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Abstract: Forest fires are a vulnerable and devastating disaster that pose a major threat to human
property and life. Smoke is easier to detect than flames due to the vastness of the wildland scene and
the obscuring vegetation. However, the shape of wind-blown smoke is constantly changing, and the
color of smoke varies greatly from one combustion chamber to another. Therefore, the widely used
sensor-based smoke and fire detection systems have the disadvantages of untimely detection and
a high false detection rate in the middle of an open environment. Deep learning-based smoke and
fire object detection can recognize objects in the form of video streams and images in milliseconds.
To this end, this paper innovatively employs CBAM based on YOLOv6 to increase the extraction of
smoke and fire features. In addition, the CIoU loss function was used to ensure that training time is
reduced while extracting the feature effects. Automatic mixed-accuracy training is used to train the
model. The proposed model has been validated on a self-built dataset containing multiple scenes.
The experiments demonstrated that our model has a high response speed and accuracy in real-field
smoke and fire detection, which provides intelligent support for forest fire safety work in social life.

Keywords: forest fire and smoke detection; YOLOv6; CBAM; feature enhancement

1. Introduction

Forest fires severely damage the environment and also seriously jeopardize the safety
of people’s lives and property. To minimize the damage, this requires that forest fires be
detected as soon as they occur. In the case of wildfires, smoke is often more visible than fire
due to the influence of vegetation. Therefore, it is important to detect fires and smoke in
the wild. Due to the spatial and temporal uncertainty of smoke and fire events, it has been
difficult for traditional manual monitoring methods and high-cost server-side-based image
recognition to meet the current needs, while the use of hardware to inspect specific areas
suffers from high-cost design, small detection area, and slow response time. Therefore, how
to solve the problem of specific object detection and timely response to smoke and fires,
reducing the cost and improving the detection accuracy to reduce the rate of false alarms,
is currently an urgently needed solution.

Deep learning has a wide range of applications in the field of computer vision, in which
object detection is an important research direction. In many real-world scenarios, such as
fires, smoke, and other catastrophic events, being able to quickly and accurately detect fire
sources and smoke areas is crucial for rescue work. Therefore, deep learning-based smoke
and fire object detection is of great research importance.

Currently, research for smoke and fire object detection is mainly based on traditional
computer vision algorithms and deep learning methods. Traditional computer vision
algorithms can realize the task of object detection to a certain extent, but they still have
many limitations for the processing of complex scenes. For example, traditional sensor-
based methods [1–3] are susceptible to interference factors such as spatial dimensions. Its
diffusivity leads to reduced smoke concentration, with limitations such as limited detection
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range and delayed alarm time [4]. Chen et al. [5] proposed the use of two smoke sensors,
two fire sensors, and two temperature sensors to detect fire events. But this method
still faces the problem that in open areas, smoke and fire information is diluted by the
environment and difficult to detect in time.

Deep learning-based methods can utilize large amounts of data and high-performance
computational resources, which can better handle object detection tasks in complex sce-
narios and achieve better results. For example, Wang et al. [4] applied YOLOv5 to achieve
fire and smoke recognition. Jia et al. [6] used CNN to recognize fire smoke. He et al. [7]
improved CNN by designing an attention mechanism that combines spatial and channel
attention, and a decision fusion module was used to differentiate smoke and fire. For better
recognition, Pan et al. [8], Li et al. [9] and Wu et al. [10] used Faster RCNN, Efficientdet and
SSD to extract smoke static features respectively.

Although deep learning-based object detection models are better than traditional
models, they still have many problems when dealing with complex environments outdoors.
For example, in cloudy weather in the evening, the fire and smoke effects created by the
sunset and clouds are easily misjudged as smoke and fire. Especially when it is cloudy
and rainy in the forest, the black clouds in the sky are often misreported as smoke. These
factors will greatly affect the object detection accuracy.

Superior feature extraction networks can extract as many desired features as possible to
better solve the above problems. Compared to traditional CNN feature extraction networks,
FPN [11] and its variants further enhance feature extraction and are widely used in deep
learning network models [12–14]. The variants of FPN are PANet [15], NAS-FPN [16], and
BiFPN [17]. In addition, in object detection tasks, the irregularity of the object also affects
the detection results. Therefore, a feature extraction network with a rotation module helps
to improve multi-scale feature fusion capability.

In addition to feature extraction, the attention mechanism and loss function also
have an impact on detection accuracy. The attention mechanism is essentially a resource
allocation mechanism which can change the method of resource allocation according to the
degree of importance of the object of attention so that the resources are more inclined to
the object of attention. In convolutional neural networks, the resource to be allocated by
the attention mechanism is the weight parameter. Assigning more weight parameters to
the attention object can enhance the feature extraction of the attention object during the
model training process. Adding the attention mechanism to the object detection task can
improve the model’s characterization ability, effectively reducing the interference of invalid
objects, improving the detection effect on the attention object, thus improving the overall
detection accuracy of the model. The loss function is used mainly in the training phase of
the model. After each batch of training data is fed into the model, the predicted value is
output through forward propagation, and then the loss function calculates the difference
between the predicted value and the true value, which is the loss value. After obtaining the
loss value, the model updates each parameter through backpropagation to reduce the loss
between the true value and the predicted value, so that the predicted value generated by
the model is closer to the true value, thus achieving the purpose of learning.

To address the above problems, YOLOv6 [18] is selected as the benchmark model in
this paper. It adopts the Rep-PAN feature extraction network, replacing the CSP-Block used
in YOLOv5 with RepBlock, and also adjusts the operators in the overall neck. We added
the CBAM attention module to YOLOv6 and replaced the original GIoU [19] loss function
with the CIoU [20] loss function.

Our major research efforts are as follows:

• Most of the existing pyrotechnic detection techniques in the YOLO series use YOLOv5
as the benchmark model. To verify the performance of other techniques, we innova-
tively choose YOLOv6 to be the baseline model.

• Based on the original model, we introduce the CBAM attention mechanism so that the
model achieves efficient inference in hardware while maintaining a better multi-scale
feature fusion capability. We use CIoU as the loss function of the model as a way to
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obtain higher detection accuracy. In addition, we added an automatic mixed-precision
AMP when training the model. It can be calculated with different data precision for
different layers in the neural network inference process, thus realizing the purpose
of saving video memory and speeding up the process. The detection accuracy of the
model is further improved.

• We collected part of the public firework dataset independently and supplemented it
with other datasets that were labeled. After data cleaning, we produced high-quality
datasets. We conducted experiments on our data for comparison and validation. The
final experimental results prove the merits of the model in this paper.

The rest of the paper is organized as follows. Section 2 describes the data sources in
detail, and in Section 3, we detail our improved methodology. Our experimental configura-
tion and results are shown in Section 4. In Section 5, we discuss prospective future research
and challenges. In the last section, the whole paper is concluded.

2. Datasets

In order to better carry out the experimental study in this paper, we carried out data
collection and organization, called WFDS2000. The preparation of this dataset collection
was carried out by web crawling a partially publicly labeled firework dataset to obtain a
total of about 3000 pictures. Then it was divided into a training set and a validation set
according to a ratio of 7:3, and some of the datasets were relabeled. This allowed the smoke
and fire objects to be cleaned by framing the dataset in as large a box as possible, discarding
the many smaller boxes of the labeling method. Ensuring the quality of the dataset is a
better place to start. There are many cases of overfitting or failure of the model to converge,
the ultimate cause of which is a contaminated dataset. Figure 1 shows some example
images from WFDS2000. WFDS2000 contains multi-scene images such as field and city. In
addition, WFDS2000 contains multiple smoke types such as white smoke, black smoke,
and thin smoke. In Table 1, we present the details of the dataset. It contains the number of
images and the specific number of pyrotechnic objects in the training set, validation set,
and test set.

(a) (b) (c)

(d) (e) (f)

Figure 1. Images of WFDS2000 for different scenarios. (a–f) are partial display images in WFDS2000.

Table 1. Specific information about WFDS2000.

Datasets Number of Fire Number of Smoke Image Amount

train 2015 1822 1576
test 688 597 525
val 632 625 525
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3. Methods

Existing methods tend to have high false alarm rates when confronted with interfer-
ence from other factors, such as clouds and smoke. In addition, the irregularity of fire and
smoke further affects the detection performance. Therefore, unlike the commonly used
YOLOv5-based object detection methods, we choose the YOLOv6 model with a rotating
detection head as the baseline model. For the interference of other factors, we add CBAM.
Finally, we choose the appropriate loss function CIoU to further enhance the performance
of the model and supplement it with AMP automatic mixed-accuracy training.

3.1. Excellent Network Design

The YOLO series usually consists of backbone, neck, and head. In particular, the
performance of the backbone determines the feature representation capability. At the same
time, its design has a crucial impact on inference efficiency because it bears a large amount
of computational cost. The neck is designed to aggregate low-level physical features with
high-level semantic features, and then construct a pyramid at each level of the feature map.
The head consists of multiple convolutional layers and predicts the final detection result
based on the multilevel features in the neck section. From a structural point of view, it
can be categorized into anchor-based and anchor-free, or more precisely, into a parameter-
coupled head and parameter-decoupled head. In YOLOv6, two scaled parameterizable
backbones and necks are proposed to accommodate models of different sizes, in addition
to a decoupled head with a hybrid channel strategy.

3.1.1. Backbone Network

RepVGG [21] proposes a structure reparameterization method. It uses a multi-branch
structure for training and a single-branch structure for inference to obtain a better trade-off
between speed and accuracy. Inspired by this, YOLOv6 designs an efficient backbone called
EfficientRep [18]. Its specific design structure is shown in Figure 2. Its main component
is RepBlock in the training phase, as shown in Figure 3. During the inference phase, each
Repblock is converted into a stack of 3 × 3 convolutional layers, which has a ReLU activa-
tion function, denoted as RepConv, as shown in Figure 4. Thanks to the highly optimized
3 × 3 convolutional layers on mainstream CPUs and GPUs, the backbone network can fully
utilize the computational power of the hardware, enhancing the representation capability
while reducing the inference latency.

RepConv RepConv RepBlock RepConv RepBlock RepConv RepBlock RepConv RepBlock SimSPPF

Figure 2. Framework for EfficientRep [21].
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1×1 Conv BN

1×1 Conv BN

BN

+

ReLU

N×

RepVGG block

Figure 3. Framework for RepBlock [21].

RepConv ReLU

N×

Figure 4. Framework for RepConv [21].

3.1.2. Neck Network

YOLOv6 uses the PAN structure of YOLOv5 as a basis for improvement. The CSPBlock
in YOLOv5 is replaced with RepBlock (for small models) and CSPStackRep Block (for large
models), and the depth and width are adjusted appropriately. The improved neck is named
Rep-PAN [18], shown in Figure 5.

1×1 Conv Upsample

C

RepBlock 1×1 Conv Upsample

C

CC

1×1 Conv RepBlock RepBlock1×1 ConvRepBlock

C5

C4 C3

P5 P4 P3

Figure 5. Framework for Rep-PAN [18]. C3, C4, and C5 are inputs, P3, P4, and P5 are outputs, and C
stands for concat operation [21].
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3.1.3. Head Network

YOLOv6 employs a hybrid channel strategy that retains only one 3 × 3 convolutional
layer as a means of building an efficient decoupled head. The width of the head is then co-
scaled by the multiplier of the widths of the backbone and neck. With these improvements,
the inference delay is further reduced.

3.2. Effective Attention Mechanisms

The CBAM [22] attention mechanism is an attention module for feed-forward convo-
lutional neural networks. CBAM contains two separate modules, the channel attention
module (CAM) and spatial attention module (SAM). The framework diagram is shown
in Figure 6. Given an intermediate feature map, these two modules sequentially infer the
attention map and then multiply the attention map by the input feature map to perform
adaptive feature modification.

×× ××

Input Feature

CAM SAM

Refined Feature

Figure 6. Framework for CBAM [21].

CAM first obtains two 1× 1× C feature maps by maximum pooling and average
pooling. Then it feeds them into the MLP, and the features output from the MLP are
summed at the pixel level before sigmoid activation to obtain the final channel attention
features. Specifically, the input feature map F(H ×W × C) undergoes global maximum
pooling and global average pooling to generate two 1× 1× C feature maps. The feature
maps are then fed into a two-layer neural network (MLP). In the MLP, the number of
neurons in the first layer is C/r (r is the reduction rate), and the number of neurons in
the second layer is C. Then, the outputs of the feature from the MLP are subjected to an
element-wise summation-based operation, which undergoes a sigmoid activation operation
and generates the channel attention feature, i.e., Mc. Finally, the features Mc and F are
subjected to an element-wise multiplication operation to generate the features required for
SAM. The CAM framework diagram is shown in Figure 7. The equation is as follows:

Mc(F) = σ(MLP(AγgPool(F)) + MLP(MaxPool(F))) = σ(Wc(W0(Fc
cog)) + Wc(W0(Fc

cog))), (1)

where σ is the sigmoid function, W0 ∈ RC/r×C, W1 ∈ RC×C/r, and W0 and W1 are the two
input weights of MLP.
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+
sum

MaxPool

AvgPool

Input feature F

Shared MLP Channel Attention MC

Output

Output

Figure 7. Framework for CAM [22].

SAM takes CAM as input and then performs maximum pooling and average pooling
to finally obtain the H ×W × 1 feature map. Subsequently, the feature map is channel-
cascaded and downscaled to a single channel by a 7× 7 convolutional layer. Finally, SAM
is obtained after sigmoid activation. The framework of SAM is shown in Figure 8. The
equation is as follows:

MS(F) = σ( f 7×7([AνgPool(F); MaxPool(F)])) = σ( f 7×7([FS
aνg; FS

max])), (2)

where σ is the sigmoid function and f 7×7 represents the 7× 7 convolutional layer operation.

MaxPool AvgPool

Conv layer

Channel-refined 

feature F Sigmoid

Spatial Attention MC 

Figure 8. Framework for SAM [22].

3.3. Suitable Loss Function

In deep learning, training a model is the process of reducing the error by adjusting
the model parameters. The loss function serves to measure the error between the model’s
predicted and actual results, and the parameters are adjusted by optimizing the loss
function. The mean square deviation function is usually used in regression problems to
calculate the square of the average difference between the predicted and actual values. The
cross-entropy function is usually used in classification problems to calculate the difference
between the predicted results and the actual labels. During training, models with low
loss function values have more accurate predictions. GIoU used by YOLOv6 focuses not
only on overlapping regions, but also on other non-overlapping regions. Compared to
GIoU, DIoU [20] is more consistent with the mechanism of object frame regression. It takes
the distance between the object and anchor, the overlap rate, and the scale into account,
which makes the object frame regression more stable and does not have problems such as
dispersion during the training process, like IoU and GIoU. Inspired by this, we changed
the loss function to CIoU. CIoU is a measure of the accuracy of the object detection model,
which mainly calculates the distance between the predicted value of the object box and
the real marked box. Compared with the commonly used IoU metric, CIoU can more
accurately measure the difference between the predicted box and the labeled box. CIoU
considers the aspect ratio, which further improves the regression progress. The penalty
term of CIoU is an influence factor added to the DIoU penalty that adapts the predicted
box aspect ratio to the actual box aspect ratio. Its equation is as follows:

LCIoU = 1− IoU +
ρ2(b, bgt)

C2 + ∂v, (3)
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where b and bgt represent the centers of the predicted and real frames, respectively. ρ is the
Euclidean distance between the two center points. C represents the diagonal distance of
the smallest closure region that can contain both the prediction frame and the real frame. ∂
is the weight function. v is used to measure the similarity of the aspect ratios.

4. Experiment

In Section 4, we begin by describing the experimental configurations. We then compare
the performance of the different YOLO series on the WFDS2000. Eventually, we test our
improved model and show the effect graphs.

4.1. Experimental Setup

This program is improved in pytorch(Meta AI Research, America) and the MMYOLO
framework. And it is trained and tested on two Nvidia 3090, which are with 24 G of
video memory. The dataset was divided in a 7:3 ratio, and the learning rate was 0.001. We
trained each network for 200 epochs. We use the average lookup rate (AP) to evaluate the
detection accuracy.

4.2. Method Comparison and Visualization

We selected six models, YOLOv5, YOLOv6, YOLOv7, YOLOv8, YOLOX, and our
proposed improved version of YOLOv6, and tested them on WFDS2000. We counted mAP
0.5, the amount of computation (FLOPs), the number of parameters (Params), and the
computation speed (FPS) as evaluation metrics. The specific data are shown in Table 2.

Table 2. Performance of different models on the dataset.

Method FLOPs Params FPS APL APM APS mAP

YOLOv5 53.975G 46.144M 30.64 0.329 0.223 0.091 0.548
YOLOv6 21.882G 17.188M 33.9 0.396 0.232 0.105 0.592
YOLOv7 51.749G 36.508M 10 0.308 0.211 0.082 0.547
YOLOv8 82.557G 43.631M 46.1 0.409 0.245 0.111 0.598
YOLOX 77.659G 54.149M 42.3 0.368 0.211 0.068 0.586

Ours 21.883G 17.23M 32.5 0.421 0.241 0.106 0.619
Red indicators represent optimal data and blue indicators represent sub-optimal data.

For object detection, the average accuracy is the most important evaluation metric.
Therefore, improving the average accuracy of the model is a top priority in model design.
From Table 2, we can observe that before the improvement, the mAP of YOLOv8 is optimal
and can reach 0.598. After our improved model is proposed, the mAP of ours is as high
as 0.619, which is 0.021 higher than that of YOLOv8. For large objects, the improved
AP, compared to the suboptimal YOLOv8, went up by 0.012. For small and medium-
sized objects, the AP of the improved model is suboptimal. Overall, the AP of our model
is optimal. The computational and parametric quantities of the model are important
indicators of the model’s complexity. In the current study, lightweight models are more
favored. The smaller the computational and parametric quantities of the model, the more
lightweight the model is. YOLOv6 has the smallest FLOPs and Params among a group
of models, and it can be said that it is the most lightweight model. This is a theoretical
basis for us to choose YOLOv6 for improvement. In our improved model, the parameters
and computation of the model are slightly increased due to the addition of the attention
mechanism. Compared with the original model, the FLOPs increased by 0.001G and
the Params increased by 0.042 M. In addition, FPS is an important measure of model
performance and response computational cost. The faster the computing speed, the smaller
the cost of time spent. Among the models, YOLOv8 has the fastest computing speed,
followed by YOLOX. YOLOv6 ranks third. Affected by the increase in FLOPs and Params
of the model, the computational speed of the improved model decreases by 0.6. The
performance of the computing speed is a pity for our model, whose time cost is higher.
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However, our improved model trades a very small increase in FLOPs and Params and a
decrease in FPS for a significant increase in mAP, which is a smaller cost in exchange for a
larger boost. Accordingly, we have grounds to believe that our improvements to the model
are effective.

To visualize the results of our experiments, we selected some of the effect diagrams, as
shown in Figures 9–12.

In Figure 9, we show the effect of object detection in an outdoor environment. The
large area of smoke did not affect our detection of the flames in it. As can be seen from the
figure, for small smoke with distinctive features, we generate additional small detection
frames. This can effectively minimize the cases of missing detection.

(a) (b) (c)

Figure 9. Visualization results of our method on WFDS2000 for outdoor environment. (a–c) are the
detection results for different scenes.

Since there are many aerial images in the current object detection datasets, to better
validate the model’s detection effect on aerial images, we added some aerial images to our
test. In Figure 10, the small area of fire in the aerial image can be recognized perfectly. This
also further verifies the detection performance of our method on aerial images.

(a) (b)

Figure 10. Visualization results of our method on WFDS2000 for aerial images. (a,b) are the detection
results for different scenes.

The color of smoke varies from light to dark depending on the burning material and
degree. To better verify the sensitivity of our model to smoke, we selected different colors
of smoke. In Figure 11, there are four different degrees of smoke, varying from light to dark.
From the figure, we can see that our model can accurately recognize these four degrees of
smoke, and the darker the smoke color, the better the recognition performance.
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(a) (b) (c) (d)

Figure 11. Visualization results of our method on WFDS2000 for different colors of smoke. (a–d) are
the detection results for different scenes.

The weather factor is also an important factor affecting fire and smoke detection. We
show how well the model detects smoke in a nighttime environment in Figure 12. As we
can see from the figure, our model can clearly identify the fire. For smoke, we can recognize
the smoke at the edge of the fire. For the smoke that lacks part of the light source, we
cannot extract enough features due to the influence of the environment. Therefore, the
recognition result of this part is not very satisfactory.

(a) (b) (c)

Figure 12. Visualization results of our method on WFDS2000 for night environment (a–c) are the
detection results for different scenes.

5. Current Challenges and Future Directions

There are still many problems and challenges in the field of smoke and fire object
detection. On the one hand, compared with natural images, fire and smoke images have
problems, such as diverse application scenarios and directions, which are difficult to
locate. On the other hand, outside circumstances, like weather and lighting, can also
have an impact on the image. Therefore, we will pay more attention to feature extraction,
lightweight network design, and sample scarcity of the dataset in the following.

5.1. Feature Extraction

An essential aspect is feature extraction. An efficient feature extraction method helps
the model to obtain as many object features as possible, which will effectively enhance the
detection of small and occluded objects. Recently, many excellent models have provided
us with many creative feature extraction methods. Efficient RepGFPN [23], proposed by
DAMO-YOLO [23], has excellent multi-scale feature fusion capability. The creative log2(n)
layer-hopping connectivity in GFPN provides more efficient information transfer, which
allows the feature information to be extended to a deeper network. In addition, it replaces
the classical convolutional layer with rotational convolution, which helps to better extract
object features with irregular orientations. SuperYOLO [24] better extracts features by
processing images. It proposes the combination of RGB and infrared images, which can
effectively utilize the advantages of each of the two images to minimize the missing object
problem as much as possible. In addition, this method is very effective in tasks where
small-scale objects and multi-scale objects coexist.

5.2. Lightweight Network Framework

The production of more productive and lighter-weight networks remains a hot re-
search topic. It is necessary to develop more focused, lightweight, and productive object
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detection network designs to improve detection performance. For example, Guan et al. [25]
proposed a regionalized efficient network to suggestion generation and object classification,
respectively. Its framework is designed to generate high-quality suggestions and then
import the suggestions and input images into the network in order to learn convolutional
features. Ye et al. [26] proposed an end-to-end multi-scale lightweight object detection net-
work, the LSL-Net network, including LSM, EFM, and ADM. LSM extracts stable low-level
information and reduces the overall computational effort. EFM extracts more efficient infor-
mation to perform more accurate detection. ADM achieves higher accuracy for low-level
objects at different scales, especially small objects.

5.3. Datasets

Currently, compared to other object detection tasks, there is a scarcity of datasets
for the firework detection task, which can seriously hinder the development of firework
detection methods. Therefore, emphasis should be placed on solving the problem of
scarcity of dataset samples. In the production of the dataset, it should be combined with
the existing image collection technologies, like LiDAR and GIS. Rich sample information
not only advances pyrotechnic detection technology, but also provides credible support for
actual applications.

5.4. Future Directions

Object detection methods should not only focus on their depth, but also on their
breadth. Similarly, smoke and fire detection should not only be applied to forest fires,
but it is also important for multi-scenario tasks, for example, fire monitoring of cities and
fire monitoring of indoor environments. We sincerely hope that smoke and fire detection
methods can be widely applied to multi-scenario tasks. Minimizing the impact of fire on
people’s lives and property is the point of our research.

6. Conclusions

This paper proposes an improved version of YOLOv6. We innovatively add the CBAM
attention mechanism and CIoU loss function. CBAM can effectively improve the inference
ability and multi-scale feature fusion ability. CIoU can better utilize the aspect ratio in the
bbox regression triad. In terms of the dataset, we collected and labeled about 2000 multi-
scene firework images. To validate the performance of our proposed model, we tested five
methods of the YOLO series as well as the improved version of the method on this dataset
and counted four evaluation metrics. The performance of our improved method was finally
verified. However, from these evaluations, the object detection methods for smoke and fire
detection still have much room for improvement. In our future work, we will enhance the
feature extraction capability for smoke and fire. In addition, we will also focus on making
the network more lightweight to reduce the number of parameters and computations of
the model as much as possible. Due to the small dataset of smoke and fire detection, the
sample-less model is also a future research focus of ours. In the future, we will also try to
apply new models to smoke and fire detection and keep exploring this research area.
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