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Abstract: Plant communities in urban wetland parks (UWP) have significant eco-healthcare benefits
in terms of regulating the climate and improving the human living environment. However, factors
influencing the regulation of eco-healthcare benefits are unclear. Taking Huaxi Ten Mile Beach
National Urban Wetland Park as an example, the urban wetland park comprehensive healthcare
index (UPCHI) was constructed based on an outdoor survey and indoor analysis to evaluate the
UWP’s eco-healthcare benefits. Pathway analysis was used to investigate how climatic, geographic,
and plant factors interact to affect the UPCHI. The results show that, over the whole year, tree–
shrub–herb showed the best performance in terms of reducing PM2.5, PM10, and noise, as well as
raising negative air ion concentrations; however, human comfort performed the worst. The UPCHI
was generally beyond level III (0.49–0.58) in the spring and summer, indicating that there are eco-
healthcare benefits. Overall, the deciduous tree–shrub–herb community had the highest annual mean
UPCHI, and more than half of the plant communities’ eco-healthcare benefits were class II, which
is very beneficial for eco-healthcare. The main direct factors on UPCHI were illumination intensity
(0.68) and tree height (0.90), while canopy height (0.64–0.59) and tree crown radius/canopy height
(0.72–0.14) directly or indirectly influenced UPCHI. The distance from the edge of the mountain
(−0.39–−0.322) had a direct negative, but minor, effect on UPCHI. This study will assist residents
with selecting suitable times and places for wetland recreation and healthcare activities, and it offers
a valuable reference for the future planning and design of UWP plant communities.

Keywords: ecological healthcare benefits; urban wetland parks; plant factor; geographical factors;
climatic factor

1. Introduction

Rapid urban development has wreaked havoc on the worldwide ecological environ-
ment, giving rise to ecological and environmental problems such as urban heat islands and
soil and air pollution, in addition to threatening human physical and mental health [1].
With the impact of ecological problems on health and the economy, the awareness of health-
care is gradually increasing and gaining widespread attention [2,3]. According to data
from the World Health Statistics 2023 report, the proportion of Chinese urban and rural
households that spend more than 10% of their total income and expenditures on healthcare
is 24.3%, which is significantly higher than the global rate of 13.5%. Wetlands are land
regions covered by water, which feature transitional ecosystems between terrestrial and
aquatic environments [4,5]. Due to the constant nourishment from water, the richness and
diversity of species are commonly high in wetlands. Wetlands, as one of the three major
ecosystems, can not only act as shelter for many organisms, but also mitigate floods and
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storms, purify water, and even regulate the climate [6–8], all of which suggest a vital role of
wetlands in environmental balance. However, due to increased urbanization, natural wet-
lands are rapidly shrinking in size, with around 50% of the world’s wetlands disappearing
since 1900 at a 3.7 times faster rate [9–11]. This heavily degrades the ecological function
of natural wetlands and aggravates environmental and climatic disorder, particularly in
urban cities [12]. Therefore, artificial wetlands have been proposed as a substitution for
natural wetlands for the purpose of mitigating the environmental and climatic disorders in
urban cities [13]. As a critical type of artificial wetland, urban wetland parks are rapidly
expanding along with the development of green cities. Based on previous studies, more
than 800 national wetland parks have been built in China [14], the area of which has reached
3.6 million hectares in total [15]. China is considered to be the country in which the most
wetland parks have been constructed. Given the core value of parks for public recreation,
the roles of wetland parks should not be limited to ecological balance, but could also extend
to tourism and recreation, particularly health tourism. With the significant demand for
leisure and tourism, the well-being of urban wetland parks for public health needs to be
evaluated, which will not only contribute to the urban ecology but also be conducive to
shaping a livable and recreational city.

Urban wetland parks are of great value in terms of increasing public health. Firstly,
the humidity from urban wetland parks could partially mediate the heat being released
from urban areas, and then decrease the urban heat island effect [13,16,17]. Thus, the
construction of urban wetland parks would improve the temperature to a comfortable level
and lower energy consumption in urban areas [15,18]. Secondly, wetland plants usually
have a thinner wax covering on the surface of their leaves, which is mainly due to the
long-term growth in high-humidity environments. They effectively absorb the atmospheric
particulate matter and then act as a natural filter to decrease these atmospheric particulate
matters [19,20]. Thus, urban wetland parks would minimize the health risks of atmospheric
particulate matters, particularly in industrial areas of urban cities. In addition, adequate
humidity and vegetation in urban wetland parks could also produce more negative air ions
and degrade the noise level more significantly in urban areas. Despite the well-being of the
previously listed urban wetland parks, their effectiveness was not stable, particularly with
the environment fluctuating. For example, transpiration and shading of vegetation not only
impacted the microclimate but also the suspension of particle matter, while photosynthesis
and tip discharge on plant leaves also influenced the production and emission of negative
air ions [21]. In addition, the distance from pollution sources and roads also significantly
altered the particle matter content [22], and the sizes of waterways and their distance
from water sources were associated with changes in the human comfort THI [23] and
air particulate matters [24]. Given that the environmental variations have rarely been
incorporated into the assessment of ecological healthcare benefits of urban wetland parks,
it will be indispensable to detail the connections between environmental fluctuations
and the well-being of urban wetland parks. This will be beneficial for area planning in
urban cities.

Ecological healthcare benefits have been proposed to gauge the health of green land,
which includes forests, parks, and recreational land, with multiple health indicators [3,25].
Ecological healthcare benefits refer to the various types of direct beneficial effects of vegetation
on human physical and mental health, and consist of a combination of healthcare indicators,
including negative air ions (NAI), ambient particulate matter, THI, and noise. With principal
component analysis (PCA) and weight analysis (WA), the environmental benefits of plant
communities and their connections with healthcare have been assessed [3,26]. However,
changes in healthcare indicators are also related to climate, vegetation, and geographic factors.
The effects of these factors are complex and variable, and the traditional linear regression
models have significant limitations in terms of analyzing or predicting them, particularly
the non-linear responses of some variables and the interaction between dependent variables.
Thus, according to structural equation modeling (SEM), the developed path analysis (PA) is a
conceptual framework based on regression modeling, extended to integrate the consideration
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of direct and indirect effects [27]. Despite the valuation system of ecological healthcare benefits
being well established and widely applied for the ecological healthcare of forest parks and
urban parks, the valuation system of ecological healthcare benefits has rarely been employed
in ecological healthcare assessments of urban wetland parks.

The Huaxi Ten Mile Beach National Urban Wetland Park (HBUWP) is the first 4A-
grade national urban wetland park in Guizhou Province, China, and was built along
the upstream section of the Nanming River in Guiyang City. The gorgeous scenery of
HBUWP, including rich vegetation and beautiful river banks, made HBUWP a famous
spot for sightseeing and relaxation. Despite HBUWP having already been attractive to
local residents and tourists, its healthcare status still remains undetermined. Currently,
various roads, buildings, and industrial parks are being constructed nearby due to rapid
urbanization, which inevitably raises on the issue of degrading the living quality of local
residents and the suitability for leisure tourism. Hence, this study analyzes the following
questions for this purpose: (1) Exploring whether Huaxi Ten Mile Beach National Urban
Wetland Park have ecological healthcare benefits? (2) What are the regional and temporal
variations in the ecological health benefits of urban wetland parks? (3) How do vegetation
characteristics, geographic location, and climatic factors affect eco-health benefits in urban
wetland parks? The investigation of healthcare benefits in urban wetland parks would not
only support the construction of urban wetland parks, but also optimize the community
structure of plants in urban wetland parks, all of which would support the creation of
ecological cities.

2. Materials and Methods
2.1. Study Area

Huaxi Ten Mile Beach National Urban Wetland Park (HBUWP) stretches from Niujiao
Island to Huaxi Bridge, with a total area of 4.6 km2, the longitude and latitude of which are
106◦40′23.4′′–106◦40′59.129′′ E, 26◦26′20.9′′–26◦27′55.463′′ N, respectively. HBUWP belongs
to a humid subtropical climate; the annual mean temperature commonly stays at 14.9 ◦C,
which suggests a pleasant climate without harsh winters or blistering summers. The park
has a significant abundance of botanical resources, with 495 species of vascular plants and
51 species of higher plants, accounting for 27.6% of the total number of higher wetland
plants in Guizhou Province (185 species). Wetland landscape resources are dominated by
artificial forests with good growth conditions, and the main tree species include Metasequoia
glyptostroboides, Prunus persica, ginkgo biloba, Osmanthus fragrans, Magnolia grandiflora, and
Cerasus serrulata, among others. The main shrub species are Photinia×fraseri, Pittosporum
tobira, Nandina domestica, Fatsia japonica, etc. The main herb plants are Lolium perenne,
Poa pratensis, Iris tectorum, Gladiolus gandavensis, Trifolium repens, and Euryops pectinatus,
among others.

2.2. Sample Plot Setting and Plant Community Survey

The ten typical plant communities include evergreen tree (A1), evergreen tree–shrub
(herb) (A2), evergreen tree–shrub–herb (A3), deciduous tree (B1), deciduous tree–shrub
(herb) (B2), deciduous tree–shrub–herb (B3), waterside trees (C1), waterside tree–shrub
(herb) (C2), waterside tree–shrub–herb (C3), and lawn (L). In addition, two unforested
control groups, located at the park’s entrance (CK1) and in the hydrostatic region (CK2),
were selected for this study. Sampling in triplicate was established for each type of sample
in each site to elevate the robustness and dependability of this research. The investigation
of plant communities was conducted using the Swedish quadrant approach, as described
by Niu et al. [28]. We set up 20 m × 20 m tree, shrub, and grass samples in the four corners
of the tree samples, respectively; the area of each shrub sample was 5 m × 5 m and that of
the herb sample was 1 m × 1 m. This was based on the empirical value of the minimum
area of an evergreen deciduous broadleaf mixed forest. Geographic information and plant
information were recorded during the sampling process. The geographic information was
included as follows: distance from the edge of the lake (HL), distance from the edge of
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the mountain (ML), and distance from the edge of the park (BL). Plant information was
included as follows: arbor diameter at breast height (DBH), tree height (TH), tree crown
size (TCS), tree crown radius (TCR), canopy height (CH), tree crown radius/canopy height
(TCR/CH), number of trees (TN), tree canopy volume (TCV), shrub height (SH), shrub
volume (SV), herb volume (HV), number of plant community stratification (NPCS), and
tree density (TM). Geographic information was recorded using a GPS receiver (positioning
accuracy: 1 m); DBH, TH, TCS, TCR, CH, and SH were determined using a tree measuring
instrument (measuring range: 5−254 cm; accuracy: 0.1◦); and TCV, SV, and HV were
estimated for each plant, a process which was adopted from Zhou Jianhua et al.’s three-
dimensional greenness model [29]. Figure 1 and Table 1 indicate the location of the study
region as well as the fundamental conditions of the sample plots.
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Table 1. Plot overview of Huaxi Ten Mile Beach National Urban Wetland Park.

Plot No Main Species of Plot Tree Species Shrub Species Herbaceous
Species

Greenbelt
Types

Monitoring
Points

(Figure 1)

CK1 Entrance of the park control sites 1, 2, 26
CK2 hydrostatic region control sites 4, 18, 35

L Poa annua Lolium perenne,
Poa annua lawn 22, 23, 30

A1 Cinnamomum
camphora

Cinnamomum
camphora evergreen tree 3, 27, 32

A2
Cinnamomum

camphora-Nandina
domestica

Cinnamomum
camphora

Hibiscus
syriacus.,
Photinia

serratifolia,
Nandina
domestica

evergreen
tree–shrub

(herb)
6, 21, 34

A3

Osmanthus
fragrans-Photinia

serratifolia
-Pleioblastus amarus

Osmanthus
fragrans

‘Latifolius’,
Cinnamomum

camphora,
Magnolia

Grandiflora

Nandina domesti-
caPhotinia
serratifolia

Iris tectorum,
Cortaderia
selloana,

Pleioblastus
amarus

evergreen tree–
shrub–herb 5, 11, 33

B1 Metasequoia
glyptostroboides

Metasequoia
glyptostroboides deciduous tree 10, 17, 19

B2
Metasequoia

glyptostroboides-Hosta
plantaginea

Metasequoia
glyptostroboides

Hosta
plantaginea

deciduous
tree–shrub

(herb)
12, 13, 20

B3

Pterocarya
stenoptera-Nandina

domestica-Hosta
plantaginea

Pterocarya
stenoptera

Nandina
domestica,
Photinia

serratifolia

Hosta
plantaginea,
Cortaderia
selloana,

Dianthus
chinensis

deciduous tree–
shrub–herb 8, 9, 31

C1 Salix babylonica,
Prunus persica

Salix babylonica,
Prunus persica

water’s edge
trees 7, 28, 29

C2
Metasequoia

glyptostroboides-Iris
pseudacorus

Metasequoia
glyptostroboides

Iris pseudacorus,
Reineckia carnea

water’s edge
tree–shrub

(herb)
15, 25, 27

C3

Metasequoia
glyptostroboides-

Hibiscus
mutabilis-Phragmites

australis

Metasequoia
glyptostroboide,

Prunus serrulata
var. lannesiana

Hibiscus
mutabilis,
Boehmeria

penduliflora

Phragmites
australis

water’s edge
tree–shrub–

herb
14, 16, 24

2.3. Monitoring of Healthcare Indicators

From March 2021 to January 2022, three consecutive sunny days with wind
speed < 2 m/s were selected in each season, and five environmental and climatic indicators
were collected. The five healthcare indicators included human comfort (THI), ambient par-
ticulate matter concentration (PM2.5, PM10), negative air ion concentration (NAI), and noise.
The three climatic indicators were illumination intensity, temperature, and humidity. The
negative air ion concentration was measured with an air ion counter (measurement range:
1−5 × 107 ion·cm−3; mobility: ≥ 0.4 cm2·v−1·S−1; measurement accuracy: 1 ion·cm−3).
PM2.5 and PM10 were determined via a handheld airborne particulate counter (measuring
range 0−2× 103 µg·m−3, resolution 1 µg·m−3). Temperature and humidity were measured
using a handheld thermohydrometer (temperature measuring range: −20−50 ◦C; accuracy:
±0.6 ◦C; humidity measuring range: 0%−100%; accuracy: 2%−3% RH). Noise was tested
using a digital noise decibel meter (measuring range: 30−130 dBA; accuracy: ±1.5 dB),
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and the illumination intensity was measured via a recording type of illuminance meter
(measuring range: 0.01−9.99 × 105 Lux; accuracy: ±3%). All instruments were installed
at a height of 1.5 m above the ground. The measurements were performed at consistent
intervals of 2 h, starting at 8:00 and ending at 18:00, during the spring, summer, and autumn
seasons. In the winter, the measurements were taken from 8:00 to 16:00. Measurements
were taken using five points in four directions (east, south, west, and north) at and near the
center point, and the average value was taken as the measurement value. In this study, the
thermal humidity index (THI) was chosen as the calculation standard for human comfort
(Table 2) [30].

Table 2. THI evaluation standards.

Evaluation Grade THI Body Comfort Body Feeling

I ≥27.5 Intense heat Quite uncomfortable
II 25.5–27.5 Hot Not comfortable
III 17.0–25.5 Warm Comfortable
IV 14.0–16.9 Cold Not comfortable
V <14.0 Very cold Quite uncomfortable

The thermal humidity index (THI) was calculated as:

THI = T − 0.55(1 − RH)(T − 14.5) (1)

where T is the air temperature (◦C) and RH is the relative humidity (%).

2.4. Multiple Indicators Comprehensive Evaluation Methods

The five healthcare indicators that had previously been assessed were standardized
and categorized into positive effect indicators, which indicate that larger values are more
favorable for ecological healthcare, and negative effect indicators, which suggest that
smaller values are more beneficial for ecological healthcare. NAI in all seasons and THI
in spring, autumn, and winter served as positive effect indicators and were standardized
using Equation (2). The THI in the summer, as well as the noise, PM2.5, and PM10 in all
seasons, served as negative effect indicators and were standardized using Equation (3).

Also, a principal component and weighting analysis was conducted using the five
healthcare indicators, which were grouped into three principal components as shown in
Table 3. The cumulative contribution rate of these three main components was 93.91%,
exceeding 80%. This indicates that the chosen components successfully captured and
represented the information which the indicators conveyed. The three function formulas
were denoted as (4), (5), and (6).

Table 3. Coefficient matrix of principal component scores for environmental indicators.

Index
Principal Component

1 2 3

THI (X1) −0.008 0.688 0.519
PM2.5 (X2) 0.370 0.080 0.189
PM10 (X3) 0.371 0.090 0.156
NAI (X4) −0.174 −0.348 0.938

Noise (X5) 0.281 −0.419 0.141
Cumulative

contribution to
variance

52.141 77.634 93.907

The specific formula for the urban wetland park comprehensive healthcare index
(UPCHI) was denoted as (7). In the Origin2022 software, UPCHI evaluation levels were
determined using the Ward and Euclidean distance method [3] to analyze the UPCHI
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values systematically. These values were adjusted based on Zhu Shuxin’s research findings
and practical requirements. The UPCHI values were divided into six levels ranked from
high to low, each representing a distinct intensity of comprehensive healthcare care benefits
(Table 4).

Table 4. UPCHI evaluation standards.

Evaluation Grade Index Range Level Effect on Health

I UPCHI ≥ 0.57 Fabulous Extremely beneficial
II 0.57–0.53 Fabulous Very beneficial
III 0.53–0.48 Very good Beneficial
IV 0.48–0.25 Good Normal
V 0.25–0.04 General Unfavorable

VI UPCHI < 0.04 Very bad Extremely
unfavorable

The formula was as follows:

X′ij = (Xij −minXij)/(maxXij −minXij) (2)

X′ij = (maxXij − Xij)/(maxXij −minXij) (3)

F1 = −0.008X1 + 0.370X2 + 0.371X3 − 0.174X4 + 0.281X5 (4)

F2 = 0.688X1 + 0.080X2 + 0.090X3 − 0.348X4 − 0.419X5 (5)

F3 = 0.519X1 + 0.189X2 + 0.156X3 + 0.938X4 + 0.141X5 (6)

UPCHI = 0.56F1 + 0.27F2 + 0.17F3 (7)

where X is the original value of each indicator; X′ is the standardized value; i is the ith
monitoring indicator i = 1, 2, ..., n; j represents the different plant communities, j = 1, 2, ..., m;
F1, F2, F3 are the scores of the main components; X1, X2, X3, X4 and X5 are the normalized
values of THI, PM2.5, PM10, NAI and noise, respectively.

2.5. Data Analysis

The data were stored and organized using Microsoft Excel. Statistical analyses such
as descriptive statistical analysis (the mean and standard deviation), ANOVA, multiple
comparisons, principal component analysis, regression analysis, and cluster analysis were
performed using SPSS (version 20). Visual representations such as boxplots, correlation
analyses, and bar charts were generated using Origin (version 22) and GraphPad Prism
(version 8.0.1). AMOS (version 28) was used for the construction and analysis of the path
model, and model fit tests were performed using a goodness of fit index (GFI) of 0.9, root
mean square error of approximation (RMSEA) of less than 0.1 [31], and a ratio of chi-square
degree of freedom (χ2/df) values of less than 3 [32].

3. Results
3.1. Human Comfort Dynamic

In the spring, the plant community was classified as class III. The level of physical
comfort was determined to be “comfortable” (Table 1 and Figure 2). The THI value of C1
was found to be the highest (23.04), while the value of A2 was the lowest (19.64) and the
values of A2 and A3 were significantly lower than those of the rest of the plant community
(p < 0.05). In the summer, the overall comfort level was usually low, which suggests a
physically uncomfortable environment for the public. The lowest THI value was C3, which
reached 26.01, while the highest THI value (27.02) was determined to be L. The THI values
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for A1, A2, A3, and C3 were considerably lower than those of the control group (p < 0.05). In
autumn, the lowest THI value was observed for the A3 (13.34), while the highest THI value
was found for the B3 (15.30). The fluctuations of THI in winter (0−1.45) were relatively
small, but their values were significantly lower than those in other seasons, which suggests
a physically uncomfortable environment.
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3.2. PM2.5, PM10 Dynamics

The variation in PM2.5 concentration in each plant community was found to be signif-
icant in different seasons (Figure 3a). It is worth noting that the concentrations of PM2.5
were at their lowest in the B2 for spring and summer, while the highest PM2.5 concentration
was found in the A1. Compared to the control group, the PM2.5 concentration in each
plant community commonly expressed lower percentages of 0.18%−33.03% for spring
and 2.31%−35.49% for summer, respectively. Except for A1, all plant communities were
substantially different from CK1 (p < 0.05). The PM2.5 concentration in A3 was lowest in
the autumn and winter, while the concentration of PM2.5 in B1 was highest. Compared
to the control group, the PM2.5 concentration in each plant community commonly ex-
pressed lower percentages of 4.8%−33.67% for autumn and −1.17%−6.08% for winter.
Furthermore, it was observed that the evergreen community types differed significantly
from the control group throughout the autumn season (p < 0.05). The variation in PM10
concentration in the plant community was determined not to be the same as that of PM2.5
concentration (Figure 3b). Compared to the CK1, each plant community experienced a
reduction, which ranged from 5.21% to 34.90%. In the summer, the variations in PM10
concentration were determined between B2 and B3, but the variations in the rest of the plant
community were considered not to be significant (p > 0.05). Compared to the control group,
the concentration of PM10 in these communities exhibited a reduction, which ranged from
10.52% to 27.35%. In autumn, the PM10 concentration in A3 was the lowest, but was highest
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in C3. Compared to the control group, all plant communities decreased in a range from 0%
to 23.52%. In the winter, the PM10 concentration in B3 was the lowest (76.25 µg·m−3), while
it was highest in A1, which showed a decreased percentage of −1.97%–4.15% compared
with the control group. The lower PM10 concentration in winter may be attributed to the
constant rain prior to PM10 concentration monitoring. Finally, the most striking result was
that the ambient particulate matter concentrations were lower throughout the year for L
and CK2. Particularly in autumn, the PM10 concentration in the L was only higher than
that in evergreen community types.
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3.3. Negative Air Ion Concentration Dynamics

The data in Figure 4 demonstrate the variations in NAI concentration among different
plant communities in different seasons. The concentration of NAI was lowest in L regardless
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of the season. The C3 structural NAI concentration was highest in the spring, which was a
significantly different result from the control group (p < 0.05). The NAI concentrations in A3
were at the maximum in summer, autumn, and winter: 1147.88 ions·cm−3, 578.64 ions·cm−3,
and 418.19 ions·cm−3, respectively. These concentrations were substantially different from
those of the control group (p < 0.05). Furthermore, the varying community configurations
were 1.32−3.04, 1.24−2.66, 0.96−2.48, and 1.12−2.39 times higher than those of the control
group in different seasons, respectively. In general, the NAI concentrations were higher in
tree structures than in tree–shrub (herb) structures during the summer and autumn.
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A3: evergreen tree–shrub–herb; B1: deciduous tree; B2: deciduous tree–shrub (herb); B3: deciduous
tree–shrub–herb; C1: waterside trees; C2: waterside tree–shrub (herb); C3: waterside tree–shrub–herb;
L: lawn; CK1: the park entrance; CK2: the hydrostatic region. Different lowercase letters indicate
significant differences between different community structures at the same time (p < 0.05).

3.4. Noise Dynamics

The results in Figure 5 demonstrate the noise trend in different plant communities
between seasons. The variation in the noise level in the plant community was confirmed
to be significant in each season (p < 0.05). In the spring, the B1 exhibited the lowest noise
level, at 51.93 dB(A), while the A1 had the highest noise level, at 57.35 dB(A). Compared to
the noise at the park’s entrance, each plant community experienced a reduction in noise
level, which ranged from 11.28% to 19.67%. In the summer, the A2 had the lowest noise
level of 55.42 dB(A), while the B2 had the highest noise level of 62.28 dB(A); each plant
community experienced a noise reduction of 0.79%–11.72% compared to the noise of the
control group. The noise level in A3 reached 51.51 dB(A) for autumn and 47.78 dB(A) for
winter. Compared to the control group, each plant community experienced drops of 13.01%
to 23.03% and of 1.08% to 13.8%.
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Figure 5. Noise change chart. A1: evergreen tree; A2: evergreen tree–shrub (herb); A3: evergreen
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herb; C1: waterside trees; C2: waterside tree–shrub (herb); C3: waterside tree–shrub–herb; L: Lawn;
CK1: the park entrance; CK2: the hydrostatic region. Different lowercase letters indicate significant
differences between different community structures at the same time (p < 0.05).

3.5. The Ecological Healthcare Benefits Dynamics

Based on the above environmental variables, a system of eco-healthcare benefit indica-
tors was developed to gauge the eco-healthcare benefits of each plant community (Figure 6,
Table 3). The results suggest that the UPCHI of the plant community reached III levels and
higher in the spring, which should be considered to be beneficial for healthcare. Among
them, the UPCHI of B3 was determined to be the highest, while that of C2 was treated as
the lowest. In the summer, except for L, all plant communities reached II level, suggesting
them to be “Very beneficial” for healthcare. The B3 was still the highest UPCHI value (0.55),
and the lowest UPCHI was found for L. In autumn, except for C2 and C3, the other UPCHI
of the plant community only reached the IV level, which suggests a “normal” healthcare
benefit. The A3 had the highest UPCHI value (0.37), while the C2 had the lowest UPCHI
value (0.24). In the winter, the whole community had values between the levels of V and
VI, suggesting an extremely unfavorable environment for healthcare.
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Figure 6. UPCHI change chart. UPCHI: urban wetland park comprehensive healthcare index;
A1: evergreen tree; A2: evergreen tree–shrub (herb); A3: evergreen tree–shrub–herb; B1: decid-
uous tree; B2: deciduous tree–shrub (herb); B3: deciduous tree–shrub–herb; C1: waterside trees;
C2: waterside tree–shrub (herb); C3: waterside tree–shrub–herb; L: lawn; CK1: the park entrance;
CK2: the hydrostatic region.

In the spring and winter, UPCHI decreased according to the community types as
follows (Figure 7): deciduous community types (0.55, 0.06) > waterside community types
(0.53, 0.54) > evergreen community types (0.52, 0.05). The difference between decid-
uous community types and evergreen community types was significant in the spring
(p < 0.05). In the summer, the UPCHI decreased according to the community types as
follows: deciduous community type (0.54) > evergreen community type (0.53) > waterside
community type (0.53). In autumn, the order was as follows: evergreen community type
(0.35) > deciduous community type (0.38) > waterside community type (0.25), and the
difference between the UPCHI values of evergreen community types was significantly
different from those of deciduous and waterside community types (p < 0.001). In terms of
the community structure, in the spring and autumn the UPCHI decreased as follows: tree–
shrub–herb structure (0.54, 0.31) > tree structure (0.53, 0.30) > tree–shrub (herb) structure
(0.52, 0.26). The difference between the autumn evergreen community types and deciduous
and waterside community types was significant (p < 0.01). The order was tree–shrub–herb
structure (0.54, 0.06) > tree–shrub (herb) structure (0.54, 0.05) > tree structure (0.53, 0.04) in
the summer and winter.
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Figure 7. Plant community type (left) and plant community structure (right) for the UPCHI change
chart. UPCHI: urban wetland park comprehensive healthcare index; EV: plant evergreen community
type; DV: plant deciduous community type; WV: plant waterside community type. Significance levels
are as follows: *** p < 0.001, ** p < 0.01, * p < 0.05.

3.6. Effect of Multi-Factors on UPCHI

The correlations between plant, geographical, and climatic factors and UPCHI were
analyzed for all seasons, and the results are given in Figure 8. In the spring, the correlation
of UPCHI was confirmed to be significant with DBH, CH, TCV, ML, and illumination
intensity. These correlations were positive with DBH, CH, and TCV, but negative with ML
and illumination intensity. In the summer, UPCHI was significantly correlated with TH,
TCR/CH, TCR, DBH, CH, CS, TCV, BL, illumination intensity, ML, and temperature. The
correlation coefficients of DBH, CH, CS, TCV, and BL were positive, while the correlation
coefficients of illumination intensity, ML, and temperature were negative. In autumn, the
correlations between air humidity, TN, TCV, HV, and UPCHI were found to be significant.
These correlations were positive for air humidity, TN, and TCV, but negative for HV. In
winter, the correlations between CS, DBH, TCR, SH, and TM all had positive correlation
coefficients. In addition, a significant negative correlation between UPCHI and TM was
also observed.

3.7. Multi-Factor Pass Analysis of UPCHI

Given the higher UPCHI, spring and summer were chosen for the path analysis
(Figures 6 and 8). The following two well-fitting models were developed through con-
tinuous evaluation and correction of the relationships between variables (Figure 9). In the
spring, CH, DBH, and illumination intensity (positive), as well as ML (negative), showed
significant direct influences on UPCHI, and TCR/CH showed a significant negative indirect
influence through illumination intensity, with path coefficients of 0.638, 0.385, 0.683, −0.390,
and −0.226, respectively. In the summer, CS, TCR/CH, TH, ML, HL, air temperature, and
TCR showed a direct influence on UPCHI, with path coefficients of 0.413, 0.722, 0.903, −0.322,
−0.278, 0.201, and−0.869, respectively. Surprisingly, the TCV was shown not to have a direct
influence. Furthermore, BL and illumination intensity demonstrated an indirect influence on
UPCHI via numerous pathways. Illumination intensity and air temperature were the most
significant, with path coefficients of −0.196 and 0.713. It is important to note that DBH has
no influence on UPCHI. Finally, the summer plant component had a critical influence on
illumination intensity.
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Figure 8. UPCHI correlation analysis chart. UPCHI: urban wetland park comprehensive healthcare
index; SP: spring; SU: summer; AU: autumn; WI: winter; TN: number of trees; TH: tree height; DBH:
diameter at breast height; TCR/CH:tree crown radius/canopy height; CH: canopy height; TCR: tree
crown radius; SH: shrub height; CS: the plant community stratification; TD: tree density; TCV: tree
volume; SV: shrub volume; HV: herb volume; BL: distance from the park edge; ML: distance from the
mountain; HL: distance from the river edge.
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Figure 9. UPCHI path analysis chart. UPCHI: urban wetland park comprehensive healthcare index;
TH: tree height; DBH: diameter at breast height; TCR/CH:tree crown radius/canopy height; CH:
canopy height; TCR: tree crown radius; CS: the number of plant community stratifications; TCV:
tree volume; HV: herb volume; BL: distance from the park edge; ML: distance from the mountain;
HL: distance from the river edge. Dashed lines indicate no significance and solid lines indicate
significance. The thickness of the line indicates the importance of the influencing factors. The
blue line indicates a positive influence relationship and the red line indicates a negative influence
relationship. The value next to each arrow indicates the normalized path factor. One-way arrows
indicate influence relationships, and two-way arrows indicate correlation relationships. Significance
levels are as follows: *** p < 0.001, ** p < 0.01, * p < 0.05.

4. Discussion
4.1. Changes in Ecological Health Benefits

Air particulate matter, negative air ions, human comfort, and noise are all components
of the UPCHI. Summer had the greatest UPCHI, and principal component analysis suggests
that airborne particulate matter contributed the most to the UPCHI index, followed by
negative air ions and human comfort. Although higher temperatures and humidity reduce
human comfort in the summer, the high-humidity environment increases the aggregated
and weight of suspended airborne particulate matter, which is susceptible to dry and
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wet deposition [33], and the high temperatures contribute to airborne particulate matter
diffusion, resulting in the lowest airborne particulate matter concentrations occurring in
the summer. At the same time, the low concentration of airborne particulate matter reduces
binding to negatively charged NAI in the air and, thus, reduces NAI loss. However, in
terms of plant communities, the plant community with the best UPCHI across all seasons
did not occur in the summer, but in the deciduous tree–shrub–herb structure in the spring,
which could be due to a combination of a suitable temperature and humidity environment
in the spring and the vigorous growth of spring-sprouting leaves of deciduous plants,
which would produce more negative air ions and a higher level of comfort.

UPCHI performed the best in terms of plant community type and structure, with a
deciduous community type and tree–shrub–herb structure. This may be due to the large
number of M. glyptostroboides, T. distichum, G. biloba, P. Cerasifera Ehrhar, and f. atropurpurea
plants in the deciduous plant community, which have smaller and denser leaves and rough
foliage that capture more PM [34,35]. In addition, deciduous plants have higher water
transport efficiency and photosynthetic capacity [36], and can produce NAI. Furthermore,
noise does not show regularity due to the mobility of tourists and the influence of the
surrounding traffic and factories. The comfort results which we achieved were influenced
by the fact that the measurement stations in this study were placed in areas with flat terrain
and little variation in elevation, resulting in a more uniform microclimate. As a result,
deciduous community types have superior ecological health. Because the tree–shrub–herb
structure is characterized by shrubs and herbaceous plants beneath the tree canopy, the
space is fully utilized, and the amount of spatial three-dimensional greenery per unit of
green space area is relatively large. This type of structure can deposit more vertical spatial
PM and produce more NAI than single- and double-story structures.

Eco-health benefits are influenced by a combination of factors, but traditional correla-
tion analysis only revealed the correlation and magnitude of each relevant factor regarding
eco-health benefits. However, the relationships between eco-health benefits and each influ-
ential factor were complex. Constructing a pathway analysis model would clearly show the
magnitude and relative importance of the correlation of each relevant factor, indicate the
causal relationships between the roles of the variables [37–39], and reveal the relationships
between the variables in a more profound way.

4.2. Influence of Plant Factors on the UPCHI

Vegetation provides ecological benefits such as climate regulation, air purification,
boosting NAI concentrations, and lowering noise and dust. The influences of plant param-
eters on UPCHI vary with the changing season. According to correlation and pathway
analyses, CH, TCR/CH, and TH were considered as the critical vegetative elements that can
impact UPCHI, while TV did not have an influential role in UPCHI. This demonstrated that
tree crown geometry had the greatest influence on UPCHI. In the spring, CH had the high-
est direct route coefficient with UPCHI, indicating that CH was the most closely associated
with UPCHI and an essential factor in improving UPCHI. This could be because plant com-
munities with high CH in the spring have large under-canopy spaces, which increases the
capacity for heat convection between the interior and exterior of the plant community [40].
This results in in increased temperature and wind speed within the community, increased
air friction producing NAI and PM diffusion [41–43], and proper ventilation contributing
to thermal comfort. The direct path coefficients of TH and TCR/CH on UPCHI were larger
in the summer. Higher TH and TCR/CH values often corresponded to taller trees, larger
crowns, and lower sub-canopy heights, which naturally expressed more leaves, larger-sized
crowns, and greater degrees of canopying [44]. A canopy blocks solar radiation and reduces
heat, and a greater evapotranspiration capacity removes latent heat [45,46], resulting in a
cooling effect that improves human comfort. Previous studies have proven that tall trees
with large canopies have superior photosynthesis and transpiration; thus, they are more
likely to produce large amounts of water vapor, which is conducive to reducing the ambient
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particulate matter [22], adjusting the local microclimate [44], degrading the noise level [47],
and producing NAI [48].

4.3. Influence of Climatic Factors on the UPCHI

In the spring, LX directly affected UPCHI, the direct path coefficient of which was
similar to that of CH. This indicates that the increase in these two factors can significantly
improve the UPCHI values of different plant communities while keeping other factors
unchanged. Therefore, LX should be a crucial factor in the spring to obtain a better UPCHI.
LX had a greater impact on UPCHI, which could be because an increase in illumination
intensity promotes the photolysis of organic carbon in PM, lowering PM concentrations [49].
Also, an increase in illumination intensity raises the near-surface temperature, enhancing
atmospheric convection and promoting the upward movement and diffusion of PM. At the
same time, rising temperatures cause losses of ammonium nitrate and other volatile PM
ingredients PM [50,51], lowering PM concentrations. A rising temperature enhances the
acceleration of the thermal motion of atoms or molecules [52], increasing the possibility of
collisions and ionization between them, which can result in more NAIs. Illumination inten-
sity can also be employed to boost NAI production by encouraging plant photosynthesis,
which emits oxygen and negative ions into the atmosphere, and oxygen molecules have a
high ability to absorb electrons. However, contrary to our prediction, the summer UPCHI
did not significantly affect the relationship with temperature or illumination intensity,
which may be because the present study was conducted during clear and windless weather.
The UPCHI values may have been less influenced by the background general climate and
more significantly by the microclimate. However, the extremely high temperatures and
light in summer, as well as the lush vegetation and high stand depression, resulted in few
differences between the microclimates of each plant community.

4.4. Influence of Geography Factors on the UPCHI

Geographic factors influence pollution conditions and moisture changes in the plant
community, and cause UPCHI to vary among plant communities. This study found that
the distance from the mountain (ML) had some impact on the UPCHI factors of the plant
community. On the one hand, this could be because the research area was in the shape of
a belt closer to the ML and farther away from the BL, while outside the park were roads,
universities, and factories. As a result, people, automobiles, and manufacturing operations
contribute to air pollution by increasing the concentration of airborne particulates and the
loss of NAI. On the other hand, the mountain woodland region may encompass a broad
area and have a substantial impact on localized air particle matter and NAI.

5. Conclusions

The ultimate purpose of this research was to quantify the combined eco-healthcare
benefits of plant communities and determine the major elements influencing eco-healthcare
benefits. Firstly, each plant community had a significantly higher UPCHI value than the
unforested control throughout the year, with the best UPCHI values in spring and sum-
mer. This was shown to have an effect on human health. Among them, the Pterocarya
stenopterar–Nandina domestica–Hosta plantaginea deciduous tree–shrub–herb category, i.e.,
the B3 structure, had the highest UPCHI, followed by Osmanthus fragrans–Photinia serratifo-
lia–Pleioblastus amarus (A3). Second, the tree height (TH) and tree crown radius/canopy
height (TCR/CH) were the primary direct factors influencing UPCHI, while the canopy
height (CH) and tree crown radius/canopy height had an indirect impact on UPCHI
by decreasing the illumination intensity and increasing the degree of plant community
stratification. When compared to vegetative factors, geographic and climatic factors had
less significant effects on UPCHI. Overall, the UPCHI of the vegetation community was
influenced by the interactions between multiple factors. Therefore, in the future, tourists
can travel to areas characterized by a tree–shrub–herb structure in urban wetland parks
for healthcare activities in the spring and summer. Furthermore, park planners should
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focus on restructuring vegetation communities. In particular, emphasis should be placed
on increasing deciduous vegetation and trees with CH, TCR/CH, and TH characteristics;
more recreational areas in areas close to mountains would maximize the health benefits of
plant communities. This study provides a reference for future studies aiming to optimize
the ecological health benefits of urban humidity parks.

Author Contributions: H.F. (Huijun Feng): conceptualization, data curation, formal analysis, method-
ology, visualization, writing—original draft, writing—review and editing; J.A.: conceptualization,
formal analysis, writing—review and editing; H.W.: writing—review and editing; X.M. (Xiongyi Miao):
writing—review and editing; G.Y.: writing—review and editing; H.F. (Hongbo Feng): writing—review
and editing; Y.W.: writing—review and editing; X.M. (Xuyang Ma): writing—review and editing. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in full by grants from the Joint Fund of the National Natural
Science Foundation of China and the Karst Science Research Center of Guizhou Province (Grant No.
U1812401) and Innovation and the Entrepreneurship Training Plan Project for Provincial College
Students of Guizhou Normal University (S202210663061).

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, [J.A.], upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, L.; Li, J.; Wang, J.; Liu, F.; Cole, J.; Sha, J.; Jiao, Y.; Zhou, J. The establishment of an eco-environmental evaluation model for

southwest China and eastern South Africa based on the DPSIR framework. Ecol. Indic. 2022, 145, 109687. [CrossRef]
2. Liao, L.; Du, M.; Chen, Z. Environmental pollution and socioeconomic health inequality: Evidence from China. Sustain. Cities Soc.

2023, 95, 104579. [CrossRef]
3. Zhu, S.X.; Hu, F.F.; He, S.Y.; Qiu, Q.S.; Yan, H.; Qian, L.; Ji, Y. Comprehensive Evaluation of Healthcare Benefits of Different Forest

Types: A Case Study in Shimen National Forest Park, China. Forests 2021, 12, 207. [CrossRef]
4. Dou, X.Y.; Guo, H.D.; Zhang, L.; Liang, D.; Zhu, Q.; Liu, X.T.; Zhou, H.; Lv, Z.R.; Liu, Y.M.; Guo, Y.T.; et al. Dynamic landscapes

and the influence of human activities in the Yellow River Delta wetland region. Sci. Total Environ. 2023, 899, 166239. [CrossRef]
[PubMed]

5. Wei, Q.F.; Shao, Y.; Xie, C.; Cui, B.S.; Tian, B.S.; Brisco, B.; Li, K.; Tang, W.J. Number and Nest-Site Selection of Breeding
Black-Necked Cranes Over the Past 40 Years in the Longbao Wetland Nature Reserve, Qinghai, China. Big Earth Data 2021, 5,
217–236. [CrossRef]

6. Pan, M.X.; Hu, T.G.; Zhan, J.Y.; Hao, Y.; Li, X.Q.; Zhang, L.X. Unveiling spatiotemporal dynamics and factors influencing the
provision of urban wetland ecosystem services using high-resolution images. Ecol. Indic. 2023, 151, 110305. [CrossRef]

7. Xu, Y.M.; Xie, Y.J.; Wu, X.D.; Xie, Y.T.; Zhang, T.Y.; Zou, Z.X.; Zhang, R.T.; Zhang, Z.Q. Evaluating temporal-spatial variations of
wetland ecosystem service value in China during 1990–2020 from the donor side based on cosmic exergy. J. Clean. Prod. 2023, 414,
137485. [CrossRef]

8. Zhang, B.; Shi, Y.T.; Liu, J.H.; Xu, J.; Xie, G.D. Economic values and dominant providers of key ecosystem services of wetlands in
Beijing, China. Ecol. Indic. 2017, 77, 48–58. [CrossRef]

9. Davidson, N.C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res.
2014, 65, 934. [CrossRef]

10. Zhu, X.L.; Jiao, L.; Wu, X.; Du, D.S.; Wu, J.J.; Zhang, P. Ecosystem health assessment and comparison of natural and constructed
wetlands in the arid zone of northwest China. Ecol. Indic. 2023, 154, 110576. [CrossRef]

11. Mahapatra, A.; Hore, U.; Singh, A.; Kumari, M. The effect of urbanization on the shrinkage of wetlands in the Noida-Greater
Noida region and its surrounding sub-urban areas. Acta Ecol. Sin. 2023; in press. [CrossRef]

12. Yan, J.; Zhu, J.; Zhao, S.Y.; Su, F.Z. Coastal wetland degradation and ecosystem service value change in the Yellow River Delta,
China. Glob. Ecol. Conserv. 2023, 44, e02501. [CrossRef]

13. Liu, L.; He, H.Y.; Cai, Y.H.; Hang, J.; Liu, J.; Liu, L.; Jiang, P.; He, H. Cooling effects of wetland parks in hot and humid areas based
on remote sensing images and local climate zone scheme. Build. Environ. 2023, 243, 110660. [CrossRef]

14. Zhou, J.B.; Wu, J.; Gong, Y.Z. Valuing wetland ecosystem services based on benefit transfer: A meta-analysis of China wetland
studies. J. Clean. Prod. 2020, 276, 122988. [CrossRef]

15. Ye, Y.; Qiu, H.F. Environmental and social benefits, and their coupling coordination in urban wetland parks. Urban For. Urban
Green. 2021, 60, 127043. [CrossRef]

16. Wu, S.J.; Yang, H.; Luo, P.; Luo, C.; Li, H.L.; Liu, M.; Ruan, Y.; Zhang, S.J.; Xiang, P.; Jia, H.H.; et al. The effects of the cooling
efficiency of urban wetlands in an inland megacity: A case study of Chengdu, Southwest China. Build. Environ. 2021, 204, 108128.
[CrossRef]

https://doi.org/10.1016/j.ecolind.2022.109687
https://doi.org/10.1016/j.scs.2023.104579
https://doi.org/10.3390/f12020207
https://doi.org/10.1016/j.scitotenv.2023.166239
https://www.ncbi.nlm.nih.gov/pubmed/37572926
https://doi.org/10.1080/20964471.2021.1909822
https://doi.org/10.1016/j.ecolind.2023.110305
https://doi.org/10.1016/j.jclepro.2023.137485
https://doi.org/10.1016/j.ecolind.2017.02.005
https://doi.org/10.1071/MF14173
https://doi.org/10.1016/j.ecolind.2023.110576
https://doi.org/10.1016/j.chnaes.2023.07.006
https://doi.org/10.1016/j.gecco.2023.e02501
https://doi.org/10.1016/j.buildenv.2023.110660
https://doi.org/10.1016/j.jclepro.2020.122988
https://doi.org/10.1016/j.ufug.2021.127043
https://doi.org/10.1016/j.buildenv.2021.108128


Forests 2023, 14, 2257 19 of 20
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