thermal anomalies associated with faults have been detected in previous
studies [62]. The average land surface temperature in the central zone of active faults is
1◦ higher than the surrounding environment within a certain distance of approximately
5 km [63]. In particular, permeable structures such as faults exercise a primary control on
local fluid flow patterns, with most upflow zones residing in complex fault interaction
zones [64]. Most intermediate- (≥125 ◦C) to high-temperature (≥225 ◦C) geothermal
systems reside along normal faults in complex interaction zones.

Therefore, the effects of faults on local habitats vary along the elevation gradient. At
lower elevations (1000–2500 m asl.), vegetation in fault zones experiences reduced growth
due to increased ecological disturbance caused by landslides. In contrast, the incidence of
geohazards in faulting zones at higher elevations (2500–3500 m asl.) is significantly reduced.
Meanwhile, fault valleys provide favorable accommodation space for vegetation in high-
altitude landscapes, creating improved hydrothermal conditions for growth. Furthermore,
thermal anomalies within fault zones may help mitigate temperature stress on vegetation
in high-elevation, temperature-limited areas.

Our findings corroborate previous studies on the relationship between alpine ecosys-
tem functions and geological events. For example, the inclusion of geological factors,
such as parent rock and weathering, increased the explained variations in plant commu-
nities and ecosystem functions in the southeastern Tibetan Plateau by 67.9% and 27.6%,
respectively [10]. Geological conditions, such as bedrock lithology and erodibility, strongly
affect local soil thickness and water storage capacity, which in turn determine the distri-
bution and seasonal stability of vegetation [65]. Further fieldwork and research would be
required to obtain a deeper understanding of the influence of tectonic activity on hydro-
logical, pedological, and biological properties in sensitive ecosystems within tectonically
active landscapes.

5. Conclusions

Collectively, this study investigated the distribution and dynamics of NDVI in the
mid-altitude region of the CWTM, and their relationships with tectonic fault length density
at different elevation zones. The NDVI of forests and high-coverage grasslands exhibited a
convex distribution along the elevation gradient. The elevation of the high-density faulting
zone was consistent with the peak value of forests and high-coverage grasslands, both of
which were located at elevations around 2000 m. There were obvious differences in the
effects of FLD on vegetation variation at different elevation zones: FLD had a negative effect
on NDVI in the water-limited zone at elevations of 1000–2500 m, whereas it enhanced NDVI
in the temperature-limited zone at 2500–3500 m (particularly for forests). This elevation-
dependent contrasting effect of faults on vegetation growth could be attributed to the
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more favorable hydrothermal conditions for vegetation in fault-induced geomorphology
and the reduced susceptibility to landslides with increasing elevation. This study has
important implications for understanding how tectonics control the alpine ecosystem
in tectonically active, dryland mountains, revealing the diversity and complexity of the
geology–environment relationship. Further field-based studies on the lithology of bedrock,
as well as terrain attributes in the faulting zone, would provide a better understanding of
the effects of tectonic activities on vegetation growth.

Author Contributions: Conceptualization, X.L. (Xiaohuang Liu) and J.L.; data curation, analysis,
and methodology, H.L. and X.L. (Xinping Luo); visualization, R.W. and L.X.; writing—original draft
preparation, and editing, H.L., X.Z. and W.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the project of China Geological Survey (grant No.
DD20230514), and the Third Xinjiang Scientific Expedition Program (grant No. 2022xjkk090405
and 2021xjkk1401).

Data Availability Statement: The data presented in this study are available from the corresponding
author X.L. with a reasonable request. The data are not publicly available due to privacy restrictions.

Acknowledgments: We thank the reviewers for their thoughtful comments and constructive sugges-
tions which substantially improved this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Forests 2023, 14, x FOR PEER REVIEW 17 of 20 
 

 

Appendix A 

 
Figure A1. (a) Mean annual temperature, (b) precipitation and (c) soil depth varies along elevational 
gradients on the CWTM (error bars represent the standard deviation). 

References 
1. Gao, W.; Zheng, C.; Liu, X.; Lu, Y.; Chen, Y.; Wei, Y.; Ma, Y. NDVI-based vegetation dynamics and their responses to climate 

change and human activities from 1982 to 2020: A case study in the Mu Us Sandy Land, China. Ecol. Indic. 2022, 137, 108745. 
https://doi.org/10.1016/j.ecolind.2022.108745. 

2. Chen, Z.; Wang, W.; Fu, J. Vegetation response to precipitation anomalies under different climatic and biogeographical condi-
tions in China. Sci. Rep. 2020, 10, 830. https://doi.org/10.1038/s41598-020-57910-1. 

3. Sun, G.; Li, L.; Li, J.; Liu, C.; Wu, Y.; Gao, S.; Wang, Z.; Feng, G. Impacts of climate change on vegetation pattern: Mathematical 
modelling and data analysis. Phys. Life Rev. 2022, 42, 239–270. https://doi.org/10.1016/j.plrev.2022.09.005. 

4. Wang, J.; Hu, A.; Meng, F.; Zhao, W.; Yang, Y.; Soininen, J.; Shen, J.; Zhou, J. Embracing mountain microbiome and ecosystem 
functions under global change. New Phytol. 2022, 234, 1987–2002. https://doi.org/10.1111/nph.18051. 

5. Antonelli, A.; Kissling, W.D.; Flantua, S.A.; Bermúdez, M.A.; Mulch, A.; Muellner-Riehl, A.N.; Kreft, H.; Linder, H.P.; Badgley, 
C.; Fjeldså, J.; et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 2018, 11, 718–725. 
https://doi.org/10.1038/s41561-018-0236-z. 

6. Dong, Y.; Shi, X.; Sun, S.; Sun, J.; Hui, B.; He, D.; Chong, F.; Yang, Z. Co-evolution of the Cenozoic tectonics, geomorphology, 
environment and ecosystem in the Qinling Mountains and adjacent areas, Central China. Geosyst. Geoenviron. 2022, 1, 100032. 
https://doi.org/10.1016/j.geogeo.2022.100032. 

7. Dong, X.; Martin, J.B.; Cohen, M.J.; Tu, T. Bedrock mediates responses of ecosystem productivity to climate variability. Commun. 
Earth Environ. 2023, 4, 114. https://doi.org/10.1038/s43247-023-00773-x. 

8. Graham, R.; Rossi, A.; Hubbert, R. Rock to regolith conversion: Producing hospitable substrates for terrestrial ecosystems. GSA 
today 2010, 20, 4–9. https://doi.org/10.1130/GSAT57A.1. 

9. Ding, W.; Ree, R.; Spicer, R.; Xing, Y. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine 
flora. Science 2020, 369, 578–581. https://doi.org/10.1126/science.abb4484. 

10. Hu, A.; Wang, J.; Sun, H.; Niu, B.; Si, G.; Wang, J.; Yeh, C.; Zhu, X.; Lu, X.; Zhou, J.; et al. Mountain biodiversity and ecosystem 
functions: Interplay between geology and contemporary environments. ISME J. 2020, 14, 931–944. 
https://doi.org/10.1038/s41396-019-0574-x. 

11. Fan, Y.; Clark, M.; Lawrence, D.; Swenson, S.; Band, L.E.; Brantley, S.; Brooks, P.; Dietrich, W.; Flores, A.; Grant, G.; et al. 
Hillslope hydrology in global change research and earth system modeling. Water Resour. Res. 2019, 55, 1737–1772. 
https://doi.org/10.1029/2018WR023903. 

12. Yang, J.; El-Kassaby, Y.A.; Guan, W. The effect of slope aspect on vegetation attributes in a mountainous dry valley, Southwest 
China. Sci. Rep. 2020, 10, 16465. https://doi.org/10.1038/s41598-020-73496-0. 

13. Dawson, T.E.; Hahm, W.J.; Crutchfield-Peters, K. Digging deeper: What the critical zone perspective adds to the study of plant 
ecophysiology. New Phytol. 2020, 226, 666–671. https://doi.org/10.1111/nph.16410. 

14. Hahm, W.J.; Riebe, C.S.; Lukens, C.E.; Araki, S. Bedrock composition regulates mountain ecosystems and landscape evolution. 
Proc. Natl. Acad. Sci. USA 2014, 111, 3338–3343. https://doi.org/10.1073/pnas.131566711. 

15. Hahm, W.J.; Rempe, D.M.; Dralle, D.N.; Dawson, T.E.; Dietrich, W.E. Oak transpiration drawn from the weathered bedrock 
vadose zone in the summer dry season. Water Resour. Res. 2020, 56, e2020WR027419. https://doi.org/10.1029/2020WR027419. 

16. Jiménez-Rodríguez, C.D.; Sulis, M.; Schymanski, S. Exploring the role of bedrock representation on plant transpiration response 
during dry periods at four forested sites in Europe. Biogeosciences 2020, 19, 3395–3423. https://doi.org/10.5194/bg-19-3395-2022. 

17. Ludat, A.L.; Kübler, S. Tectonic controls on the ecosystem of the Mara River basin, East Africa, from geomorphological and 
spectral index analysis. Biogeosciences 2023, 20, 1991–2012. https://doi.org/10.5194/bg-20-1991-2023. 

-8

-6

-4

-2

0

2

4

6

8

1000 1500 2000 2500 3000 3500

M
ea

n 
an

nu
al

 te
m

pe
ra

tu
re

 (℃
)

Elvation (m)

0

100

200

300

400

500

600

1000 1500 2000 2500 3000 3500

M
ea

n 
an

nu
al

 p
re

ci
pi

ta
tio

n 
(m

m
)

Elvation (m)

50

75

100

125

150

175

200

1000–1500 m 1500–2000 m 2000–2500 m 2500–3000 m 3000–3500 m

So
il 

de
pt

h 
(c

m
)

Elevation band

−2

−4

−6

−8

(a) (b) (c)

Figure A1. (a) Mean annual temperature, (b) precipitation and (c) soil depth varies along elevational
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