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Abstract: Mosses are particularly susceptible to climate change owing to their close biological and
ecological associations with climatic conditions. However, there is a limited understanding of the
changes in distribution patterns of the moss species in forest ecosystems under climate change,
especially in mosses with narrow ranges. Therefore, we reconstructed historical, simulated present,
and predicted future potential distribution patterns of Didymodon validus, a narrow-range moss
species in the forest ecosystem, using the MaxEnt model. The aim of this study was to explore
its unique suitable habitat preference, the key environmental factors affecting its distribution, and
the distributional changes of D. validus under climate change at a long spatial-time scale. Our
findings indicate that the most suitable locations for D. validus are situated in high-altitude regions of
southwestern China. Elevation and mean temperature in the wettest quarter were identified as key
factors influencing D. validus distribution patterns. Our predictions showed that despite the dramatic
climatic and spatial changes over a long period of time, the range of D. validus was not radically
altered. From the Last Interglacial (LIG) to the future, the area of the highly suitable habitat of D.
validus accounted for only 15.3%–16.4% of the total area, and there were weak dynamic differences
in D. validus at different climate stages. Under the same climate scenarios, the area loss of suitable
habitat is mainly concentrated in the northern and eastern parts of the current habitat, while it may
increase in the southern and eastern margins. In future climate scenarios, the distribution core zone
of suitable habitat will shift to the southwest for a short distance. Even under the conditions of future
climate warming, this species may still exist both in the arid and humid regions of the QTP in China.
In summary, D. validus showed cold and drought resistance. Our study provides important insights
and support for understanding the impact of climate change on the distribution of D. validus, as well
as its future distribution and protection strategies.

Keywords: Didymodon validus; MaxEnt; paleoclimate; climate warming; shifts

1. Introduction

Bryophytes, including mosses, liverworts, and hornworts, are a group of non-vascular
plants that encompass over 20,000 recorded species worldwide. They inhabit diverse ter-
restrial habitats, ranging from tropical to polar regions and the sub-Antarctic [1,2]. Several
studies have demonstrated the significant role of mosses in carbon and nutrient cycling
processes [3,4], permafrost stability [4], water retention, pedogenesis [5], colonization by
higher plants [6], and ecological restoration efforts [7]. Furthermore, due to their unistratose
leaves and lack of well-developed cuticles, bryophytes have no resistance to ion exchange;
thus, they are highly sensitive to changes in the surrounding environment [5]. Furthermore,
bryophytes are more exposed to the effects of climate than vascular plants because their
physiology is strongly linked to climatic factors, such as temperature and precipitation [8].
For example, it has been reported that bryophytes will increase, migrate, or become extinct
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due to climate change [9–11]. However, a limited number of studies have explored the
response of key bryophyte taxa to climate change.

Didymodon is one of the largest genera in the Pottiaceae family, including about
140 species distributed worldwide, and it occurs in temperate areas, especially mountain-
ous and drought-prone regions [12–16]. It has been reported that Didymodon species are
the primary components of biological soil crusts in arid and semi-arid areas, with im-
portant ecological functions [17,18]. Furthermore, due to a strong sensitivity to climate
change, Didymodon is recommended as a climate indicator [13,16]. Although Didymodon
species generally have strong adaptability to extreme climate and environmental conditions,
some individual species often face more survival challenges due to their unique habitats
and adaptions.

Didymodon validus Limpr. is a sylvan moss species with a relatively narrow distribution
range. It was described as a new species by Limpricht (1888) and has been reported to
be distributed intermittently in Europe (Austria, Germany, Italy, Switzerland, Slovakia),
Central (Kirghizstan) and Southwest Asia, the Arabian Peninsula, and Ethiopia (Tigray
province) [19,20]. However, this species has been known in China for a relatively short time.
Shuayib et al. (2017) first found D. validus on the Tomur Peak and the Altun Mountains in
Xinjiang, China. Subsequently, D. validus samples were collected in forest regions in Yunnan
and Xizang through our fieldwork. A previous study showed that climate change greatly
affects the distribution of narrow-range species, which may be at risk of extinction [21].
However, there has been a lack of study on the distribution pattern, origin, and shifts of D.
validus as climate change in different timelines.

The species distribution models (SDMs), also called ecological or environmental niche
models, have a pivotal function in quantifying species–habitat relationships and projecting
species distributions in ecological research, conservation, and environmental manage-
ment [22–24]. Typical SDMs include MaxEnt, GARP, ENFA, and Bioclim [22,24–26]. Due to
the advantages of high accuracy, simple operation, and the small size of the sample, MaxEnt
has proven to be a top-performing algorithm in comparison to other methods [22,23,27,28].
The MaxEnt model has been widely applied to simulate the geographical distribution of
specified species in the past [29], current [30], and future [24], which have also been utilized
to predict the geographical distribution, including didymodon on regional scals [13,16,31].
However, no broad-scale studies have predicted the distribution patterns of Didymodon at
the species level.

Under these circumstances, we utilized the MaxEnt model to simulate the distribution
pattern of D. validus across China under different climatic scenarios. The objectives of this
study include (1) revealing its unique suitable habitat preference for D. validus, (2) deter-
mining the relationship between the distribution of D. validus and climatic and topographic
factors, and (3) exploring the geographical distribution changes of D. validus under different
climatic conditions at a large spatial-time scale (from LIG to 2070). This study will enable
the ongoing conservation of bryophytes and their habitats.

2. Materials and Methods
2.1. Species Traits

Because of previous confusion over the taxonomy and distribution of D. validus [32],
we only considered data from within China in the present study. During our continuous
investigation of xerophytic moss, particularly Didymodon Hedw., in different provinces
in China, some D. validus specimens were collected in Tibet and Yunnan. Microscopic
examinations and measurements were taken with a ZEISS Primo Star light microscope
(ZEISS, Oberkochen, Germany). Morphological observations were obtained with a Canon
EOS 70D camera (Minato Ward, Tokyo, Japan) mounted on a microscope. Specimens were
examined in 2% KOH [33].
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2.2. Study Area and Species Occurrence

We obtained occurrence data for D. validus from field investigations, documented
literature, and checked herbarium information. The specific field investigation can be
found in our previous study [15,16,33,34]. Recently, D. validus was collected and identified
by us and other domestic researchers in the process of studying the genus Didymodon. Data
and systematic survey results across China [13,16,31,35–37] indicate that its distribution
range is limited to Xizang, Shilin, Yunnan, Tomur Peak in Tianshan, and Altun Mountain,
Xinjiang. The environments in these areas were generally characterized by high altitude,
strong solar radiation, low annual temperature variance, and high daily temperature
variance [13,38,39]. Based on accurate species identification and distribution records,
8 distribution points of D. validus were used in our analysis (Figure 1). The national
fundamental geographic data were provided by the National Geomatics Center of China
(http://www.cehui8.com/3S/GIS/20130702/205.html (accessed on 5 November 2020)).
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Figure 1. Distribution occurrence of D. validus in China.

2.3. Environmental Variables and Climate Change Scenarios

Considering the importance of climatic and topographic data in determining past,
present, and future distribution of D. validus in China, we used climatic data downloaded
from the WorldClim database (http://www.worldclim.org/ (accessed on 5 June 2020))
from three paleoclimate datasets: Last Interglacial period (LIG, about 120–140 ka, a warm
and humid climate), Last Glacial Maximum (LGM, about 22 ka, the climate became colder
and drier), and Mid Holocene (MH, about 6 ka, the climate warmed up) in the Community
Climate System Model four (CCSM4) global climate model; one present dataset: the
Current (1970–2000); four Representative Concentration Pathways (RCPs) climate change
data, where 2050 and 2070 use average emissions for the years 2041 to 2060 and 2061 to 2080,
respectively. We used combinations of RCP 2.6–2050, RCP 2.6–2070, RCP 8.5–2050, and
RCP 8.5–2070 with CCSM4 to simulate global climate responses to increased greenhouse
gas emissions [40,41]. For the topographic variables, digital elevation model data were
obtained from the USGS GTOPO 30 series (https://www1.gsi.go.jp/geowww/globalmap-
gsi/gtopo30/gtopo30.html (accessed on 5 June 2020)) and then used to derive the aspect
and slope data using ArcGIS 10.5 (Esri, Redlands, CA, USA). The climate data were used

http://www.cehui8.com/3S/GIS/20130702/205.html
http://www.worldclim.org/
https://www1.gsi.go.jp/geowww/globalmap-gsi/gtopo30/gtopo30.html
https://www1.gsi.go.jp/geowww/globalmap-gsi/gtopo30/gtopo30.html


Forests 2023, 14, 2227 4 of 17

to run the model-covered areas in China. All environmental layers were resampled to a
2.5 min resolution in ArcGIS 10.5. To deal with collinearity, we performed variance inflation
factors (VIFs) and Pearson correlation analyses. As a result, six bioclimatic variables (Bio2
(mean diurnal range), Bio8 (mean temperature of wettest quarter), Bio9 (mean temperature
of driest quarter), Bio13 (precipitation of wettest month), Bio15 (precipitation seasonality),
Bio19 (precipitation of coldest quarter)), and three topographic variables (elevation, slope,
and aspect) were selected.

2.4. Distribution Modeling

The MaxEnt model (version 3.4.1, http://biodiversityinformatics.amnh.org/open_
source/maxent/ (accessed on 14 July 2020)) was used to predict the probability of the
distribution of D. validus across China [42]. A total of 80% of the occurrence data were
used for model training and 20% for model testing to estimate the model’s capacity. The
recommended default values were used for the convergence threshold (10−5), with the
maximum iterations (500) and the maximum number of background points (10,000) using
the recommended default parameters (i.e., regularization multiplier = 1). The selection of
environmental variables and functions was carried out automatically under the default
rules, and 10 random partitions were created in the occurrence data [43]. Furthermore, the
jackknife approaches and response curves were plotted to demonstrate how the variables
affected the potential species distribution [44]. We reclassified potentially suitable habitats
into four categories: high (0.6–1), moderate (0.4–0.6), low (0.2–0.4), and none (0–0.2) [45].
We projected the fitted models onto past, current, and future climate conditions. All binary
distribution projections were stacked from the different climate conditions to explore
central tendencies in projections, and we selected overlapping areas among projections as a
future distribution range [46]. The range change and core zone shifts were predicted by
comparing the binary outputs in different periods above using a Python-based GIS toolkit
SDM toolbox [47].

2.5. Model Evaluation

To further evaluate the performance of the modeling algorithms, the area under the
curve (AUC) and the true skill statistic (TSS) were used [48,49]. The value of the AUC ranges
between 0.5 and 1, with >0.9 representing excellent predictive performance of the model,
0.7–0.9 indicating moderately useful models, and 0.5 representing randomness [50,51]. The
TSS ranges from −1 to 1, where −1 indicates a perfect inverse prediction, 1 indicates perfect
performance, and 0 indicates randomness [48]. The threshold was set to the value at which
the TSS was maximized (TSSmax). The R package Biomod2 was applied to conduct the TSS
assessment [52]. Both the final values of AUC and TSS were produced by an average of
10 replicates.

3. Results
3.1. Morphological Characteristics

Plants, medium-sized, growing in dense turfs, brown below, green above. Stems,
1.5–2.1 cm high, erect to ascending, usually branched, weakly radiculose at base, in trans-
verse section, rounded, hyalodermis absent, central strand differentiated, and sclerodermis
present. Axillary hairs, filiform, long, usually 5–8 cells long, with one brown basal cell
and hyaline upper ones. Rhizoidal tubers are absent. Leaves, twisted and incurved when
dry, spreading when moist, 2–3 × 0.65–0.75 mm, channeled ventrally in the upper part,
sheathing. Lamina is completely unistratose and yellow with KOH. Apex acuminate, not
apiculate, not cucullate. Margins entire, recurved from base to 2/3 to 3/4 of the leaf,
unistratose. Costa, 95–162.5 µm wide at the base, long-excurrent, and not spurred. Ventral
cells of the costa in the upper middle part of the leaf quadrate or subquadrate, smooth or
with low papillose. Dorsal cells of the costa in the upper middle part of the leaf quadrate or
subquadrate, smooth. Transverse section semicircular to elliptic, with 4–7 guide cells in
one layer below midleaf, 1–3 layers of ventral stereids, and 2–4 layers of dorsal stereids,

http://biodiversityinformatics.amnh.org/open_source/maxent/
http://biodiversityinformatics.amnh.org/open_source/maxent/
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without hydroids. Ventral surface cells are differentiated, not bulging, and smooth. Dorsal
surface cells are differentiated and smooth. Upper and middle laminal cells subquadrate or
oblate, 7–9.5 × 7.75–9.75 µm, smooth and thick-walled. Basal cells are not differentiated,
smooth, basal juxtacostal cells short-rectangular to rectangular, 20–37.5 × 8.75–13.75 µm.
Basal marginal cells oblate or quadrate, 5.25–8.75 × 7.5–12.75 µm. Gemmae are absent.
Sporophytes are unknown. The morphological characteristics are shown in Figure 2.
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Figure 2. Didymodon validus. (A) Plants when dry (scale in mm). (B) Plants when moist (scale in
mm). (C) Leaves. (D) Leaf apex (dorsal). (E) Upper laminal cells. (F–J) Transverse section of leaf,
sequentially from apex to base. Scale bar on (J): (C)—1 mm; (D,F–J)—100 µm; (E)—40 µm.

3.2. Potential Distribution Pattern of D. validus

Models for D. validus with a cross-validation AUC of 0.751 and a TSS value of
0.526 indicated that the model results (Figure 3) could be considered satisfactory for predict-
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ing potential suitable habitats for D. validus. The potential distribution pattern of D. validus
is primarily located in Tibet, southern and central Xinjiang, southern and northern Qinghai,
northwestern Sichuan, southwestern Gansu, and a small part of northwestern Yunnan.
Among those, the most suitable areas (distribution probability over 0.6) are concentrated in
the Qinghai–Tibet Plateau (QTP) and adjacent areas of southwestern China, especially in
the high mountain area of 4000–6000 m, with a distribution probability greater than 0.7.
In general, these areas with a high probability of distribution were relatively small and
severely fragmented.
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The proportions of areas within the four suitability classes of the potential distributions
of D. validus in China are shown in Figure 4. For the different climate conditions, the area
of the highly suitable habitat of D. validus accounted for only 15.3%–16.4% of the total
area, indicating that the distribution of this species in China may be relatively narrow. In
addition, there were weak dynamic differences in D. validus at different climate stages. In
the historical climate period, we found that the proportion of highly suitable D. validus area
in China was at a small increase stage and reached the highest value of 16.4% in the MH,
which was reconstructed by the prediction model. In the current climate period, the highly
suitable area of D. validus began to shrink, and the proportion of the highly suitable area
reached its lowest value of 15.3% throughout the predicted climate period. Compared to
the present distribution, the highly suitable habitat distribution range of the species was
predicted to expand slightly in the future (2050s and 2070s), with the increase in suitable
habitats in the RCP8.5 climate scenario being less than that in RCP2.6. In general, the
potential distribution area of D. validus in China fluctuated little with climate change, and
it had a relatively stable distribution and reproduction.
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3.3. Relationship between Environmental Factors and the Distribution Pattern of D. validus

The importance of the relative contributions of the environmental variables considered
in the modeling was evaluated using the jackknife test shown in Figure 5. The analysis
revealed that the elevation exhibited the greatest gains in the MaxEnt model. The variables
of mean temperature in the wettest quarter (Bio8) were important for shaping the D.
validus distribution, and precipitation in the coldest quarter (Bio19) and precipitation in the
wettest month (Bio13) were the main precipitation variables that influenced the potential
distribution of D. validus. In contrast, the other variables exhibited relatively low gains,
indicating that the weak contributions could almost be ignored.
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The response curves of the nine variables for the habitat suitability of D. validus are
shown in Figure 6. Based on the response curves of the major variables, the topography
variables were stable environmental factors affecting the distribution of D. validus. It was
predicted that D. validus mainly prefers habitats with high altitudes and large slopes in
China, and within the predicted variable range, its survival probability gradually increased
with the increase in elevation, reaching the maximum at about 6000 m altitude, indicating
that D. validus is a typical alpine species in China. In addition, climatic variables were the
main limiting factors for the potential distribution of D. validus. There were differences
in the range of temperature and precipitation variables to which D. validus could adapt
in different climatic periods. During the LIG period, D. validus seemed to have a wider
climate adaptation. For example, when the mean temperature in the driest quarter (Bio9)
was between −22 and 46 ◦C and the precipitation seasonality (Bio15) was from 30 to 240,
D. validus may be present. However, from the MH period, the habitat adaptability of D.
validus gradually tended to be stable. The occurrence probability was higher (over 0.5)
when the mean temperature in the wettest quarter (Bio8) was −15–15 ◦C and precipitation
in the coldest quarter (Bio19) was 0–20 mm. According to the response curves of the
main variables, some precipitation variables and temperature variables were negatively
correlated with the probability of D. validus distribution. For example, when the values of
precipitation in the wettest month (Bio13) and precipitation in the coldest quarter (Bio19)
increased, the probability of the presence of D. validus decreased. Similarly, as the value
of the mean temperature in the wettest quarter (Bio8) decreased, the probability of the
presence of D. validus increased. In general, D. validus is a typical alpine bryophyte adapted
to cold and drought climates in China, with a relatively narrow range of optimum growth
temperature and precipitation, and is mainly distributed at high elevations.
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3.4. Species Distribution Shifts under Different Climatic Scenarios

In general, limited expansion and contraction in the extent of highly suitable habitats
were predicted across the suitable habitat area with climate change. The results are shown
in Figures 7 and 8. MaxEnt projected that the area of suitable habitat losses would be mainly
concentrated in the northern and eastern areas of the current habitat. Under the same
climate scenarios, the range of appropriate habitats could increase in both the southern
and eastern margins of the current suitable habitat, which is mainly in the Gangdise and
Hengduan Mountains of China.

The SDMs of the LIG estimated that southern and eastern Tibet, western Sichuan,
and southern Qinghai had more suitable habitats than the current distribution (Figure 7).
However, the suitable habitats in central Tibet, southern and central Xinjiang, central and
northern Qinghai, and western Sichuan in China contracted slightly. The MH model was
similar to that of the LGM, with the estimated suitable habitat increasing mainly in the
southern and eastern parts of the current habitat, the Gangdise and Hengduan Mountains
of China (Figure 7). In future scenarios, MaxEnt estimated that the suitable habitat would
increase mainly in the southern edge of the current habitat but decrease in the western
parts (Figure 7). The suitable habitat area of D. validus in 2050 would be slightly larger than
that in 2070 due to its higher expansion and lower contraction (Figure 8a).

The current distribution center for D. validus was predicted to be in northeastern Tibet
(Figure 8b). However, during the LIG period, the habitat centroid was southwestern of
the current centroid of suitable habitats. This centroid shifted to the northeastern region
during the LGM. In the MH, the centroid was distant from its current location. Looking
to a possible future under RCP2.6, the centroid would have shifted southeast by 2050 and
then moved westward by 2070. The centroid was predicted to shift southward by 2050 and
then westward by 2070, applying RCP8.5. In brief, the distribution core zone of suitable
habitat would shift to the southwest in future climate scenarios.
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4. Discussion

Previously, D. validus was classified as an infraspecific taxon within Didymodon rigidu-
lus Hedw due to their shared characteristics, such as leaf shape, curvature of the leaf
margins, leaf areolation, and color of the laminal cells in reaction with KOH [32]. Our
findings corroborate the observations made by Jiménez (2006) and Shuayib et al. (2017),
indicating that the leaf cells of D. validus lacking papillae exhibit distinct characteristics
compared to the middle and upper leaf cells of D. rigidulus with papillae (Figure 2). The
structures of papillae are associated with water sparing and the avoidance of light radiation.
The absence of warts on the surface of the leaf cells of this species, which occur in forest
ecosystems, may be due to long-term adaptive evolution, exemplifying the integrity of
plant morphology and function. The smooth nature of D. validus leaf cells facilitates water
penetration by reducing surface tension, thereby enhancing water absorption. Moreover,
this characteristic also promotes gas exchange, diffusion, and nutrient uptake, ultimately
improving their adaptability in the forest edge ecosystem.

In addition, Kürschner and Neef (2012) highlighted that D. validus exhibits a pro-
nounced capacity for asexual reproduction, as evidenced by its ability to generate numer-
ous gemmae in leaf axils, thereby ensuring successful colonization and long-term habitat
maintenance. However, the presence of gemmae as propagules in mosses is not always
consistent despite their frequent consideration as a characteristic of species classification.
Gemmae were present in D. validus from Europe and parts of Asia [19,53], while they were
absent in China, according to Shuayib et al. (2017) and our own observations. This could
mean that the structure of the gemmae will be affected more by long-term geographical iso-
lation than by habitat conditions. However, we found that D. validus in dry lands had more
branches and pseudoroots, dense mat-like clusters, and thicker cell walls than the wartless
pair of mosses distributed in forest ecosystems. Persistent pressure from environmental
stress may have facilitated plant adaptation under adverse conditions and the evolution of
many survival mechanisms [54,55].
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Although it is impossible to simulate the potential distribution of species with few
sites, the prediction of the distribution pattern of D. validus is helpful for the discovery
and conservation of narrow-range species in their corresponding habitats. Multi-model
intercomparison studies have reported that the MaxEnt model, which is based on the
maximum entropy principle, typically outperforms other SDMs in terms of high tolerance
and high predictive accuracy, particularly for small sample sizes [56–58]. In this study,
less distribution point information was used to predict the MaxEnt model, and the results
showed that the cross-validation AUC of the D. validus model was 0.751 and the TSS value
was 0.526, further supporting the suitability of our ArcGIS-based MaxEnt model. The
simulation results are still reliable under the condition that the species distribution points
are few, but uniform collection is guaranteed. In addition, the site information used in this
study, the secondary data, and the obtained results showed that the distribution range of D.
validus was narrow rather than unevenly investigated.

The MaxEnt model is frequently used by conservationists and managers to model
endangered and invasive species in order to rehabilitate species while at the same time
preserving their habitats [59,60]. It can utilize both continuous and categorical data and can
incorporate interactions between different variables [61]. Moreover, the output of MaxEnt
is continuous, allowing fine distinctions to be made between the modeled suitability of
different areas, and these fine distinctions in predicted relative environmental suitability
can be valuable to reserve planning algorithms [42]. However, because the dependence of
the MaxEnt probability distribution on the distribution of occurrence locations is explicit, a
difference between available occurrence records and background sampling may lead to
inaccurate models that, in turn, may lead to inappropriate management decisions [62].

Jiménez (2006) documented D. validus growing in dense turf that was olive-green
or brown-green. Its habitat is dominated by flaky soil, calcareous rocks, and dry talus at
elevations from 200 to 1615 m. However, D. validus found in China was mainly distributed
on soil over rocks and soil at the edge of the coniferous forest belt above an altitude of
2000 m, and the species showed a more suitable area and higher suitability with the increase
in altitude. Our results highlighted a significantly larger suitable distribution range for D.
validus than the current known distribution of the species in China (Figure 3). The potential
range of D. validus is not limited to alpine forest ecosystems but may cover a wide range
of humid regions and dry lands of the QTP. Shuayib (2018) pointed out that there are
some morphological and structural differences in the growth performance of D. validus
in different geographic regions that help it adapt to both arid and humid environments.
Furthermore, by comparing the potential distribution patterns of D. validus under historical,
current, and future climate scenarios, we observed that the highly suitable range of D.
validus in China remains relatively stable under different climate conditions (Figure 4). We
suspect that the high mountains of western China may provide a refuge for D. validus
to cope with climate change. Many previous studies have shown that the QTP provides
a refuge for many alpine plants to cope with vegetation migration events in different
historical periods to reduce the influence of climatic events on their growth [21]. Refugia
with complex topography may buffer against the impacts of climate change [63,64] and
allow for the local persistence of species through successive periods of climate change [65].
This implies that the QTP provides a suitable habitat for D. validus even under changing
climatic conditions.

In addition, our results showed that elevation and mean temperature in the wettest
quarter were the predominant variables driving the potential distribution of D. validus
(Figure 5). Previous studies have shown that altitude is usually a key eco-factor for the
distribution of alpine species [66]. In mountainous areas, the elevational gradient causes
changes in moisture, temperature, precipitation, and solar radiation [67]. Furthermore, the
contribution of the mean temperature in the wettest quarter was significant. Temperature
has been shown to affect the growth of bryophytes by determining their respiration rates [1].
Mild temperatures and relatively high water availability favor the continuous production
of sex organs [68]. In addition, fertilization time is dependent on the wettest period [69].
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Most mosses also depend on moisture for growth and reproduction [70]. Therefore, we
speculate that this is why D. validus is found in forest ecosystems. Didymodon validus may
prefer a warm and humid season during the same period of rain and heat for development
or reproduction. Precipitation in the coldest quarter was a constraint on the distribution
of D. validus in our study. Ma and Sun (2018) suggested that precipitation will increase
habitat suitability for bryophytes in the coldest season. In alpine regions, the coldest season
is usually accompanied by low temperatures. Soil freezing may make water less readily
available, while precipitation can provide plants with the needed moisture.

In our study, the response curves to the key climatic variables showed that D. validus
exhibited a wider range of climatic adaptations during the LIG period relative to the other
periods (Figure 6). The LIG period was characterized by a warm and humid climate and
is considered one of the warmest periods globally for nearly 150 ka. This warm period
may have led to the melting of snow and ice on the Tibetan Plateau and the expansion of
lakes, providing favorable conditions for the growth and reproduction of D. validus. In
addition, the habitat suitability of D. validus gradually stabilized after MH. During the
LGM, mountain ranges were uplifted, and the climate became colder and drier, adversely
affecting the survival of D. validus. Until the MH after the LGM, the climate warmed up,
and the glaciers shrank in a large area [71]. These factors indicate that the adaptability of D.
validus to climate in different periods is affected by climate change and that the warm and
humid climate conditions during the LIG period provide opportunities for reproduction
and survival.

The impact of climate change on the geographical distribution of plants is mainly
reflected in changes in distribution range and area [72]. QTP is the highest alpine ecosystem
in the world and one of the most sensitive to climate change [21]. Numerous species are
confronted with the shrinking of their spatial distribution in the case of continuous warming
on the plateau or even the possibility of extinction. However, under such a long time and
spatial variation in this study, D. validus has managed to settle successfully and steadily
in a high-altitude environment. This not only demonstrates the ecological adaptability of
this species, which is capable of withstanding adverse conditions on the plateau, but also
indicates that, despite its limited distribution in China, D. validus does not retreat from its
original habitat with the changing climate. Compared with other narrow-ranged species,
there is no need for excessive habitat protection or concern for this species.

According to previous studies, the differentiation of D. validus was completed in the
Miocene [34]. Our MaxEnt model reconstructed that the simulated distribution range of D.
validus was stable and did not shrink during the LIG, LGM, and MH and that the area of
expansion had been increasing (Figure 7). Quaternary glaciation has always been regarded
as an important event in the study of phylogeography, and drastic fluctuation in the climate
is generated by the recurrence of glaciation [73]. Many studies have shown that the QTP
never formed a uniform ice sheet during the glacial period, but its complex topography
made it possible to have relatively warm and moist places for organisms to survive, even
in harsh climatic conditions [74]. From the LIG to the LGM, concomitant with climate
cooling, the habitat suitable for D. validus is still expanding along the southern and eastern
margins of the QTP, albeit at a slower rate. In the LGM of the Quaternary, the temperature
of the Asian continent was approximately 5–11 ◦C lower than it is currently, and the climate
warmed after the LGM [75]. At the MH, the expansion area of potential habitats for D.
validus was substantially increased compared to the other periods, but these were mostly
included within the current potential range. Many alpine plants adapt to warming by
moving upward or northward in altitude, and the ultimate consequence can be extinction, a
phenomenon often described as “nowhere to go” [21]. Furthermore, narrow-range species
usually live under very specific environmental conditions and are the most vulnerable
to climate change [76]. Some studies have shown that not only are they more likely to
face distribution changes and range shrinkage, but they might also disappear due to the
strong alteration of their climatic envelope throughout their entire region [77]. Despite
the predicted low suitability of climate conditions, it is possible that species persist under
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changing conditions through adaptation or plasticity [78,79]. Our findings suggest that the
distribution change in D. validus fits with the latter. In addition, through the observation of
the species under long-term climate and spatial changes, it was found that although the
center of the suitable habitat of D.validus showed a trend of migrating to the southwest in
the future, there was no significant change in longitude and latitude, and the migration
distance was relatively short (Figure 8). This may be due to the limitations of geographical
isolation. And this short-distance migration may be caused by climate fluctuations in a
certain period of time. We underestimated the adaptability of the moss.

5. Conclusions

The present study employed the MaxEnt model to reveal that the suitable habitat of
D. validus as a narrow-range moss species is not limited to alpine forest ecosystems. In
fact, D. validus exhibits cold and drought resistance on the QTP of China. The distribution
pattern of D. validus is mainly defined by key environmental variables, including altitude
and mean temperature, in the wettest quarter. In general, despite dramatic climatic and
spatial changes over a long period of time, the range of D. validus has not been radically
altered, nor has it shown a significant tendency to shrink. However, due to the complex
terrain of the QTP, it provides refuge and mitigates the adverse effects of climate change.
Meanwhile, D. validus showed unique adaptability in China, enabling it to cope with the
challenges of adverse climatic conditions. In the context of future climate warming, the
suitable habitat center of D. validus may move southwestward, but it will not completely
withdraw from the distribution range of China, and its potential distribution range will
remain relatively stable. This study provides an important reference for addressing the
impact of climate change on alpine narrow-range moss species and provides strong support
for future distribution and conservation strategies.
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