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Abstract: Geophytes are a characteristic element of deciduous forests in the temperate zone, as well
as a common component of urban green spaces due to their early flowering and high decorative
value. Nevertheless, in urban areas, geophytes are constantly threatened by recreational activities,
especially in parks where intensive trampling occurs. In this study, we tested the effect of the distance
from formal paths on the species richness, abundance and diversity of geophytes in relation to habitat
conditions in urban forests and parks. We established a total of 400 plots (1 m × 1 m) located close
(CL) to and further (FU) from paths in 10 forests and 10 parks in Kraków, southern Poland, in spring
2022. We recorded 23 species from nine groups of geophytes forming different underground storage
organs, i.e., bulbs (B), hypocotyl bulbs (HB), rhizomes (RH), runners (RU), runners and rhizomes
(RU-RH), runner-like rhizomes (RL-RH), runners and runners with tuberous tip (RU-TU), runners
and shoot tubers (RU-ST) and root tubers (RT). The differences in the number, share and cover-
abundance of geophytes between the CL and FU plots were statistically insignificant. In contrast,
the total number, share and cover-abundance of geophytes were significantly higher in forests than
in parks. Additionally, the share and cover-abundance of RH and RT were significantly higher in
forests than in parks. Moreover, in CL plots in forests and parks, the cover-abundance of RH and
RT were negatively correlated with soil compaction. Urban forests provide a high abundance of RH,
RU-RH and RT, while parks support a high abundance of BU. To protect forest geophytes in urban
forests and parks, it is recommended to limit trampling and soil eutrophication, as well as reduce the
increase in soil pH along paths.

Keywords: ancient forest species; recreation; trampling; urban ecology; vascular plants

1. Introduction

In urban areas, green spaces such as forests and parks perform many important ecolog-
ical, economic and social functions, enabling the sustainable development of cities around
the world [1–3]. For instance, urban forests and parks positively shape the microclimate,
take part in purifying the air, soil and water from pollutants, protect the soil against erosion
and contribute to the preservation of wildlife [4,5]. In addition, they provide wood, biofuels
and space to run a small business, as well as support the physical and mental health of
residents [3–6]. On the other hand, the common and intensive use of forests and parks
for recreational and tourist purposes may lead to undesirable environmental disturbances
such as trampling, littering and tree vandalism [7–12]. Therefore, proper planning and
management of urban green spaces and compliance with legal regulations preceded by
scientific research are highly recommended [7,9,11].

Geophytes are herbaceous plants that produce the perennating buds on underground
storage organs (i.e., bulbs, corms, swollen hypocotyls, stem tubers, rhizomes and tuberous
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roots) to survive periods of unfavorable conditions [13–16]. They are mainly distributed
in biomes of seasonal climates such as arctic and alpine tundra with long cold winters,
temperate deciduous forests with a significantly shaded understory in the summer growing
season, and grasslands of a Mediterranean-type climate with a summer drought period [14].
However, the greatest species richness of geophytes is found in areas with a Mediterranean-
type climate [14,15]. Noteworthily, the production of underground storage organs not
only helps geophytes survive unfavorable seasons but also enhances their recovery from
physical damage caused by grazing and fire [17,18]. Moreover, underground storage organs
can be strongly involved in vegetative reproduction, giving geophytes an advantage over
annual plants whose persistence depends solely on seed production [19].

In temperate Europe, many geophytes are typical of ancient forests (forests with a
continuous habitat history and no record of agricultural use) and may serve as biological
indicators of good preservation of forest communities [20–22]. On the other hand, they are
commonly cultivated in urban areas because of their decorative values, early flowering,
easy growth and drought resistance [23,24]. Unfortunately, as in the case of other wild
and cultivated herbal plants that occur in public and easily accessible recreational areas,
geophytes are particularly exposed to mechanical damage by trampling, mowing and
picking of flowers. The ecological effects of recreation-induced disturbance can be very
serious, especially in the case of trampling, which can lead to the loss of vegetation cover,
fragmentation of habitat, decline of native species, negative changes in species composition,
low tree regeneration, as well as a reduction in plant height, biomass and sexual repro-
duction [25–29]. Moreover, regular and intensive trampling can significantly change the
physical properties of the soil by increasing its compaction and limiting access to water and
air not only for plant roots but also for soil microorganisms [26,29].

It is commonly known that the intensity of human trampling decreases with distance
from paths and more trampling-resistant species are found near paths than away from
them [29–32]. Although geophytes are one of the most resistant to trampling plant life
forms [26,28,30], the influence of the distance from paths on their occurrence in urban areas
is poorly recognized [28,33–36]. The production of underground storage organs seems to
be a good strategy for persistence in habitats frequently disturbed by trampling [26,28].
However, considering that the underground storage organs of geophytes have different
origins, structures and abilities to grow deep into the soil [16,37], it can be assumed that
their response to trampling is also differentiated.

We aimed to test the effect of the distance from formal paths on the species richness,
abundance and diversity of geophytes in relation to habitat conditions in urban forests and
parks. We hypothesized that (i) the number, share and cover-abundance of geophytes with
different underground storage organs depend on the distance from the path and (ii) urban
forests and parks differ in terms of the number, share and abundance of geophytes with
different underground organs.

2. Materials and Methods
2.1. Study Area and Sampling

The study was carried out in Kraków, southern Poland, in April and May 2022,
during the flowering period of spring geophytes (ephemeroids). Kraków covers an area of
327 km2, with a population of 802.6 thousand [38]. It is a Central European city located
in the temperate climate zone, with an average annual air temperature of 8.9 ◦C and an
average annual precipitation of 673 mm (data for the period 1991–2020) [38]. A total of
20 sites (10 urban forests and 10 urban parks) were included in the study (Table 1, Figure 1A).
In Kraków, forests and parks occupy 4.3% and 1.6% of the city’s total area, respectively,
and most of them are easily accessible for residents and tourists [39,40]. The plot sampling
followed Kostrakiewicz-Gierałt et al. [36]. In each study site, one representative path was
selected, and along each path, 10 pairs of 1 × 1 m plots were sampled. Each pair consisted
of a plot, CL (close), located at the edge of the path, and a plot, FU (further), located 2 m
from the CL plot (Figure 1B). Altogether, 400 plots were sampled.
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Table 1. List of study sites (Kraków, Poland) with their characteristics.

Study Site Symbol GPS Coordinates Elevation
(m a.s.l.)

Width of the
Path (cm)

Type of
Path Surface

Łęgowski Forest F1
N 50◦03.116′

199 300 artificial (gravel)
E 20◦02.092′

Mogilski Forest F2
N 50◦03.228′

200 285 artificial (asphalt)
E 20◦03.195′

Wolski Forest F3
N 50◦03.336′

334 160 naturalE 19◦51.445′

Forest in Sikornik Hill F4
N 50◦03.466′

286 101 naturalE 19◦53.175′

Forest in Górka
Pychowicka F5

N 50◦01.908′
252 215 naturalE 19◦52.967′

Tyniec Forest F6
N 50◦00.641′

245 260 naturalE 19◦49.709′

Forest in Skotniki F7
N 50◦01.250′

218 200 artificial (gravel)
E 19◦51.118′

Forest of Twardowski
Rocks

F8
N 50◦02.521′

234 305 naturalE 19◦54.546′

Borkowski Forest F9
N 50◦00.666′

215 130 naturalE 19◦54.748′

Witkowice Forest F10
N 50◦06.475′

238 100 naturalE 19◦57.000′

Polish Aviator’s Park P1
N 50◦04.371′

229 175 artificial (asphalt)
E 19◦59.424′

Dąbie Park P2
N 50◦03.579′

202 120 naturalE 19◦58.978′

Decius Park P3
N 50◦03.957′

256 225 artificial (asphalt)
E 19◦52.379′

Anna and Erazm
Jerzmanowski Park P4

N 50◦01.030′
219 182

artificial (sand
and gravel)E 19◦59.657′

Stanisław Wyspiański’s
Park

P5
N 50◦05.135′

235 300 artificial (asphalt)
E 19◦55.284′

Henryk Jordan’s Park P6
N 50◦03.742′

204 310 artificial (asphalt)
E 19◦54.996′

Kleparski Park P7
N 50◦04.583′

222 300 artificial (asphalt)
E 19◦56.241′

Aleksandra’s Park P8
N 50◦00.727′

223 90 naturalE 20◦00.881′

Solvay Park P9
N 50◦00.916′

226 175 naturalE 19◦55.599′

Florian Nowacki’s
Park

P10
N 50◦02.625′

178 168 artificial (sett)E 19◦56.577′
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GmbH, Raabs, Austria), respectively. The deeper the penetrometer probe penetrates the 
soil, the less compact the soil is. In addition, a total of 80 soil samples were collected from 
the central part of the plots located in the 5th and 6th pair (Figure 1B). Soil collecting 
followed Kostrakiewicz-Gierałt et al. [36]. The soil samples were dried at room temper-
ature, sieved through a 2 mm sieve and then tested with the Visocolor® kit to determine 
pH and the content of phosphorus (P), potassium (K), nitrate nitrogen (N-NO3) and 
ammonium nitrogen (N-NH4). 
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method [41] and following data transformation by Kostrakiewicz-Gierałt et al. [36] as 
well. The identification of vascular plants was based on the morphological features pro-
vided by Csapodý [42], Muller [43] and Rutkowski [44], and the nomenclature was 
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Figure 1. Distribution of study sites in Kraków, southern Poland (A), and sampling scheme (B). The
symbols of study sites are explained in Table 1. CL means the plot located close to the path and FU
means the plot located far from the path.

2.2. Measurement of Abiotic and Biotic Traits

Field measurements were made during sunny and rainless weather. In the central
part of each plot, the light intensity at ground level, soil electrical conductivity and soil
compaction were measured (with no repetitions) using the digital light meter Voltcraft
Lx-10 (0-199900 lx) (Voltcraft, Hirschau, Germany), soil conductivity tester Hanna GroLine
(Hanna Instruments, Olsztyn, Poland) and penetrometer Agreto (Agreto electronics GmbH,
Raabs, Austria), respectively. The deeper the penetrometer probe penetrates the soil,
the less compact the soil is. In addition, a total of 80 soil samples were collected from
the central part of the plots located in the 5th and 6th pair (Figure 1B). Soil collecting
followed Kostrakiewicz-Gierałt et al. [36]. The soil samples were dried at room temperature,
sieved through a 2 mm sieve and then tested with the Visocolor® kit to determine pH and
the content of phosphorus (P), potassium (K), nitrate nitrogen (N-NO3) and ammonium
nitrogen (N-NH4).

In each study plot, the percentage of total vegetation cover, the height of the tallest
plant and the cover-abundance of individual species of vascular plants in the undergrowth
(herb layer) were determined. Thepercentage of total vegetation cover and the height of
the tallest plant were measured following Kostrakiewicz-Gierałt et al. [36], whereas the
cover-abundance of each species was estimated using the Braun–Blanquet method [41] and
following data transformation by Kostrakiewicz-Gierałt et al. [36] as well. The identification
of vascular plants was based on the morphological features provided by Csapodý [42],
Muller [43] and Rutkowski [44], and the nomenclature was adopted from POWO [45]. Life
forms and classification of geophytes followed the BiolFlor database [46,47]. The types
of underground storage organs of geophytes were represented by: bulb (B), hypocotyl
bulb (HB), rhizome (RH), runner (RU), runner and rhizome (RU-RH), runner-like rhizome
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(RL-RH), runner and runner with tuberous tip (RU-TU), runner and shoot tuber (RU-
ST) and root tuber (RT). The ancient forest species were determined following Dzwonko
and Loster [20].

2.3. Statistical Analyses

The normal distribution of the untransformed data was tested using the Kołmogorov–
Smirnov test, whereas the homogeneity of variance was verified using the Levene test at the
significance level of p < 0.05. Two-way ANOVA analysis followed by the post-hoc Tukey
test was performed to check the statistical significance of differences in: (i) light intensity,
(ii) soil electrical conductivity, (iii) penetration depth of penetrometer probe, (iv) number
of species in herbaceous plant layer, (v) number of geophytes, (vi) share of geophytes in
total number of species and (vii) cover-abundance of geophytes between plots CL and FU,
as well as between plots located in forests and parks. Moreover, the two-way ANOVA
analysis followed by the post-hoc Tukey test were applied to test the statistical significance
of differences in: (i) the number of species belonging to RH, RU, RU-RH, RU-TU, HB and
RT, (ii) the share of species representing RH, RU, RU-RH, RU-TU, RT, BU and HB, and
(iii) the cover-abundance of species representing RU-RH, RT, BU and HB between plots CL
and FU, in forests and parks. Due to a lack of homogeneity of variance, the Mann–Whitney
U test was applied to check the statistical significance of differences in: (i) total plant cover
in the herb layer and (ii) height of the tallest plant shoot in the herb layer between plots
CL and FU, and between forests and parks. The aforementioned test was also used to test
the statistical significance of differences between plots CL and FU in forests and parks, in
the case of: (i) the number of species representing BU, RL-RH and RU-ST, (ii) the share
of geophytes belonging to RL-RH and RU-ST, and (iii) the cover-abundance of geophytes
representing RH, RU, RL-RH, RU-TU and RU-ST. Moreover, the Mann–Whitney U test was
applied to check the statistical significance of differences in the soil reaction and content
of P, K, N-NO3 and N-NH4 between plots CL and FU, as well as between forests and
parks. The occurrence of a statistically significant correlation between environmental traits
(i.e., light intensity, soil electrical conductivity, penetration depth of penetrometer probe,
height of the tallest plant shoot, total plant cover and total number of species in herb layer)
and the number, share and cover-abundance of geophytes with different underground
storage organs was tested using the Pearson coefficient at significance level p ≤ 0.05.
The occurrence of a statistically significant correlation between soil properties (i.e., pH,
content of P, K, N-NO3 and N-NH4) and number, share and cover-abundance of geophytes
with different underground storage organs in plots CL and FU was tested using the
Spearman coefficient at significance level p ≤ 0.05. However, we only included the results
of correlations for two groups of geophytes, which were characterized by the highest mean
values of the number, share and cover-abundance of species. The statistical analyses were
performed using the STATISTICA software (version 13.3).

3. Results
3.1. Characteristics of Abiotic Conditions

The light intensity was significantly higher in plots CL than FU (F = 4.17; p ≤ 0.05), but
it did not differ significantly between forests and parks. The soil electrical conductivity did
not differ significantly between plots CL and FU, as well as between forests and parks. The
soil compaction was significantly lower in plots FU than CL (F = 50.12; p < 0.001), as well
as in forests than in parks (F = 47.87; p < 0.001). Moreover, the statistical analysis confirmed
the occurrence of an interactive effect of the study site and plot (F = 8.79; p < 0.01). The
Tukey test showed the presence of significant differences in soil compaction between all
plots excluding plots CL in forests and FU in parks. The soil pH and content of ammonium
nitrogen (N-NH4), potassium (K) and phosphorus (P) in the soil did not differ significantly
between plots CL and FU, as well as between forests and parks. However, the content
of nitrate nitrogen (N-NO3) was significantly higher in forests than in parks (U = 107.5;
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p ≤ 0.05 for plots CL, U = 87.5, p < 0.01 for plots FU). The mean values of abiotic traits are
presented in Table 2.

Table 2. Comparison of abiotic traits (mean and SD) between closer (CL) and further (FU) plots
located along the paths in forests and parks (Kraków, Poland).

Abiotic Traits
Forests Parks

CL FU CL FU

Light intensity at ground
level (lx) 10,508.41 (±19,251.41) 6449.63 (±13,293.03) 11,940.01 (±15,231.39) 9856.61 (±11,143.89)

Soil electrical
conductivity (mS/cm) 0.15 (±0.14) 0.17 (±0.18) 0.15 (±0.15) 0.13 (±0.10)

Penetration depth of the
penetrometer probe (cm) 24.10 (±19.95) 43.81 (±21.42) 16.34 (±15.33) 24.41 (±21.17)

Soil pH 6.70 (±0.38) 6.57 (±0.49) 6.67 (±0.44) 6.37 (±0.72)

Content of N-NH4
(mg/kg) 23.99 (±70.73) 16.38 (±38.54) 3.90 (±6.33) 3.71 (±6.26)

Content of N-NO3
(mg/kg) 66.70 (±25.47) 57.50 (±11.70) 43.12 (±29.81) 33.93 (±25.64)

Content of K (mg/kg) 58.00 (±66.35) 65.50 (±71.34) 38.50 (±46.86) 25.80 (±29.34)

Content of P (mg/kg) 18.00 (±17.12) 13.00 (±14.09) 22.25 (±19.23) 16.25 (±17.98)

3.2. Characteristics of Plant Cover and Number of Species

The total plant cover in the herb layer was significantly higher in plots FU than CL in
parks (Z = −2.50, p ≤ 0.05), whereas it did not differ between plots CL and FU in forests, as
well as between forests and parks. The height of the tallest shoot was significantly greater
in plots FU than in CL in forests (Z = −4.46, p < 0.001) and parks (Z = −3.12, p < 0.01),
as well as in forests than in parks (Z = 3.74, p < 0.001 for plots CL; Z = 5.10, p < 0.001 for
plots FU). The number of species in the herb layer was significantly higher in parks than in
forests (F = 93.31, p < 0.001). At the same time, the ANOVA analysis confirmed the presence
of an interactive effect between the site and plot (F = 4.24, p ≤ 0.05). The Tukey test showed
that the number of species noticed in plots CL and FU in forests was significantly lower
than the number of species noticed in plots CL and FU in parks. The mean values of plant
cover parameters and number of species are presented in Table 3.

Table 3. Comparison of biotic traits (mean and SD) between closer (CL) and further (FU) plots located
along the paths in forests and parks (Kraków, Poland).

Biotic Traits
Forests Parks

CL FU CL FU

Total plant cover (%) 32.85 (±23.56) 36.94 (±29.19) 33.10 (±21.06) 41.55 (±25.85)

Height of the tallest
shoot in herb layer (cm) 36.32 (±23.39) 51.60 (±26.39) 25.51 (±16.90) 34.21 (±22.35)

Number of species 5.64 (±2.41) 4.64 (±2.12) 7.91 (±3.34) 8.14 (±3.77)

3.3. Characteristics of Geophytes

A total of 23 species of geophytes were recorded, including six species forming the
rhizomes, five species forming the runners, four species forming the bulbs, two species
forming the runners and rhizomes, two species forming runner-like rhizomes, one species
forming the hypocotyl bulbs, one species forming the runners and runners with tuberous
tip, one species forming the runners and shoot tubers, and one species forming the root
tubers (Table 4). Moreover, there were 14 species typical of ancient forests, and Ranunculus
ficaria L. was the most frequent geophyte in study plots (Table 4).
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Table 4. List of geophytes recorded in closer (CL) and further (FU) plots in forests and parks in
Kraków, southern Poland. Ancient forest species are bolded.

Species Abbreviation
of Group Storage Organ

Mean Frequency of Occurrence

Forests Parks

CL FU CL FU

Allium oleraceum L. BU bulb - 0.10 (±0.32) 0.10 (±0.32) 0.30 (±0.95)

Anemonoides nemorosa
(L.) Holub RH rhizome 3.10 (±4.20) 3.80 (±4.44) 0.30 (±0.95) 0.60 (±1.58)

Anemonoides
ranunculoides (L.) Holub RH rhizome - - 0.30 (±0.95) 0.40 (±1.26)

Carex brizoides L. RU-RH runner, rhizome 1.10 (±3.14) 0.90 (±2.85) - -

Carex hirta L. RU-RH runner, rhizome 0.20 (±0.63) - 0.40 (±0.97) 0.30 (±0.67)

Circaea lutetiana L. RU-TU runner, runner
with tuberous tip 1.50 (±2.17) 1.20 (±2.39) - -

Convallaria majalis L. RH rhizome 0.40 (±1.26) 0.70 (±2.21) - -

Corydalis solida
(L.) Clairv. HB hypocotyl bulb 1.00 (±2.83) 0.50 (±1.58) 0.10 (±0.32) 0.10 (±0.32)

Elymus repens (L.) Gould RL-RH runner-like
rhizome - - 0.30 (±0.67) -

Equisetum arvense L. RU-ST runner, shoot
tuber - - 0.10 (±0.32) -

Gagea lutea (L.)
Ker Gawl. BU bulb 0.10 (±0.32) 0.10 (±0.32) 1.90 (±3.11) 2.30 (±3.74)

Galium odoratum
(L.) Scop. RU runner 0.40 (±1.26) 0.40 (±0.97) - -

Glechoma hederacea L. RU runner 0.70 (±1.34) 0.60 (±1.35) 2.70 (±2.87) 3.00 (±2.45)

Lathyrus vernus
(L.) Bernh. RH rhizome - 0.10 (±0.32) - -

Lilium martagon L. BU bulb 0.50 (±1.58) 0.30 (±0.95) - -

Lysimachia vulgaris L. RU runner 0.10 (±0.32) - - -

Maianthemum bifolium
(L.) F. W. Schmidt RL-RH runner-like

rhizome - 0.10 (±0.32) - -

Mercurialis perennis L. RU runner 0.70 (±2.21) 0.90 (±2.51) - -

Ornithogalum umbellatum L. BU bulb - - - 0.19 (±0.51)

Oxalis stricta L. RU runner 0.20 (±0.42) - 0.30 (±0.67) 0.10 (±0.32)

Polygonatum odoratum
(Mill.) Druce RH rhizome 0.50 (±1.58) 0.30 (±0.95) - -

Pteridium aquilinum
(L.) Kuhn RH rhizome 0.10 (±0.32) 0.20 (±0.63) - -

Ranunculus ficaria L. RT root tuber 5.70 (±4.27) 4.20 (±3.94) 5.90 (±3.11) 5.60 (±3.37)

The total number, share and cover-abundance of geophytes were significantly higher in
forests than in parks (F = 4.48, p≤ 0.05; F = 30.72, p < 0.001; F = 36.35, p < 0.001, respectively)
but these parameters did not differ between plots CL and FU (Figure 2).
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Figure 2. Differences in total number, share and cover-abundance of geophytes between closer (CL)
and further (FU) plots located along the paths in forests and parks (Kraków, Poland). The asterisks
show the statistical significance of differences at levels p ≤ 0.05 (*) and p < 0.001 (***).

The number, the share and the cover-abundance of species in groups of geophytes are
presented in Tables 5–7, respectively. The differences in these parameters between plots
CL and FU were statistically insignificant, contrary to our first hypothesis. However, we
found significant differences in the number, share and cover-abundance of some groups of
geophytes between forests and parks. Therefore, our second hypothesis cannot be fully
rejected. The groups of geophytes forming the rhizomes (F = 51.45, p < 0.001), runners
and rhizomes (F = 8.48, p < 0.01), and runners and runners with tuberous tip (F = 32.34,
p < 0.001) were significantly richer in species in forests than in parks. The inversed trend
was found in geophytes forming the runners (F = 5.53, p ≤ 0.05) and bulbs, particularly in
plots CL (Z = 2.32, p ≤ 0.05). In other cases, the differences were statistically insignificant.

The groups of geophytes with rhizomes (F = 45.87, p < 0.001), runners and rhizomes
(F = 13.96, p < 0.001), runners and runners with tuberous tip (F = 23.33, p < 0.001), as
well as with root tubers (F = 9.53, p < 0.01) showed significantly higher shares in forests
than in parks, whereas the group of geophytes with bulbs achieved a significantly higher
share in parks than in forests (F = 6.48, p ≤ 0.05). In other cases, the differences were
statistically insignificant.

The groups of geophytes forming the rhizomes (Z = 3.24, p < 0.01 in plots CL;
Z = 3.88, p < 0.001 in plots FU), runners and rhizomes (F = 11.86, p < 0.001), and root tubers
(F = 5.87, p ≤ 0.05) showed a significantly higher cover-abundance in forests than in parks.
In contrast, geophytes forming the bulbs showed a higher cover-abundance in parks than
in forests (F = 14.96, p < 0.001). The cover-abundance of other groups of geophytes did not
differ significantly between forests and parks.
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Table 5. The mean (±SD) number of geophytes with different underground storage organs in closer
(CL) and further (FU) plots located along paths in forests and parks (Kraków, Poland). The similar
letters in superscripts mean the lack of differences (Tukey test).

Underground Storage Organ
Forests Parks

CL FU CL FU

Bulb 0.03 (±0.17) 0.10 (±0.36) 0.22 (±0.42) 0.23 (±0.42)

Hypocotyl bulb 0.06 (±0.24) 0.01 (±0.10) 0.02 (±0.14) 0.04 (±0.20)

Rhizome 0.41 (±0.65) a 0.47 (±0.64) a 0.06 (±0.24) b 0.10 (±0.33) b

Runner 0.22 (±0.50) a 0.18 (±0.44) b 0.31 (±0.46) b 0.31 (±0.46) b

Runner and rhizome 0.13 (±0.34) a 0.09 (±0.29) a 0.04 (±0.20) b 0.03 (±0.17) b

Runner-like rhizome 0.00 (±0.00) 0.00 (±0.10) 0.05 (±0.22) 0.00 (±0.00)

Runner and runner with tuberous tip 0.16 (±0.37) a 0.12 (±0.33) a 0.00 (±0.00) b 0.00 (±0.00) b

Runner and shoot tuber 0.00 (±0.00) 0.00 (±0.00) 0.01 (±0.10) 0.00 (±0.00)

Root tuber 0.57 (±0.50) 0.42 (±0.50) 0.59 (±0.49) 0.56 (±0.50)

Table 6. The mean (±SD) share (%) of geophytes with different underground storage organs in closer
(CL) and further (FU) plots located along paths in forests and parks (Kraków, Poland). The similar
letters in superscripts mean the lack of differences (Tukey test).

Underground Storage Organ
Forests Parks

CL FU CL FU

Bulb 0.39 (±2.31) a 1.99 (±7.35) a 4.07 (±8.39) b 3.61 (±7.27) b

Hypocotyl bulb 0.77 (±3.12) 0.17 (±1.67) 0.23 (±1.69) 0.42 (±2.24)

Rhizome 6.07 (±9.63) a 7.98 (±10.71) a 1.19 (±5.22) b 1.71 (±6.04) b

Runner 3.26 (±7.36) 2.89 (±6.92) 3.12 (±4.96) 3.39 (±5.47)

Runner and rhizome 2.48 (±6.80) a 1.87 (±6.12) a 0.45 (±2.21) b 0.32 (±1.84) b

Runner-like rhizome 0.00 (±0.00) 0.11 (±1.11) 0.57 (±2.57) 0.00 (±0.00)

Runner and runner with tuberous tip 2.55 (±6.26) a 2.16 (±6.06) a 0.00 (±0.00) b 0.00 (±0.00) b

Runner and shoot tuber 0.00 (±0.00) 0.00 (±0.00) 0.14 (±1.43) 0.00 (±0.00)

Root tuber 14.82 (±20.22) a 11.94 (±19.26) a 9.57 (±10.06) b 7.60 (±7.98) b

Table 7. The mean (±SD) cover-abundance coefficient of geophytes with different underground
storage organs in closer (CL) and further (FU) plots located along paths in forests and parks (Kraków,
Poland). The similar letters in superscripts mean the lack of differences (Tukey test).

Underground Storage Organ
Forests Parks

CL FU CL FU

Bulb 0.01 (±0.03) a 0.02 (±0.11) a 0.10 (±0.35) b 0.15 (±0.47) b

Hypocotyl bulb 0.01 (±0.03) 0.01 (±0.10) 0.00 (±0.01) 0.02 (±0.20)

Rhizome 0.62 (±1.10) a 0.84 (±1.30) a 0.02 (±0.14) b 0.10 (±0.39) b

Runner 0.10 (±0.38) 0.18 (±0.57) 0.05 (±0.14) 0.14 (±0.43)

Runner and rhizome 0.14 (±0.40) a 0.14 (±0.47) a 0.02 (±0.14) b 0.01 (±0.10) b

Runner-like rhizome 0.00 (±0.00) 0.00 (±0.01) 0.02 (±0.20) 0.00 (±0.00)

Runner and runner with tuberous tip 0.04 (±0.22) 0.01 (±0.03) 0.00 (±0.00) 0.00 (±0.00)

Runner and shoot tuber 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.01) 0.00 (±0.00)

Root tuber 1.28 (±1.47) a 1.13 (±1.66) a 0.75 (±1.01) b 1.00 (±1.27) b
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3.4. The Relationship between the Number of Geophytes and Habitat Conditions

The number of rhizomatous geophytes was correlated with all the environmental
traits, except the soil pH and content of N-NH4 (Table 8). Notably, in both CL and FU plots,
the number of rhizomatous geophytes was positively correlated with the total number of
species in forests, as well as with the penetration depth of the penetrometer probe in parks.
Moreover, the content of N-NO3 had the opposite effect on the richness of rhizomatous
geophytes between plots CL and FU in forests (Table 8).

Table 8. The values of correlation coefficients between the number of geophytes and environmental traits
in plots CL and FU, in forests and parks in Kraków, Poland. Explanations: CL—plots located close to the
path, FU—plots located further from the path, RH—geophytes with rhizomes, RT—geophytes with root
tubers, LI—light intensity, SEC—soil electrical conductivity, PD—penetration depth of penetrometer
probe, HTS—height of the tallest shoot in the herb layer, TPC—total plant cover in the herb layer,
TNS—total number of vascular plant species in the herb layer, SR—soil reaction, N-NO3—content of
nitrate nitrogen, N-NH4—content of ammonium nitrogen, P—content of phosphorus, K—content of
potassium. The statistically significant values at level p ≤ 0.05 are bolded. The values for LI, SEC, PD,
HTS, TPC and TNS mean the Pearson coefficient, and in other cases, the Spearman coefficient.

LI SEC PD HTS TPC TNS SR N-NO3 N-NH4 P K

Forests

CL
RH −0.23 −0.08 0.27 0.14 0.21 0.39 −0.42 −0.50 0.11 −0.59 −0.43

RT 0.09 0.30 0.17 −0.26 0.20 −0.29 0.30 0.21 −0.30 0.39 0.01

FU
RH −0.12 −0.20 0.13 −0.01 0.17 0.48 −0.42 0.50 0.28 −0.43 0.15

RT 0.28 0.18 0.36 −0.32 0.48 −0.08 0.32 −0.25 −0.29 0.18 −0.02

Parks

CL
RH −0.13 0.13 0.40 −0.19 −0.06 −0.09 0.17 0.21 −0.04 −0.29 −0.17

RT 0.23 0.03 0.19 −0.33 −0.07 −0.21 −0.21 0.43 −0.39 −0.01 0.29

FU
RH −0.15 0.13 0.24 −0.20 0.06 0.01 −0.27 0.24 −0.02 −0.16 −0.48

RT 0.17 0.29 0.20 −0.33 0.15 0.04 −0.32 0.36 −0.52 0.01 −0.31

The number of root-tuberous geophytes was correlated with all the environmental
traits, except the soil pH (Table 8). In both CL and FU plots, it was positively correlated
with the total plant cover in forests, and negatively correlated with the height of the herb
layer in parks (Table 8).

3.5. The Relationship between the Share of Geophytes and Habitat Conditions

The share of rhizomatous geophytes was correlated with all the environmental traits,
except the content of N-NH4 and potassium. In both types of plots, in forests, it was
positively correlated with the total number of species and negatively correlated with the
content of phosphorus, whereas in parks, it was negatively correlated with the total number
of species (Table 9).

The share of root-tuberous geophytes was correlated with all the environmental traits,
except the content of N-NH4. In both types of plots, it was negatively correlated with the
height of the herb layer and the total number of species in forests and parks, and positively
correlated with the penetration depth of the penetrometer probe in parks (Table 9).

3.6. The Relationship between the Cover-Abundance of Geophytes and Habitat Conditions

The cover-abundance of rhizomatous geophytes was correlated with all the envi-
ronmental traits, except the content of N-NH4. In forests, in both types of plots, it was
positively correlated with the total plant cover and total number of species (Table 10).
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Table 9. The values of correlation coefficients between the share of geophytes and environmental traits
in plots CL and FU, in forests and parks in Kraków, Poland. Explanations: CL—plots located close to the
path, FU—plots located further from the path, RH—geophytes with rhizomes, RT—geophytes with root
tubers, LI—light intensity, SEC—soil electrical conductivity, PD—penetration depth of penetrometer
probe, HTS—height of the tallest shoot in the herb layer, TPC—total plant cover in the herb layer,
TNS—total number of vascular plant species in the herb layer, SR—soil reaction, N-NO3—content of
nitrate nitrogen, N-NH4—content of ammonium nitrogen, P—content of phosphorus, K—content of
potassium. The statistically significant values at level p ≤ 0.05 are bolded. The values for LI, SEC, PD,
HTS, TPC and TNS mean the Pearson coefficient, and in other cases, the Spearman coefficient.

LI SEC PD HTS TPC TNS SR N-NO3 N-NH4 P K

Forests

CL
RH −0.23 0.00 0.25 0.16 0.19 0.21 −0.49 −0.54 0.16 −0.60 −0.43

RT 0.16 0.12 0.04 −0.38 0.22 −0.61 0.30 0.14 −0.31 0.53 0.04

FU
RH −0.13 −0.28 0.05 −0.09 0.17 0.34 −0.40 0.35 0.14 −0.50 0.02

RT 0.24 0.09 0.40 −0.40 0.14 −0.30 0.38 −0.24 −0.33 0.22 −0.05

Parks

CL
RH −0.10 0.15 0.53 −0.17 −0.01 −0.20 0.17 0.22 −0.04 −0.31 −0.19

RT 0.30 0.03 0.24 −0.42 −0.02 −0.53 −0.17 0.45 −0.35 −0.14 0.22

FU
RH −0.16 0.09 0.14 −0.26 −0.04 −0.20 −0.29 0.22 −0.05 −0.14 −0.48

RT 0.30 0.20 0.21 −0.39 0.14 −0.30 −0.46 0.27 −0.43 0.08 −0.33

Table 10. The values of correlation coefficients between the cover-abundance of geophytes and
environmental traits in plots CL and FU, in forests and parks in Kraków, Poland. Explanations:
CL—plots located close to the path, FU—plots located further from the path, RH—geophytes with
rhizomes, RT—geophytes with root tubers, LI—light intensity, SEC—soil electrical conductivity,
PD—penetration depth of penetrometer probe, HTS—height of the tallest shoot in the herb layer,
TPC—total plant cover in the herb layer, TNS—total number of vascular plant species in the herb layer,
SR—soil reaction, N-NO3—content of nitrate nitrogen, N-NH4—content of ammonium nitrogen,
P—content of phosphorus, K—content of potassium. The statistically significant values at level
p ≤ 0.05 are bolded. The values for LI, SEC, PD, HTS, TPC and TNS mean the Pearson coefficient,
and in other cases, the Spearman coefficient.

LI SEC PD HTS TPC TNS SR N-NO3 N-NH4 P K

Forests

CL
RH −0.23 −0.04 0.23 0.20 0.30 0.30 −0.45 −0.52 0.22 −0.63 −0.27

RT −0.02 0.28 0.23 −0.31 0.58 −0.36 0.37 0.12 −0.40 0.34 −0.24

FU
RH −0.14 −0.25 0.05 −0.05 0.24 0.29 −0.47 0.39 0.39 −0.20 0.27

RT 0.21 0.13 0.40 −0.27 0.71 −0.26 0.36 −0.24 −0.32 0.15 −0.02

Parks

CL
RH −0.09 0.07 0.44 −0.12 −0.03 −0.17 0.14 0.18 −0.01 −0.27 −0.17

RT 0.31 0.02 0.30 −0.46 0.15 −0.38 −0.22 0.49 −0.40 0.20 −0.13

FU
RH −0.14 0.16 0.17 −0.14 0.14 0.00 −0.24 0.25 −0.01 −0.17 −0.48

RT 0.28 0.20 0.25 −0.39 0.32 −0.20 −0.41 0.30 −0.44 0.05 −0.29

The cover-abundance of root-tuberous geophytes was correlated with all the envi-
ronmental traits, except the content of N-NH4, phosphorus and potassium (Table 10). In
forests and parks, in both types of plots, it was positively correlated with the penetration
depth of the penetrometer probe and negatively correlated with the height of the herb layer
and total number of species. Moreover, in both types of plots, it was positively correlated
with the light intensity in parks and total plant cover in forests (Table 10).

4. Discussion

Although the CL and FU plots differed significantly in terms of light intensity, soil
compaction and height of the herb layer, they were statistically similar in the number,
share and cover-abundance of geophytes. Most likely the distance between the CL and FU
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plots was too short to find significant differences in geophyte characteristics. Neverthe-
less, Vakhlamova et al. [33] showed that recreation disturbance (trampling and damage
to ground vegetation, trees and shrubs), as well as the distance from the forest edge to
the nearest road, has no significant effect on the relative abundance of geophytes in urban
forests, in contrast to suburban forests. Moreover, Zielińska [48] evidenced that in suburban
forests, the number of geophytes is higher near paths than away from them, while the
percentage of geophytes shows an inverse relationship. Additionally, Avon et al. [49] docu-
mented that forest species (including geophytes) are favored by environmental conditions
in the deeper parts of the forests, away from roads. Given this, it can be suggested that
the type of forest vegetation, its naturalness or the degree of transformation may have a
significant impact on the number, percentage and abundance of geophytes in the distance
gradient from the paths. It is also worth noting that the width of the path, the way the
path is made (formal or informal, with natural or artificial surface) and the intensity of
use of the path are important factors shaping the effect of the distance from the path on
forest vegetation [8,32,49,50].

In this study, most of the recorded geophytes were species typical of temperate de-
ciduous forests [51,52] or species characteristic of ancient forests [20,53], so their greater
number, share and cover-abundance in forests than in parks is not surprising. Although
manor parks can be a refuge for ancient forest species [34], the occurrence of forest geo-
phytes in urban parks is usually negatively affected by low tree density, high fluctuations
in temperature and humidity, as well as by regular mowing and intensive trampling [36,50].
The substantial cover-abundance of rhizomatous geophytes in forests can be explained by
environmental conditions allowing them high vegetative propagation [54–57] and seedling
recruitment [58,59]. Similarly, Ranunculus ficaria forms dense patches by producing not only
underground tuberous roots but also aerial bulblets, which can be dispersed by animals,
humans and water [60,61]. Moreover, it is a strong competitor to many spring ephemerals
because it appears earlier in the season, uses light efficiently and grows fast [60].

We showed that the more compacted the soil along the paths in forests and parks,
the lower the number, share and cover-abundance of rhizomatous geophytes, as well as
the lower cover-abundance of R. ficaria. This suggests that rhizomatous and root-tuberous
geophytes are particularly susceptible to mechanical damage by trampling. A similar
negative effect of trampling was observed by Rusterholz et al. [62] in the case of Anemonoides
nemorosa (L.) Holub and R. ficaria in suburban beech forests. Moreover, Littlemore and
Barker [63] documented that the rhizomatous geophyte Pteridium aquilinum (L.) Kuhn is
less resistant to trampling than the bulbous geophyte Hyacinthoides non-scripta (L.) Chouard
ex Rothm. in urban forests.

The increase in light intensity and soil pH had a negative effect on the number, share
and cover-abundance of rhizomatous geophytes in the close vicinity of paths in urban
forests. Most of the recorded species of rhizome-producing geophytes prefer partial shade
and moderately acidic or neutral soil conditions [64]. Although some rhizomatous geo-
phytes show a wide tolerance to soil reactions, in many cases, pH changes can significantly
reduce seed germination, population size or biomass. For example, Depauw et al. [65]
showed that the germination rate of A. nemorosa is impacted by an interactive effect be-
tween light and soil reaction, with negative effects at low and positive effects at high soil
pH. Moreover, Baeten et al. [66,67] and Thomaes et al. [68] evidenced that populations of
A. nemorosa are threatened by excessive soil acidification. On the other hand, Tyler [69], as
well as Falkengren-Grerup and Tyler [70], documented that Convallaria majalis L. prefers a
low soil pH and can even grow in acidic raw humus appearing in beech forests, while in
sites with a high soil pH, the abundance of individuals diminishes. According to Marrs and
Watt [71], P. aquilinum occurs mostly in moderately acidic soils; however, it can also grow
in low-alkaline soils. Furthermore, Amouzgar et al. [72] showed that the frond density and
biomass of P. aquilinum are negatively correlated with increasing soil pH. Since not all of
the investigated paths had a natural surface (Table 1), it is worth emphasizing that using
artificial materials to build or harden paths can change the soil pH near paths, which in
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turn can adversely influence the plant species composition. Interestingly, Godefroid and
Koedam [73] documented that the low acidic soil in the close vicinity of paths made of
dolomite is significantly greater than near paths covered by cobblestones, asphalt, sand
and bare soil, and the number of geophytes decreases successively from a surface made of
cobblestones and dolomite, via asphalt and bare soil, to sand in forests. Similarly, Avon
et al. [49] evidenced that the limestone gravel used in the construction of roads in forests
modifies the acidity of adjacent soils leading to colonization by basophilous plants and
avoidance by acidophilous plants along the roads. Moreover, the soil pH can be affected
not only by the distance from the path but also by its width [8].

The performed investigations showed that the increasing content of nutrients (N-
NO3 and phosphorus) decreases the number, share and cover-abundance of rhizomatous
geophytes in the close vicinity of paths in urban forests. In this group of geophytes, the
recorded species are typical of mesotrophic or eutrophic soil conditions [64]. According
to Godefroid and Koedam [73], the presence of a path leads to an increase in nitrogen-
demanding species. Eutrophication of the soil along paths can result from illegal garbage
disposal [74] and dog urine [75,76]. Interestingly, Falkengren-Grerup [77] evidenced that
the increase in nitrogen availability can decrease the cover, biomass, shoot length and
flower frequency of A. nemorosa. Moreover, Gordon et al. [78] documented that nitrogen
supplementation leads to earlier sprouting of above-ground parts of P. aquilinum in spring;
however, this effect is short-term, and the added nitrogen is preferentially allocated to
the rhizomes. On the other hand, Amouzgar et al. [72] showed that frond density and
biomass in populations of P. aquilinum are positively correlated with the content of nitrogen
and phosphorus in the soil. Furthermore, in plots FU in parks, the number, share and
cover-abundance of rhizomatous geophytes were negatively affected by the content of
potassium. These findings do not support the observations of Falkengren-Grerup et al. [79]
who evidenced a lack of correlation between potassium concentration in the soil solution
and the cover of A. nemorosa.

The share and cover-abundance of R. ficaria near the paths in urban parks were
positively affected by light intensity and the content of N-NO3 in the soil, and nega-
tively affected by the height of the herb layer and total number of species. According to
Zarzycki et al. [64], R. ficaria usually grows in places with partial shade or moderate light,
with fertile soil. Moreover, Kermack and Rauschert [80] documented that the abundance
and vegetative reproduction of R. ficaria can be influenced by inclination, soil texture,
moisture, pH and cation exchange capacity. We assumed that trampling (if it is not too
intensive) may favor the expansion of R. ficaria in urban forests and parks since its bulblets
easily detach from the maternal plants and can be carried on shoes [61]. However, the
effect of trampling intensity in urban forests and parks on geophyte survival and dispersal
requires further research.

5. Conclusions

Urban forests and parks can be occupied by various geophytes, including species
characteristic of ancient forests. However, the cover-abundance of geophytes producing rhi-
zomes, runners and rhizomes, and root tubers is greater in forests than in parks, in contrast
to geophytes producing bulbs. High soil compaction near paths as a result of trampling
negatively affects the number, share and cover-abundance of rhizomatous geophytes and
the share and cover-abundance of Ranunculus ficaria, the root-tuberous geophyte. To better
protect the forest geophytes in urban areas, attention should be paid to limiting trampling
and soil eutrophication, as well as preventing excessive increases in soil pH.
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