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Abstract: Background. With the advancement of “digital forestry” and “intelligent forestry”, point
cloud data have emerged as a powerful tool for accurately capturing three-dimensional forest scenes.
It enables the creation and presentation of digital forest systems, facilitates the monitoring of dynamic
changes such as forest growth and logging processes, and facilitates the evaluation of forest resource
fluctuations. However, forestry point cloud data are characterized by its large volume and the need
for time-consuming and labor-intensive manual processing. Deep learning, with its exceptional
learning capabilities, holds tremendous potential for processing forestry environment point cloud
data. This potential is attributed to the availability of accurately annotated forestry point cloud
data and the development of deep learning models specifically designed for forestry applications.
Nonetheless, in practical scenarios, conventional direct annotation methods prove to be inefficient and
time-consuming due to the complex terrain, dense foliage occlusion, and uneven sparsity of forestry
point clouds. Furthermore, directly applying deep learning frameworks to forestry point clouds
results in subpar accuracy and performance due to the large size, occlusion, sparsity, and unstructured
nature of these scenes. Therefore, the proposal of accurately annotated forestry point cloud datasets
and the establishment of semantic segmentation methods tailored for forestry environments hold
paramount importance. Methods. A point cloud data annotation method based on single-tree
positioning to enhance annotation efficiency was proposed and challenges such as occlusions and
sparse distribution in forestry environments were addressed. This method facilitated the construction
of a forestry point cloud semantic segmentation dataset, consisting of 1259 scenes and 214.4 billion
points, encompassing four distinct categories. The pointDMM framework was introduced, a semantic
segmentation framework specifically designed for forestry point clouds. The proposed method first
integrates tree features using the DMM module and constructs key segmentation graphs utilizing
energy segmentation functions. Subsequently, the cutpursuit algorithm is employed to solve the
graph and achieve the pre-segmentation of semantics. The locally extracted forestry point cloud
features from the pre-segmentation are comprehensively inputted into the network. Feature fusion is
performed using the MLP method of multi-layer features, and ultimately, the point cloud is segmented
using the lightweight PointNet. Result. Remarkable segmentation results are demonstrated on
the DMM dataset, achieving an accuracy rate of 93% on a large-scale forest environment point
cloud dataset known as DMM-3. Compared to other algorithms, the proposed method improves
the accuracy of standing tree recognition by 21%. This method exhibits significant advantages in
extracting feature information from artificially planted forest point clouds obtained from TLS. It
establishes a solid foundation for the automation, intelligence, and informatization of forestry, thereby
possessing substantial scientific significance.

Keywords: forest point cloud; 3D laser; deep learning; semantic segmentation

1. Introduction

The current forest area in China is 3.46 billion mu, ranking fifth in the world. The
forest stock volume is 19.493 billion cubic meters, ranking sixth in the world. The area of
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artificial forests is 1.314 billion mu, ranking first in the world. The total carbon storage
of forests and grasslands reaches 11.443 billion tons, ranking among the top in the world.
The key to the intelligent development of forestry lies in how to quickly and accurately
obtain three-dimensional and rich information about forest areas and tree structures and
achieve precise mapping and monitoring of forest resources. Traditional manual surveys
and measurement methods are inefficient and cannot meet the modern forestry’s demand
for large-scale and efficient acquisition of three-dimensional structural data.

To replace time-consuming and labor-intensive manual surveys with poor accuracy,
commonly used methods for forest environmental surveys include hyperspectral, image,
and point cloud. LiDAR-derived point cloud data record the three-dimensional shape
information of targets. By conducting non-contact remote scanning of the entire forest area,
high-density three-dimensional point cloud data of individual trees and even the entire
forest area can be obtained, which fully captures the three-dimensional information of
tree crowns, trunk shapes, branch structures, and more. Point cloud data can accurately
reflect the three-dimensional scenes of forests and be used to construct and present digital
forest systems. These rich three-dimensional point cloud data can be used to build detailed
digital forest structure models, facilitating the extraction of parameters such as tree species,
tree height, diameter at breast height, crown width, etc., from point clouds. This enables
accurate measurement and dynamic monitoring of the spatial distribution and growth
status of trees, greatly improving the accuracy of understanding forest resources in the area.
Furthermore, point cloud data from different periods can be compared to monitor dynamic
changes such as forest growth and logging processes and assess the increase or decrease in
forest resources. Additionally, using point cloud data to construct detailed digital forests
can simulate various forestry operations, such as transportation planning and logging
operations, thereby improving the efficiency of forestry operations. In summary, compared
to manual measurement methods, three-dimensional LiDAR scanning can cover a larger
range and obtain more comprehensive three-dimensional structural data. It is not limited
by terrain and environment, making it more efficient and convenient to operate.

Since its inception in the 1960s, laser technology has undergone significant advance-
ments, particularly in terms of measurement accuracy. Consequently, its applications have
proliferated across diverse sectors, including the military, industrial manufacturing, civil
engineering, agriculture, and forestry. Within the realm of forestry, airborne light detection
and ranging (LiDAR) technology has reached a state of maturity, having been employed
as early as the 1980s. Pioneering work by Nelson, Ross [1], and colleagues demonstrated
the utility of airborne LiDAR for measuring vertical forest features, such as tree height
and ground distance. Their findings indicated that the margin of error for tree height
measurements was less than one meter when compared to photogrammetric techniques.
Schreier [2] utilized airborne LiDAR technology to scan forested areas and demonstrating
that laser-generated point clouds could precisely differentiate between the ground and var-
ious types of vegetation. Furthermore, the technology is capable of distinguishing between
coniferous and broadleaf forests based on metrics such as distance information, reflectance,
and other parameters. Since the 1990s, airborne LiDAR technology has evolved, garnering
increasing interest from researchers in forestry. The technology has been deployed to obtain
comprehensive data on various aspects of forests, including growth factors, ecological
conditions, vertical structure, and biomass over expansive areas. In contrast to airborne and
satellite-based LiDAR systems, vehicle-mounted LiDAR offers the advantage of capturing
more granular data on forest stand structures, owing to its high-density and high-precision
point cloud capabilities. In recent years, research efforts have increasingly pivoted towards
high-precision forest modeling and targeted identification. For example, Merlijn Simonse
et al. explored the utility of vehicle-mounted LiDAR for forest resource surveys, extracting
key parameters like stand positions and diameters at breast height from 3D point cloud
data, with a particular emphasis on data-processing methodologies [3]. Initially, the re-
searchers employed Z-coordinates to identify the lowest points across various horizontal
planes, thereby establishing a digital ground model. Subsequently, they applied the Hough



Forests 2023, 14, 2276 3 of 26

transform technique to filter the point cloud data, allowing them to accurately pinpoint
stumpage positions and their respective diameters at breast height. In conclusion, the
study offers prospective insights into the broader applications of LiDAR technology for
comprehensive extraction of stumpage parameters, such as tree species identification, tree
height, canopy area, and wood defects, among others. Chris Hopkinson [4] employed a
synergistic approach, utilizing both ground-based and airborne LiDAR systems to scan
tree canopies. Subsequent calibration calculations were executed with a high level of
accuracy, enabling the derivation of both leaf area index and leaf profile models within a
1 km range. In a separate study, Aleksey Golovinskiy [5] focused on target identification in
urban settings by employing a shape-feature approach. The researchers initially captured
3D point cloud data within the urban landscape and employed clustering techniques for
point cloud segmentation. This enabled the differentiation of foreground and background
entities. Following this, shape features were extracted, and labeled data were used for
training. The final step involved the application of support vector machines for robust
target recognition. In Germany, Bienert et al. [6] utilized vehicle-mounted 3D LiDAR
technology to estimate the volume of trees. Initially, a rudimentary method was employed
in which the point cloud was conceptualized as a stereo pixel structure. Tree volume was
then calculated based on the number of filled stereo pixels. However, this approach led to
overestimation issues. Consequently, refinements were made to address these inaccuracies,
resulting in a more reliable method. In another study, Fabrice Monnier et al. [7] explored
the identification of urban street trees using 3D point clouds. The team defined various
tree features, including volume, linear, cylindrical, and planar characteristics. Each feature
was independently recognized. A probabilistic relaxation method was then implemented
to filter out noise and insignificant point cloud structures. The aggregated data indicated
that, even in complex urban settings, trees could be effectively identified using individual
features. The aggregated data corroborated that in complex urban landscapes, tree identi-
fication could be effectively accomplished using individual features. In a separate study,
Rutzinger et al. [8] focused on tree recognition using 3D point clouds and constructed
three-dimensional models for standing trees. They initially employed clustering algorithms
to segment the point cloud data, isolating points that were situated at least 0.5 m above
the ground. Subsequently, point density for each cluster was calculated. It was observed
that the density of point clouds in the tree crown was substantially lower than in other
areas, enabling effective tree recognition. The images in the manuscript reveal that the
experiments were conducted on an urban road with sparse tree coverage, achieving an
85% recognition rate under these conditions. Hyyti et al. [9] employed a 2D laser scanner,
rotated it around a baseline to enable 3D scanning, and generated 3D point cloud data of
a forest area. Utilizing circular arc features, they successfully identified tree trunks and
estimated their positions. However, their method exhibited lower accuracy in calculating
trunk diameters, resulting in errors of less than 4 cm within an 8 m scanning radius. In a
similar vein, Pyare Pueschel et al. [10] utilized a FARO 3D laser scanner to scan a forest
area, from which they extracted tree locations, diameters, and wood volumes. Their study
also evaluated the impact of varying scanning modes and curve-fitting methods on the
accuracy of diameter and volume calculations, taking into account the effect of trunk oc-
clusion. Sandeep Gupta et al. [11] focused on 3D modeling of the vertical structure of tree
canopies and individual trees. Utilizing airborne LiDAR, they acquired point cloud data,
performed statistical analyses on the height distribution, and stored the data in an octree
structure for further processing. Yangyan Li et al. [12] extended point cloud studies to the
domain of plant growth analysis. By capturing 3D point cloud data over an extended time
frame—referred to as 4D point clouds—they examined plant growth patterns. Although
numerous methods currently exist for extracting forest parameters from laser point clouds,
both domestically and internationally, they encounter challenges that hinder the broader
application of LiDAR in practical forestry management.

Due to the complexity of the forest environment and the large amount of point cloud
data, traditional post-processing methods require manual intervention and multiple steps,
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which cannot serve as the technical foundation for real-time operations and rapid surveys.
Deep learning, with its powerful learning ability, has great potential in handling forest
environment point clouds. Currently, deep learning has five development directions in
point cloud recognition:

Volumetric-based methods: typically involve voxelizing point clouds into 3D grids
and applying 3D convolutional neural networks. However, the computational requirements
and sparsity of stereo data after rasterization hinder the development of this approach.
Some proposed solutions, such as CNNS [13], FPNN [14], and Vote3D [15], have attempted
to address these challenges, but difficulties still arise when dealing with large amounts of
point cloud data.

Multi-view CNNs methods: attempt to transform 3D point clouds or shapes into 2D
images and utilize 2D convolutional networks for classification. While this method achieved
good recognition results at the time, it is difficult to extend to large scenes and 3D tasks,
such as point cloud classification. Furthermore, 2D multi-view images only approximate
3D scenes and do not provide a true and lossless representation of the geometric structure,
resulting in less ideal results in complex tasks.

Pointwise MLP methods: Utilize multiple shared multi-layer perceptrons to indepen-
dently model each point and then aggregate global features using symmetric aggregation
functions. These methods have made significant advancements in recent years. Point-
Net [16], introduced by researchers from Stanford University in 2017, directly processes
unordered point clouds as input data for recognition and semantic segmentation tasks.
PointNet++ [17], an extension of PointNet, addresses the limitation of extracting local
information by utilizing Farthest Point Sampling (FPS) and Multi-Scale Grouping (MSG).
Other methods, such as POINTWEB [18] and PointSIFT [19], focus on extracting contextual
features from the local neighborhood of point clouds and incorporating the concept of the
SIFT algorithm for point convolution.

3D convolutional kernels methods: Compared to convolutional kernels defined on
a two-dimensional grid structure, designing convolutional kernels for three-dimensional
point clouds poses greater challenges due to their irregularity. Current three-dimensional
convolution methods can be categorized into continuous convolution and discrete con-
volution, depending on the type of convolutional kernel used. PointCNN [20] addresses
the difficulty of applying convolutional operations to irregular and unordered point cloud
data by employing point convolution. Flownet3D [21] extracts features and computes
their correlation. Other methods, such as Spherical Convolutional Spectral CNN [22],
KPCONV [23], and PointConv [24], propose novel techniques for modeling the geometric
relationship between neighboring points and performing convolution operations.

Graph-based methods: SuperPointGraph [25], GCNN [26]-utilize graph convolution for
the effective processing of point clouds. ClusterNet [27] generates rotation-invariant features
and constructs a hierarchical structure of point clouds using an unsupervised approach.

The advancement of deep learning methodologies has shown promise in improving
the efficiency of topographic LiDAR technology for forestry applications. These methodolo-
gies offer various approaches for point cloud recognition, each with its own strengths and
limitations. Further research and development in this field will contribute to the integration
of laser measurement technologies into operational forestry practices. However, in practical
applications, traditional direct annotation methods are time-consuming and inefficient
due to the complex terrain, foliage occlusion, and uneven sparsity of forestry point clouds.
Meanwhile, due to the unstructured characteristics of the vast forestry point cloud scenes,
such as occlusion and sparsity, directly applying deep learning frameworks to forestry point
clouds results in low accuracy and poor performance. Therefore, a precisely annotated
forestry point cloud dataset is proposed, and a point cloud semantic segmentation method
suitable for forestry environments is established, which is of great significance.

To address these challenges and develop a more effective training model tailored to
forestry scenarios, we conducted an in-depth investigation of forest landscapes. Leveraging
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multi-sensor fusion LiDAR technology, we collected high-quality data and performed
precise semantic annotations, resulting in the creation of the “DMM” dataset.

Recognizing that forestry point cloud data are often highly obscured and present
other issues, we engineered a feature extraction DMM module. This module is specifically
designed to optimize the extraction of features from forestry point clouds. Additionally,
we developed a semantic geometric segmentation algorithm that categorizes point clouds
based on shared features. As a result, we propose an end-to-end point cloud processing
framework called pointDMM.

2. Methods and Materials

In this section, we outline the annotation framework of our data acquisition system
and introduce the DMM dataset for forestry scenes. Additionally, we discuss the DMM
module, which is specifically designed for pre-segmenting multi-feature point clouds, and
present pointDMM, a method for segmenting depth point clouds in garden scenes.

2.1. Study Area

Data collection was conducted at two distinct locations. As shown in Figure 1, the
first location, Gao Yang County Forestry District, is situated at coordinates 115◦38′ E and
38◦37′ N. It experiences an average annual rainfall of 515.2 mm. The second location,
Beijing Dongsheng Bajia Park, is located at No. 5 Shuangqing Road, Dongsheng Township,
Haidian District, Beijing, China. Its coordinates are N: 40◦01′4.78′′ and E: 116◦20′40.63′′.
This park, the largest of its kind in Beijing, is located within the temperate monsoon zone. It
has an average annual rainfall of 688.26 mm and an average annual temperature of 13.1 ◦C.
The park spans approximately 615.83 hectares and boasts a rich diversity of plant species,
including 21,700 trees with significant crown and flower coverage. The green area coverage
exceeds 90%. In this study, we focus on a plantation forest spanning about 20 mu, primarily
composed of Tsubaki and Populus species.
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Figure 1. Study area: The study area consists of four data collection sites, as shown in Figure (a–d).
Figure (a) represents the data collection site located in the forest area of Gaoyang City, Hebei Province.
Figure (b) depicts the data collection site situated in the Bajia homestead in Haidian District, Beijing.
Figure (c) displays the data collection site within the forest sample area. Lastly, Figure (d) showcases
the real-time display of data collection, with the white color indicating the walking track.
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2.2. Data Collection Platform

We begin this section by providing details of the laser scanner used for collecting
point cloud data. As shown in Figure 2, Our backpack-type acquisition system utilizes the
RS-LiDAR-16, developed by Shenzhen Suteng Juchuang Technology Co., Ltd. (Shenzhen,
China). This state-of-the-art LiDAR unit is designed for applications in autonomous
vehicle environment perception, robotics, and UAV mapping. The RS-LiDAR-16 employs a
hybrid solid-state LiDAR approach, integrating 16 laser transceiver components capable
of measuring distances up to 150 m with an accuracy of ±2 cm. The unit produces up
to 300,000 data points per second, offering a horizontal measuring angle of 360◦ and a
vertical angle ranging from −15◦ to 15◦. The device performs exceptionally well under
adverse visibility conditions such as sandstorms, haze, rain, or dense vegetation, thanks
to RIEGL’s unique LiDAR technology. During our fieldwork, we collected a total of
197 point clouds over an area of 8.1 hectares. These point clouds were stored in LAS1.4
format. Given the large amount of data, I have organized all the experimental results
mentioned in this document. The point cloud of the intermediate steps in the experiment
has a total size of 8.8 GB and has been uploaded to Quark Cloud Drive. Please see
https://pan.quark.cn/s/fdce3d6aedac (accessed on 30 October 2023) (Figure 2).
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Figure 2. Data acquisition Figure (a–c) are our backpack LIDAR, where Figure (a) is a double-headed
LIDAR, Figure (b)’s double-headed LIDAR one collects horizontal direction and one vertical direction,
and Figure (c) is a single-headed LIDAR.

The SLAM technology of LiDAR has made significant progress in recent years, both in
theoretical research and practical applications. With the advancement of sensor technology
and computing power, we have adopted SLAM technology for point cloud collection
in forestry environments. SLAM technology can work stably in complex and changing
forest environments without the need for prior environmental information or GPS signals.
It offers cost-effectiveness compared to traditional aerial or satellite remote sensing as
SLAM-based ground point cloud data collection has lower costs and can be updated more
frequently. Additionally, SLAM systems can be installed on various mobile platforms, such
as drones, mobile robots, or handheld devices, providing flexible data collection solutions
for different forestry applications. Furthermore, SLAM technology allows researchers
and forestry workers to view point cloud data in real time, enabling them to make timely
decisions and adjustments. Minimal environmental impact: Compared to traditional
forestry measurement methods, SLAM-based point cloud data collection has a lower impact
on the environment and is more environmentally friendly. Furthermore, SLAM technology
enables data collection at various scales, ranging from individual trees to entire forests,
providing abundant resources for forestry research and management. The application of
SLAM technology in forestry point cloud data collection presents both new opportunities
and challenges for forestry research and management. In this article, the Roboscene lidar-
fusion inertial navigation backpack SLAM collection system and the Lioslam [28] algorithm
are utilized for data collection. By tightly coupling the lidar and inertial measurement unit

https://pan.quark.cn/s/fdce3d6aedac
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(IMU) odometry system, the system achieves high-precision, real-time trajectory estimation,
and map construction through smoothing and mapping techniques. The system builds
a laser inertial odometry based on a factor graph, allowing the integration of relative
and absolute measurement data from multiple sources, including loop closure detection.
To remove distortion from point clouds, the system utilizes pre-integrated data from
the IMU and provides initial estimation for laser odometry optimization. Through scan
matching, selective keyframe introduction, and an efficient sliding window strategy within
a local range, LIO-SLAM ensures real-time performance in forestry applications while
maintaining high-precision trajectory estimation and map construction capabilities in
forest environments.

The implementation of the Lioslam algorithm consists of several steps. Firstly, pre-
processing is performed to correct the distortion of the input point cloud using IMU data.
The point cloud data are then segmented into ground and non-ground points. Next, visual
odometry is estimated by aligning the current frame with the previous frame’s point cloud
data to determine the relative transformation between the two frames. The initial estimate
provided by the IMU data assists in this alignment process. Subsequently, factor graph
optimization is conducted by adding the laser odometry and IMU pre-integration data
as factors to the factor graph. When loop closure is detected, loop closure constraints are
added to the factor graph. Optimization algorithms, such as GTSAM or g2o, are employed
to optimize the factor graph and obtain a globally consistent trajectory and map. The fused
point clouds are then combined with the optimized trajectory to construct a global map.
Optionally, map sparsification or downsampling can be performed to enhance efficiency.
Loop closure detection is achieved by utilizing point cloud descriptors (FPFH) to match the
current frame with historical frames and identify loop closures. If a loop closure is detected,
loop closure constraints are added to the factor graph. Finally, the optimized trajectory and
3D map are outputted, enabling further path planning or navigation.

Overall, the utilization of SLAM technology in forestry point cloud data collection
offers numerous benefits, including minimal environmental impact, multi-scale data collec-
tion capabilities, and improved precision in trajectory estimation and map construction.
The Lioslam algorithm, along with the ROboscene lidar-fusion inertial navigation backpack
SLAM collection system, provides a comprehensive solution for efficient and accurate
forestry research and management (As shown in Table 1).

To facilitate the training of deep learning models, we have organized the acquired data
into three distinct, scaled datasets: DMM-1, DMM-2, and DMM-3. Each dataset is tailored
to different scene scales, providing a comprehensive range of forestry environments. Specif-
ically, DMM-1 focuses on individual trees, enabling accurate segmentation at a fine-grained
level. DMM-2 emphasizes the semantic segmentation of local tree populations, allowing
for a more detailed analysis of localized forestry environments. Finally, DMM-3 targets
large-scale, multi-tree scenarios, enabling the assessment of expansive forest landscapes.
For instance, DMM-1 serves as the ideal testing ground for single-tree segmentation. Mean-
while, DMM-2 and DMM-3 provide valuable insights into the semantic segmentation of
localized forestry environments and expansive forest landscapes, respectively. Overall,
these datasets offer a valuable resource for researchers and practitioners in the field of
deep learning, facilitating the development and evaluation of advanced models for forestry
analysis. The original point cloud can be seen Figure 3.
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Table 1. RS16-line scanner equipment specifications and parameters.

Training Hyperparameters Parameter Values

Sensors

TOF method ranging 16 channels
Measurement: 40 cm to 150 m (20% target reflectivity)

Accuracy: ±2 cm
Angle of view (vertical): ±15◦ (30◦ total)

Angular resolution (vertical): 2◦ Viewing angle (horizontal): 360◦

Angular resolution (horizontal/azimuth): 0.1◦ (5 Hz) to 0.4◦ (20 Hz)
Speed: 300/600/1200 rpm (5/10/20 Hz)

Laser
Class 1

Wavelength: 905 nm
Laser Emission Angle (full angle): 7.4 mrad horizontal, 1.4 mrad vertical

Output

~300 k dots/s
100 Gigabit Ethernet
UDP packets contain
Distance information

16 line parameters
Rotation angle information

Calibrated reflectivity information

Mechanical/electronic
operation

Power consumption: 12 w (typical)
Operating voltage: 9–32 VDC (requires interface box and stable power supply)

Weight: 0.87 kg (excluding data cable)
Operating voltage: 9–32 VDC (requires interface box and stable power supply)

Weight: 0.87 kg (excluding data cable)
Dimensions: Diameter 109 mm × Height 80.7 mm

Protection and safety level: IP67
Operating ambient temperature range: −30 ◦C~60 ◦C

Storage ambient temperature range: −40 ◦C~85 ◦C
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cessing complex forestry environment information are insufficient, as it lacks data with 
severe occlusion, high density, complex terrain, multiple return information, and uneven 
scale. To address these issues, we propose a method for annotating forestry large-scale 
scene data based on single-tree positioning. Compared to commonly used outdoor da-
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measured from a fixed position using a ground-based LiDAR scanner. The main catego-
ries in this dataset are ground, vegetation, and buildings, with fewer moving objects. It 
includes 3D semantic scenes from rural and urban areas, with three distinct suburban cat-
egories. The proportions of each category also vary. 

Figure 3. The DMM dataset collected by backpack-style lidar includes the following: DMM-1
single tree point cloud dataset, DMM-2 forestry partial area point cloud dataset, and DMM-3 forest
environment large scene point cloud dataset.
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2.3. Tree-Based Localization-Based Forestry Point Cloud Dataset Annotation Method

There is currently a lack of an accurate annotated dataset for multi-forestry identi-
fication and segmentation based on the mobile information collection platform for the
forestry environment. The forest rapid mobile measurement and collection platform faces
difficulties in annotating large-scale, different density, and unstructured point clouds. The
annotation process is inefficient and results in low accuracy. Additionally, there are chal-
lenges with sparse and occluded trees and other objects, as well as the undefined fractal
structure, which can lead to annotation errors. The existing point cloud data for processing
complex forestry environment information are insufficient, as it lacks data with severe
occlusion, high density, complex terrain, multiple return information, and uneven scale. To
address these issues, we propose a method for annotating forestry large-scale scene data
based on single-tree positioning. Compared to commonly used outdoor datasets such as
semantic3D, the forestry point cloud dataset has its own characteristics. Semantic3D is
currently the largest and most popular static dataset, where each frame is measured from a
fixed position using a ground-based LiDAR scanner. The main categories in this dataset
are ground, vegetation, and buildings, with fewer moving objects. It includes 3D semantic
scenes from rural and urban areas, with three distinct suburban categories. The proportions
of each category also vary.

Due to the forestry environment, our dataset mainly consists of live standing trees
without any buildings or pedestrian information. Therefore, our point cloud annotation
method is based on single-tree localization and pre-segmentation. The method includes
the following steps: loading point cloud labels, denoising and filtering normalization of
the point cloud, calculating DBH (diameter at breast height) and CHM (canopy height
model), pre-segmentation of individual trees in the point cloud, and fine annotation based
on pre-segmentation. As shown in Figure 4,the specific steps are as follows:
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Figure 4. Based on single-tree pre-segmentation, the point cloud annotation method consists of
several parts, including loading point cloud labels, point cloud denoising filtering normalization,
calculating DBH, CHM, point cloud single-tree pre-segmentation, and fine annotation of point cloud
based on pre-segmentation.

1. Use the Semantic-Segmentation-Editor to load point cloud labels: It is an open-
source web-based semantic object annotation editor called Semantic Segmentation Editor,
developed by Hitachi Automotive And Industry Lab. This tool is specifically designed
for creating training data for machine learning semantic segmentation in the field of
autonomous driving research and development. However, it can also be used to annotate
other types of semantic object databases. It supports 3D point clouds generated by LIDAR
(in .pcd format). This article provides instructions for installing meteor and configuring
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the environment on Ubuntu 18.04. Its address is https://github.com/GerasymenkoS/
semantic-segmentation-editor (accessed on 11 January 2023.).

2. Denoising: The denoising of point clouds is a critical preprocessing step aimed
at eliminating noise and outliers from 3D point cloud data. Point cloud data often suffer
from noise interference due to limitations in 3D scanning devices or imperfect image
reconstruction techniques. The objective of denoising methods is to restore the true structure
of the point cloud while preserving its essential features. This process involves analyzing
each point in the point cloud to determine if it is noise and adjusting or removing it based on
the attributes of its neighboring points. Efficient point cloud denoising not only enhances
the accuracy of subsequent tasks, such as 3D reconstruction, classification, and recognition,
but also enables the identification of outlier points based on the distribution of distances
between each point and its neighbors. The denoising algorithm follows the following steps:
Establish k-nearest neighbors for each point in the point cloud: for each point P in the
point cloud, find its k nearest neighbors, where k is a predefined parameter; Calculate
the average distance and standard deviation: for point P and its neighbors, calculate the
average distance µ and standard deviation σ from P to its neighbors; define a threshold:
T = µ + α * σ, where α is a predefined coefficient used to control the strictness of denoising;
remove outlier points: for point P and its neighboring points, if the distance from P to
any neighbor is greater than the threshold T, consider P as an outlier point and remove it
from the point cloud; iterative optimization: repeat the above steps until the number of
outlier points in the point cloud is less than a predefined threshold or reaches the maximum
iteration count; output the denoised point cloud. By following these steps, the denoising
algorithm effectively removes noise and outlier points, resulting in a denoised point cloud
that accurately represents the true structure of the data.

3. Normalization: The objective of point cloud normalization is to standardize the
scale, position, or orientation of point cloud data with respect to a reference framework.
Presented here is a step-by-step implementation of a straightforward point cloud normal-
ization algorithm: Calculate the centroid: iterate through all points in the point cloud and
compute the average x, y, and z coordinates to determine the centroid (x, y, z). Translate to
the origin: for each point (x, y, z) in the point cloud, translate it such that the centroid is
positioned at the origin; calculate the scale factor: compute the maximum distance, Dmax,
from all points in the point cloud to the origin. Define a desired normalized radius, R.
Calculate the scale factor as scale = R/Dmax; scale normalization: scale each point in the
point cloud using the calculated scale factor; direction normalization: if necessary, ascertain
the principal direction of the point cloud using methods such as principal component
analysis (PCA). Rotate the point cloud to align its principal direction with a predefined
direction, such as the z-axis; output the normalized point cloud; this algorithm initially
relocates the centroid of the point cloud to the origin and subsequently scales it based
on the maximum scale of the point cloud, ensuring that it falls within a standardized
range. Additionally, if required, the direction of the point cloud can be adjusted. This
normalization method establishes a unified reference framework for subsequent point
cloud processing and analysis.

4. DBH: Diameter at breast height (DBH) refers to the diameter of a tree measured
at a height of 1.3 m (or 4.5 feet) above the ground. This measurement is widely used
in forestry and ecology to estimate the age, health, and growth rate of trees. DBH is a
crucial parameter for assessing forest resources, calculating timber yield, and making
informed forest management decisions. Typically, a tape measure or a specialized DBH
measuring tape is utilized to obtain this value. By regularly measuring and recording the
DBH of trees, researchers and forestry managers can monitor tree growth, health, and
the overall condition of forest ecosystems. Single-tree segmentation based on seed points
can be employed to derive parameters such as tree height, breast diameter, and crown
diameter through the use of a single-tree segmentation algorithm. The breast diameter
calculation method involves selecting point cloud data at the breast diameter position
of an individual tree, fitting the DBH, and calculating the diameter of the fitted circle

https://github.com/GerasymenkoS/semantic-segmentation-editor
https://github.com/GerasymenkoS/semantic-segmentation-editor
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to determine the breast diameter of the tree. The crown diameter can be obtained by
measuring the crown area and using the area measurement formula S = πr2 to calculate the
crown diameter (2r). The following outlines the point cloud DBH estimation algorithm:
Data preprocessing: apply a point cloud denoising algorithm to remove noise. Utilize a
ground segmentation algorithm to separate ground points from non-ground points (such
as trees and other objects). Locate breast height position: identify the highest point on
the z-axis of the ground. Add 1.3 m to this height to determine the breast height position.
Extract point cloud slice at breast height: take a small range (to evaluate based on point
cloud density) above and below the breast height position and extract all points within
this range to form a point cloud slice. Calculate the convex hull of the slice: employ a
2D convex hull algorithm to determine the convex contour of the tree trunk on the breast
height slice. Calculate DBH: measure the maximum or average diameter of the convex hull,
which will be the estimated DBH value. Optimization and calibration: if multiple trees or
other objects interfere, clustering algorithms can be utilized to separate different objects
and calculate DBH separately. Known reference objects can be used for scale calibration
and to output accurate DBH values. In summary, DBH measurement at breast height
plays a crucial role in assessing tree characteristics and making informed decisions in
forest management. The point cloud DBH estimation algorithm provides a reliable method
for accurately determining DBH values, contributing to the overall understanding and
preservation of forest ecosystems.

5. CHM: CHM, short for canopy height model, is a two-dimensional data model that
represents the height of the vegetation canopy on the ground. It is calculated by measuring
the direct distance from the ground to the top of the vegetation. CHM is typically derived
from remote sensing data, such as LiDAR or SAR, obtained from aerial or ground-based
platforms. The CHM provides researchers with an intuitive way to observe and analyze the
structure and height distribution of forests or other vegetation. It has wide applications in
ecology, forestry, and environmental science, including biomass estimation, carbon storage,
tree growth, and forest health monitoring. The process of generating a CHM involves
several steps. The relative height for each point is calculated by subtracting the height of
the corresponding DEM position from the Z value of the point. The canopy height model
(CHM) is then generated by finding the point with the maximum relative height in each
grid cell and assigning this maximum value to the corresponding grid cell in the CHM.
smoothing techniques such as Gaussian filtering or other filtering methods can be applied.
Finally, the CHM is outputted. Additionally, algorithm processing can be used to obtain
data on the number, position, height, and crown width of individual trees. Overall, the
CHM plays a crucial role in studying and understanding vegetation characteristics, and its
applications are diverse in various scientific fields.

6. Fine-grained annotation: Pointly tree segmentation labeling. Leveraging state-of-
the-art machine learning algorithms, the software effectively classifies and segments point
cloud data, facilitating a quicker and more accurate understanding of the data. Pointly
boasts an intuitive user interface that allows even those with limited experience in 3D data
processing to quickly start. Furthermore, it supports various point cloud data formats
and offers a wide range of data export and sharing functions, streamlining collaboration
with team members and stakeholders. The resulting point cloud annotation can be seen in
Figure 5, generating a comprehensive DMM dataset with labels for trees, low shrubs, land,
and other categories.



Forests 2023, 14, 2276 12 of 26

Forests 2023, 14, x FOR PEER REVIEW 12 of 28 
 

 

point cloud DBH estimation algorithm provides a reliable method for accurately deter-
mining DBH values, contributing to the overall understanding and preservation of forest 
ecosystems. 

5. CHM: CHM, short for canopy height model, is a two-dimensional data model that 
represents the height of the vegetation canopy on the ground. It is calculated by measur-
ing the direct distance from the ground to the top of the vegetation. CHM is typically 
derived from remote sensing data, such as LiDAR or SAR, obtained from aerial or ground-
based platforms. The CHM provides researchers with an intuitive way to observe and 
analyze the structure and height distribution of forests or other vegetation. It has wide 
applications in ecology, forestry, and environmental science, including biomass estima-
tion, carbon storage, tree growth, and forest health monitoring. The process of generating 
a CHM involves several steps. The relative height for each point is calculated by subtract-
ing the height of the corresponding DEM position from the Z value of the point. The can-
opy height model (CHM) is then generated by finding the point with the maximum rela-
tive height in each grid cell and assigning this maximum value to the corresponding grid 
cell in the CHM. smoothing techniques such as Gaussian filtering or other filtering meth-
ods can be applied. Finally, the CHM is outputted. Additionally, algorithm processing can 
be used to obtain data on the number, position, height, and crown width of individual 
trees. Overall, the CHM plays a crucial role in studying and understanding vegetation 
characteristics, and its applications are diverse in various scientific fields. 

6. Fine-grained annotation: Pointly tree segmentation labeling. Leveraging state-of-
the-art machine learning algorithms, the software effectively classifies and segments point 
cloud data, facilitating a quicker and more accurate understanding of the data. Pointly 
boasts an intuitive user interface that allows even those with limited experience in 3D data 
processing to quickly start. Furthermore, it supports various point cloud data formats and 
offers a wide range of data export and sharing functions, streamlining collaboration with 
team members and stakeholders. The resulting point cloud annotation can be seen in Fig-
ure 5, generating a comprehensive DMM dataset with labels for trees, low shrubs, land, 
and other categories. 

 
Figure 5. Semantic labels for DMM point cloud processing and labeling depict the sequential steps 
involved in the transformation of raw point cloud data into a comprehensive DMM dataset encom-
passing trees, low shrubs, land, and other distinct categories. 
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As shown in Table 2, SemanticKitti [29] introduces a large dataset to promote lidar-
based semantic segmentation research. This dataset is annotated for all sequences of the
KITTI Vision Odometry Benchmark, providing dense point annotations of the full field of
view. Semantic3D [30] contains over 4 billion points and includes a variety of urban scenes,
such as churches, streets, railway tracks, squares, villages, football fields, and castles. It
provides detailed point cloud data scanned with state-of-the-art devices and includes eight
category labels. In contrast, our dataset was collected using 16-line lidar in over 1259 scenes
using a backpack-style laser LiDAR. It contains 2144 million points and is divided into tall
trees, low shrubs, land, and other categories. Our dataset is further divided into three parts:
DMM-1, DMM-2, and DMM-3. DMM-1 represents the point cloud of a single tree, and
the original point cloud is shown in Figure 3, while the labeled label is shown in Figure 5.
DMM-2 represents the point cloud of multiple trees in a small range, and the original point
cloud is shown in Figure 3, with the labeled label shown in Figure 5. DMM-3 represents
the point cloud of multiple trees in a large range, displayed by the cutting method, and the
original point cloud is shown in Figure 3, with the labeled label shown in Figure 5.

Table 2. Comparison of different point cloud datasets.

Dataset Scenes Points (106) Classes Sensor Annotation

SemanticKITTI [29] 23,201 4549 25 Velodyne-64 point-wise

Semantic3d [30] 15/15 4009 8 Ter-lidar point-wise
Oakland3d [31] 17 1.6 5 SICk point-wise
Freiburg [32] 77 1.1 4 SICK point-wise
Wachtberg [33] 5 0.4 5 Velodyne 64 point-wise
Paris-Lille-3D [34] 3 143 9 Velodyne-32 point-wise
KITTI [35] 7481 1799 3 Velodyne-64 bounding box
DMM dataset 1259 2144 4 RS16E point-wise
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2.4. Energy Splitting DMM Module

In the DMM module structure shown in Figure 6, the first step involves computing
geometric operators for forestry feature point clouds. To accurately describe the character-
istics of forestry point clouds, we utilize different point cloud feature descriptors compared
to previous approaches. Since forestry point clouds do not include buildings or utility poles,
we focus on linear feature descriptors, planar feature descriptors, and scattering feature
descriptors, while excluding vertical feature descriptors. To characterize the point cloud,
we employ a geometric approach for the point cloud descriptor. Equation (1) represents the
linear geometric characteristics L of the point cloud, while Equation (2) measures P, the
extent of linear stretching and elongation within the point cloud’s neighborhood. Equa-
tion (3) evaluates S, the flatness of the point cloud, indicating its conformity to a plane, and
considers scattering and the description of the divergence characteristics of point clouds.
These three features collectively capture the dimensional properties of the point cloud.

L =
λ1 − λ2

λ1
(1)

P =
λ2 − λ3

λ1
(2)

S =
λ3

λ1
(3)Forests 2023, 14, x FOR PEER REVIEW 14 of 28 
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Figure 6. DMM module structure diagram.

We introduced the forestry feature descriptor ‘R’ to delineate tree characteristics [36].
For each point in the point cloud, calculate their linear characteristics Li, plant characteristics
Pi, and scattering characteristics Si. As shown in the table below, calculate the forestry
characteristic factor R and the terrain characteristic factor r for algorithm DMM. Trees
exhibit linear aggregation in their branches and trunks, disperse needle-like leaves, and
exhibit an overall vertical orientation relative to the coordinate plane. As a result, we
defined the tree feature aggregation factor ‘R’ to encompass linearity, scattering, and
elevation attributes within the point cloud. In contrast, ground point clouds in forestry
environments often feature gullies, primarily characterized by planar traits and linearity.
Conversely, shrubs, being closer to the ground, exhibit dispersive traits, and we aggregate
scattering and planarity to describe them.

To automatically identify valuable information within the aggregated cascaded fea-
tures of the DMM dataset, we applied the max pooling method using an attention mecha-
nism. Additionally, we employed the XGBoost [37] feature filter to refine the selection of
relevant features, resulting in the final point cloud feature description. The purple color in
the representation corresponds to the tree feature factor ‘R’, while the green color signifies
the terrain feature factor ‘r’.
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fi = MLP(Li, Pi, Si) (4)

gi = concat( fi, Li, Pi, Si) (5)

rk
i = MLP(pi ⊕ fi ⊕ gi) (6)

Ck
i k = b

(
rk

i , w
)

(7)

Rk
i =

i

∑
k=1

(
rk

i · Ck
i

)
(8)

d′ = Sharedmlp(Rk
i ) (9)

L(µ) = argmin
g∈Rd

∑‖Ni − ni‖2 + P∑
(

Ni − Nj 6= 0
)

(10)

As shown in the above formula, for each point in the point cloud P = P1 · · · · · · Pn,
calculate their linear characteristics Li, plant characteristics Pi, scattering characteristics Si,
and connecting feature vectors. The new vector is obtained fi, as well as connect features
gi and given N points, and the KNN algorithm is used once for each point to find the
nearest K Euclidean points The 3D coordinates of the central point, the 3D coordinates
of the current point, the relative coordinates, and the European distance are connected.
Then, the dimension is adjusted by MLP to adjust the vector of growth d to make the
aggregation of the converged point cloud features rk

i . Through the attention mechanism
feature transformation, feature extraction, where W is the learnable weight of the shared
MLP, Ck

i k is obtained. Using the previously learned attention value to weight and sum, the
attention value can be regarded as one that can automatically screen important information
via soft mask. By filtering the surrounding point information, one can obtain the reduced
feature vector Rk

i . After attention pooling, it becomes a vector of d′, and the goal of the
CutPursuit algorithm is to minimize an energy function, which usually includes two main
parts: a data fidelity term and a regularization L(µ). Complete each small block formed by
over-segmentation, S = Cutpursuit Segmentation (L); finally, the point cloud is divided into
several blocks. S = S1, · · · Sj. Each similar block has similar characteristics. “P” is part of
the regularization term. This is a problem when finding the optimal energy.

Our dataset is divided into three partial point cloud feature extraction visualizations:
DMM-1, DMM-2, and DMM-3, as shown in the figure above. The colors red, purple,
and green represent linear, planar, and scattering features, respectively. In Figure 7, the
top-left portion depicts a single tree point cloud feature visualization, where the branches
reflect more linear characteristics (red), the canopy part exhibits scattering (purple), and
the ground part appears planar (green). The top-right part of Figure 7 shows a small range
visualization of several tree cloud features, where the branches predominantly exhibit
linear characteristics (purple), the ground part demonstrates planarity (red), and the crown
part shows scattering (green). The lower part of Figure 7 represents the visualization of
cut point cloud features in large-scale forestry scenes, where the branches exhibit more
linear characteristics (red), the crown part appears scattered (purple), and the ground part
appears planar (green).
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We present a comprehensive elucidation of the methodology that forms the foundation
of the energy partitioning network. By utilizing computational techniques to process the
raw input point cloud data, we transform a voluminous dataset consisting of millions of
data points into a meticulously structured format characterized by hundreds of geometric
partitions. Within each of these partitions, a remarkable degree of congruity can be observed
in the local geometric attributes exhibited by the data points. The genesis of this intricate
geometric partitioning scheme is firmly rooted in the 3D geometric features.

For the input original point cloud (denoted as P), the process of geometric partitioning
is executed by leveraging its intrinsic 3D geometric attributes. The partitioning procedure
considers the distinctive features inherent to each individual point within the point cloud.
Notably, in this partitioning scheme, every data point is exclusively assigned to a singular
geometric partition, precluding any overlap or multiple memberships. We employ the max
pooling method to automatically learn the useful information in the aggregated cascaded
features through the attention method and use the xGboost feature to filter the valid
features. Finally, the new aggregated features are obtained. Combining the above features,
we construct an unsupervised graph of the output features in the DMM module to construct
an over-segmented unsupervised data point. For each individual data point, we utilize its
local geometric feature vector as a representation that encapsulates the aggregated features
discussed earlier. Our primary objective is to optimize the solution for L in order to achieve
a resolution for the optimization problem as described in reference.

In our pursuit of solving this problem, we draw inspiration from the concept of greedy
cutting, which is strategically applied to the 3D point cloud dataset. The following section
outlines the energy-optimized procedural steps for aggregating the integrated 3D point
cloud features.

Problem formulation: Our endeavor revolves around the minimization of the func-
tion L. The specific problem at hand necessitates the minimization of L&O [38], as proposed
in a 2017 work introducing a working set strategy for minimizing differentiable functions
constructed on weighted graphs, augmented with full variational half-table regularization.
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We propose an enhanced algorithm that expands the algorithm’s applicability to
functions that contain non-differentiable segments distributed across the graph vertices, as
illustrated on the left. In cases where function g demonstrates differentiability with respect
to variable v, our algorithm identifies the locations of smooth points in function F. These
smooth points are characterized by having zero differentials while possessing both positive
and negative left and right derivatives. It is important to note that this assumption holds
valid when all the considered general functions exhibit convexity, thereby making a smooth
point equivalent to a global minimum value.

In the hyper-segmentation map of the forestry environment scene within the DMM
dataset, it is evident that the trees collectively form a diverse array, while the terrain exhibits
an excessive degree of segmentation, resulting in the fragmentation of the ground into
numerous minutiae. This segmentation approach effectively discerns between towering
trees and diminutive shrubbery. Notably, disparate objects are discretely partitioned
into distinct segments, and sizable objects undergo further decomposition into smaller
constituent elements. Figure 8, top left, depicts a single tree point cloud over segmentation
visualization, revealing the division of a tree into different segments. In Figure 7, the
top right part showcases a small range of trees over segmentation visualization. In this
scenario, several trees with similar characteristics aggregate into the same category. Figure 8,
lower part, presents a large-scale environment cut scene visualization, where the ground
polymerization is improved, and many trees are synthesized into the same category.
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2.5. PointDMM Net Network Structure

According to Figure 9, PoinDMM is an end-to-end network architecture. The key
feature of the PoinDMM network architecture is its ability to directly process raw point
cloud data and transform it into a feature representation with semantic information through
a series of processing steps.
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First, to meet the requirements of subsequent processing, the point cloud data need
to be initialized and transformed into h5 format. This step converts the point cloud into
batches of 8000 points for efficient batch processing operations, considering the limitation
of computer memory.

Next, the point cloud data undergo processing through the DMM module mentioned
in Section 2.4. The DMM module divides the point cloud into multiple regions based on
semantic correlation and local forestry features. Features are then extracted for each region,
allowing PoinDMM to capture detailed information in the point cloud data and improve
its representation capability.

After feature extraction, PoinDMM employs the T network for rotation operations.
This rotation operation, based on the method proposed by PointNet, improves the recogni-
tion accuracy of the point cloud by rotating it around the z-axis. By better processing the
point cloud through rotation, PoinDMM enhances the accuracy of subsequent processing
and analysis.

Following rotation, PoinDMM expands the dimension of point cloud features using a
multi-layer perceptron (MLP). This step aims to avoid feature loss during computation. By
expanding the feature dimension, PoinDMM retains more information, thereby enhancing
the effectiveness of subsequent processing steps.

PoinDMM then performs convolution operations on the features. Through multiple
layers of convolution operations, utilizing 32, 64, 128, and 1024-dimensional convolution
layers, PoinDMM further extracts features from the point cloud data and expands them to
different dimensions. This step increases the expressive power of the features and improves
the capture of information in the point cloud data.

Finally, PoinDMM utilizes a sampling method to output the features. Through this
sampling operation, PoinDMM reduces the dimension of the feature representation and
performs semantic segmentation using PointNet, resulting in the final semantic segmen-
tation result. The purpose of this step is to segment the point cloud data into different
categories and assign corresponding semantic labels to each category.

In conclusion, PoinDMM is an effective network architecture for the analysis and
processing of raw point cloud data. By directly processing the point cloud and extracting
semantic information through a series of processing steps, PoinDMM produces a final
semantic segmentation result. This makes PoinDMM a valuable tool for point cloud data
analysis and processing.
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3. Experiment and Result
3.1. Training Environment and Parameter Configuration

We delve into further intricacies of our training procedure. Detailed training parame-
ters are presented in Table 3 below. It is important to note that all aspects of both training
and testing were conducted on a personal computer, utilizing the computational power
of an NVIDIA GeForce RTX 3060 graphics card GPU for CUDA-accelerated computation.
Our development environment was meticulously configured, consisting of Python 3.6 and
TensorFlow-GPU 2.4.1, operating seamlessly on the Ubuntu 18.04 platform.

Table 3. PointDMM parameter settings.

Training Hyperparameters Parameter Values

Initial KNN parameter of DMM module 10;100;1000
Maximum number of iterative steps 500
Study attrition rate 0.7
Base study rate 0.02
Batch study size 3
Learning momentum
Block Size

0.8
150

We utilized an optimizer to automatically determine the optimal learning rate of 0.41.
Subsequently, we employed a technique of gradually reducing the learning rate in small
increments to identify the most favorable learning rate. Eventually, we established the final
optimal learning rate as 0.45 and proceeded with pointDMM training. Throughout the
training process, we observed an upward trend in training accuracy and a downward trend
in the training loss function. These findings indicate that our network exhibits excellent
learning capabilities for global features. The total duration of training and validation
amounts to approximately 540 h. The DMM module and training are separate. Our
program is divided into two parts. The DMM module generates segmented block features
and block features, taking a total of 19,538 s. After that, the network training is performed.
The output of the DMM module includes features, feature groups, original point cloud
coordinates, and different blocks. After calculating and saving these results, our server
can take a rest and enter the training phase. The network training takes 12,873 s, totaling
32,411 s, as shown in Table 4, After 500 training iterations, the accuracy and loss curves of
the dataset tend to stabilize, with the training accuracy and loss function converging to
0.945 and 0.12, respectively.

Table 4. Computation time (seconds) of pointDMM for semantic segmentation on DMM dataset.

Method DMM Moudle Time Train Time Total Time

PointDMM 19,538 12,873 32,411

3.2. DMM Datas

At the same time, the PointLAE algorithm was evaluated on the DMM dataset. A devel-
opment environment was set up on Ubuntu 18.04, consisting of Python 3.7 and PyTorch 1.0.
Point clouds possess the characteristic of rotational invariance, and to enhance the training
process, data augmentation was performed by randomly rotating point clouds around the
z-axis. Additionally, a random dropout technique was applied with dropout rates of 0.3,
0.5, and 0.7. This involved randomly removing some point clouds from the training set
during each epoch. By incorporating random dropout, the generalization capability of the
training process was effectively improved, resulting in excellent performance on sparse
point clouds. The default parameters used in the experiments are presented in Table 5. As
for other methods, I trained using the default configuration of the source code provided by
the author on GitHub.
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Table 5. PointLAE Testing on DMM dataset parameter settings.

Training Hyperparameters Parameter Values

Initial KNN parameter of DMM module 10
Maximum number of iterative steps 500
Study attrition rate 0.65
Base study rate 0.002
Batch study size 2
Learning momentum 0.9
Block Size 50

3.3. Evaluation Indicators

According to the semantic3d evaluation metrics we adhere to, we employed several
key metrics to evaluate the dataset used. These metrics encompass the application recall
IoU, IoU per class, joint intersection, and overall accuracy OA. The application recall IoU
assesses the number of samples predicted as class j from the class i group structure. The
IoU per class evaluates the accuracy of each individual class. The joint intersection metric
is employed to evaluate the intersection between all classes. The overall accuracy OA is
utilized to gauge the overall accuracy of the dataset. C represents the number of samples
predicted as class j from the class i group structure. These evaluation metrics are pivotal
for assessing the performance of the dataset. By employing the recall IoU metric, we can
comprehend the prediction accuracy of the model across different classes. The IoU metric
per class aids in understanding the prediction accuracy of each class, thereby facilitating
a better grasp of the model’s performance across different classes. The joint intersection
metric furnishes information about the intersection between different classes, enabling
us to comprehend the relationship between classes. The overall accuracy OA metric is
a comprehensive evaluation metric that assists in comprehending the overall prediction
accuracy of the entire dataset. Through a comprehensive analysis of these evaluation
metrics, we can more comprehensively evaluate the performance of the dataset used and
further optimize the model’s performance. These evaluation metrics provide valuable
information that helps us comprehend the model’s performance across different classes and
provide directions for improving the model. These evaluation metrics are indispensable
tools for dataset evaluation and model optimization.
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3.4. Experimental Results

In Figure 10, the accuracy and level of detail in the predicted results are evident. Each
pixel is accurately segmented into its corresponding category, enabling precise understand-
ing and analysis of the image. By dividing the training and validation sets, we can verify
the stability and reliability of our algorithm on different datasets.
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On the single-tree DMM-1 dataset, our pointDMM algorithm accurately identifies and
segments individual tree structures. This achievement is of great significance for the man-
agement and protection of forest environments as it helps us gain a better understanding
of tree growth and health.

On the local forestry environment area DMM-2 dataset, our algorithm effectively
identifies different vegetation types and terrain features. This capability is crucial for
the management and planning of forest resources, as it helps us better understand the
structure and composition of forests and enables us to take appropriate protection and
management measures.

On the large-scale forest environment point cloud DMM-3 dataset, our algorithm can
handle a large amount of point cloud data and accurately segment different objects and
landscape features. This capability is vital for monitoring and evaluating forest resources,
as it helps us better understand the overall condition of forests and the health of ecosystems.

Overall, our pointDMM algorithm performs well on different datasets, demonstrating
high accuracy and stability. These results provide strong support for further research
and the application of semantic segmentation technology. Additionally, they serve as
an important reference for forest resource management and environmental protection.
Through these research achievements, we can gain a better understanding of the natural
environment and promote sustainable development.

As depicted in Figure 11c, the overall accuracy of DMM-3 is 0.93 in the three test
datasets, which is significantly higher than Figure 11a, which shows the accuracy of DMM-
1 (0.88), and DMM-2 (0.85), as shown in Figure 11b. This improvement may be attributed
to the larger amount of data used in DMM-3 and its ability to better capture the point cloud
features of multi-scale forest environments through pointDMM learning. Compared to
the other three algorithms, DMM-3 has shown a 21% increase in accuracy. Among the
three datasets, the algorithm performs best in classifying trees, followed by the ground,
indicating its effectiveness in extracting point cloud features of forest stands. However,
the accuracy is lower for miscellaneous point clouds, which mainly consist of ground
stones, fallen logs, and other materials. These points are fewer in number and the network
struggles to learn their features, resulting in misclassification.
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4. Discussion
4.1. Method Evaluation

Forest resource surveys traditionally rely on plot survey methods, which are known
for being time-consuming, labor-intensive, and prone to low accuracy. However, the utiliza-
tion of laser scanning technology for forestry scene analysis has brought about significant
advancements in forestry automation, intelligence, and digitization. In this study, a precise
annotation DMM dataset is constructed for the purpose of multi-forest identification and
segmentation, utilizing a forestry environment mobile information collection platform.
This dataset has proven to be highly efficient for handling large-scale and multi-data vol-
ume forestry scenes, effectively addressing challenges posed by point cloud occlusion
and uneven sparsity within forestry environments. Additionally, the study proposes the
implementation of the DMM module, which serves as a means of semantic feature pre-
segmentation for forest scenes. Furthermore, an end-to-end deep learning method called
pointDMM is introduced for point cloud semantic segmentation, achieving impressive seg-
mentation results with a high level of robustness. However, it is important to acknowledge
certain limitations within this work. Due to the complexity of undergrowth resources in
forests, such as fallen trees and debris, manual labeling of point clouds remains highly
subjective. While the labeling of the ground and trees is typically accurate, errors may
occur when labeling debris and low shrubs. Moreover, the choice of K-nearest neighbor ini-
tialization during training within the DMM module can impact both accuracy and system
processing time. Overall, the forest information extraction method explored in this paper
effectively captures the features of living trees, while the forest point cloud recognition
method demonstrates strong performance in final testing. Through iterative training, the
network obtains optimal weights, resulting in a robust model for point cloud recognition.
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4.2. Parameter Selection of PointDMM

As depicted in Table 3, our pointDMM model incorporates three default parameters:
k = 10, k = 100, and k = 1000. The processing speed of the point cloud increases as the value
of k decreases. The selection of this parameter depends on the scale of the environmental
scene. It is preferable to choose appropriate parameters to train the network for different
environmental scenes. We conducted experiments on various environmental scene datasets,
including the DMM-1, DMM-2, and DMM-3 datasets. The corresponding results are
visualized in Figures 12–14.
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For the DMM-1 dataset, as shown in Figure 12, the point cloud classification per-
formance for individual trees is not satisfactory when selecting k = 1000. This could be
attributed to the large scale of the dataset, which makes it challenging to capture the local
geometric features of single-tree scenes. As observed in the figure, the point cloud is seg-
mented into various classes. However, in the DMM-2 and DMM-3 datasets, the point cloud
performance is significantly improved. In the DMM-1 dataset, the highest classification
accuracy is achieved at k = 10, but it comes at the cost of a long processing time of 622 h.
On the other hand, selecting k = 100 reduces the processing time to 355 h, with a slight
decrease in accuracy of 1.2%. In Figures 13 and 14, the three accuracy performances are
comparable. However, compared to selecting k = 10, choosing k = 100 improves efficiency
by 33%, and selecting k = 1000 improves efficiency by 48%.

4.3. Compare PointDMM with Other Algorithms

We combine the DMM-1 dataset, the DMM-2 dataset, and the DMM-3 dataset to create
the DMM reduced dataset and train it. As depicted in Figure 15, our pointDMM algorithm
demonstrates excellent performance. The overall accuracy reaches 83.25%, showcasing
significant advancements in the recognition of standing trees compared to other algorithms.
Specifically, there is an 11% improvement compared to pointLAE [39], as well as a 2%
increase in accuracy for shrub identification. Considering performance, the pointDMM
algorithm with k = 10 is recommended for small-scale forestry scenes, such as individual
tree surveys. For medium-scale plot surveys, the pointDMM algorithm with k = 100 is
preferred, while for large-scale forest environment surveys, the pointDMM algorithm with
k = 1000 is utilized.

In the future work of this project, our proposed point cloud recognition network relies
heavily on a large number of GPUs for computation. However, in intelligent forestry
applications, only limited information, such as pre-planning, can be provided. Therefore,
it is meaningful to explore the deployment of lightweight hosts such as NVIDIA for real-
time forestry point cloud recognition in mobile measurement and collection scenarios.
By using lightweight hosts, we can reduce costs, improve efficiency, and better adapt to
the needs of mobile measurement and collection in intelligent forestry. In this paper, our
main focus is on the processing of ground laser point clouds. With the development of
ALS technology, the use of drones for large-scale data collection and the fusion of drone
data with ground point clouds can enhance the algorithms for better handling of canopy
features in airborne LiDAR point clouds. This improvement will make our algorithms
more suitable for airborne LiDAR point cloud collection systems, which is an important
area for further exploration. In future work, we can further study how to optimize the
processing speed of the point cloud recognition network and reduce its dependence on
GPUs. Parallel computing techniques, such as distributed computing, can be considered
to improve processing speed. Additionally, we can explore how to further optimize the
performance of lightweight hosts to meet the real-time point cloud recognition needs in
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mobile measurement and collection. Furthermore, we can conduct further research on
methods for data fusion of drone data collection and ground point clouds. This research
can focus on effectively fusing point clouds collected by drones with ground point clouds to
improve the accuracy and robustness of recognition algorithms. Moreover, we can explore
how to more accurately recognize canopy features in airborne LiDAR point clouds to further
enhance algorithm performance. This research can contribute to better understanding and
the utilization of airborne LiDAR data in intelligent forestry applications. In summary,
future work can focus on optimizing the processing speed of the point cloud recognition
network, improving the performance of lightweight hosts, researching methods for data
fusion of drone data collection and ground point clouds, and more accurately recognizing
canopy features in airborne LiDAR point clouds. These efforts will further promote the
application of intelligent forestry in mobile measurement and collection, providing more
accurate and efficient auxiliary means for forestry management and protection.
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nition network, improving the performance of lightweight hosts, researching methods for 
data fusion of drone data collection and ground point clouds, and more accurately recog-
nizing canopy features in airborne LiDAR point clouds. These efforts will further promote 

Figure 15. Accuracy of the semantic segmentation of different parameters PointDMM and other
method on the DMM reduced dataset.

5. Conclusions

This work proposes a ground-based LiDAR point cloud semantic segmentation
method for complex forest undergrowth environments. Our work consists of three main
components: the construction of forestry point cloud datasets, the fusion of undergrowth
point cloud features, and semantic segmentation using the DMM module based on a deep
learning method called pointDMM. The forestry dataset is collected using backpack-style
LiDAR devices. To address the lack of a database, large scene scales, and high data volume
in forestry resource environment point clouds, we propose a point cloud data annotation
method based on single-tree positioning to improve annotation efficiency and address
difficulties caused by occlusion and sparse distribution in forestry environments. To ad-
dress the characteristics of diversity, disorder, large data volume, large scene scales, and
uneven sparsity in forestry environments, as well as the less ideal fractal structures, we
integrate tree features using the DMM module and construct a critical segmentation graph
using an energy segmentation function. We then use cutpursuit to solve the graph and
achieve pre-segmentation of semantics. Our method fills the gap in existing deep models
for complex forestry environment point cloud information, which is characterized by severe
occlusion, high density, complex terrain, multiple return information, and uneven scales.
We propose an end-to-end deep learning model called pointDMM, which trains a multi-
level lightweight deep learning network to effectively improve the intelligent analysis
of complex forestry environment scenes. Our method demonstrates good segmentation
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results on the DMM dataset, achieving an accuracy of 93% on the large-scale forest environ-
ment point cloud dataset DMM-3, which has a 21% improvement in live tree identification
accuracy compared to other algorithms. Compared to the manual segmentation of point
clouds, this method has significant advantages in extracting feature information from TLS-
acquired artificial forest point clouds, laying a solid foundation for achieving automation,
intelligence, and informatization in forestry.
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