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Abstract: The Hibiscus genus of the Malvaceae family is widely distributed and has diverse applica-
tions. Hibiscus sinosyriacus is a valuable ornamental tree, but it has not been extensively researched.
This study aimed to complete the chloroplast genome of H. sinosyriacus and elucidate its evolution-
ary relationship with closely related species and genera. The complete chloroplast genome of H.
sinosyriacus was found to be 160,892 bp in length, with annotations identifying 130 genes, including
85 coding genes, 37 tRNAs, and 8 rRNAs. Interspecific variations in the Hibiscus spp. were explored,
and H. sinosyriacus has species-specific single-nucleotide polymorphisms in four genes. Genome
structure analysis and visualization revealed that in the Abelmoschus genus, parts of the large single-
copy region, including rps19, rpl22, and rps3, have been incorporated into the inverted repeat region,
leading to a duplication and an increase in the number of genes. Furthermore, within the Malvales
order, the infA gene remains in some genera. Phylogenetic analysis using the whole genome and
coding sequences established the phylogenetic position of H. sinosyriacus. This research has further
advanced the understanding of the phylogenetic relationships of Hibiscus spp. and related genera,
and the results of the structural and variation studies will be helpful for future research.

Keywords: chloroplast genome; Hibiscus sinosyriacus; large single-copy region; phylogenetic
analysis; species differentiation; statistical analysis

1. Introduction

The Hibiscus genus of the Malvaceae family encompasses approximately 220-250 spe-
cies that are widely distributed across tropical, subtropical, and temperate climates in the
form of trees, shrubs, and herbs [1]. Historically, this genus has been utilized for ornamental,
culinary, and medicinal purposes [2,3]. With technological advancements and the rise of
high-value industries, the applications of Hibiscus spp. have expanded to include indoor
decoration, functional foods, cosmetics, and medicinal research [4-8]. Among the various
Hibiscus species, Hibiscus sinosyriacus L. H. Bailey is a deciduous shrub native to the sub-
tropical and tropical regions of southern China [9]. In the previous study, this species is
morphologically most similar to H. syriacus, but with some differences, including broader
leaves, elongated epicalyx tubes, and larger growth. Moreover, through an amplified frag-
ment length polymorphism analysis, two species were clearly differentiated [10]. In the Re-
public of Korea, novel cultivars of H. syriacus have been developed by interbreeding with
H. sinosyriacus to enhance their ornamental value, flower quality, and growth habit [11-13].

Chloroplast (cp), one of the cell organelles in plants, is integral to photosynthesis,
plant immunity, and other vital biological functions, including amino acid synthesis and
nitrogen metabolism [14,15]. As a symbiotic entity within cells, cp possesses ancestral
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genomic DNA and is predominantly maternally inherited from angiosperms [16]. The cp
genome of angiosperms is highly conserved and typically presents a quadripartite struc-
ture comprising a large single-copy (LSC), a small single-copy (SSC), and a pair of inverted
repeat (IR) regions [15]. Although the cp genome remains largely intact, genetic events
such as insertions, deletions, rearrangements, and copy number variations have led to
plant divergence and evolution [17]. Consequently, cp genomes have been used in diverse
research areas, including species differentiation, evolutionary distance estimation, param-
eter determination, and cultivar identification [18-20].

The evolutionary relationship between species or genera has typically been analyzed
by selecting various regions within the cp genome, such as protein-coding sequences
(CDSs) and mutational hotspots. Generally, well-conserved CDS regions have been pri-
marily used for phylogenetic classification [21]. Restricted regions showing extensive var-
iations, such as ycfl, ycf3, and matK-trnK, known as mutational hotspots, have been em-
phasized more for developing markers to identify species, cultivars, or subspecies rather
than for studies determining broad evolutionary relationships between genera or between
species [22-24]. Recent studies have also focused on utilizing regions outside the CDS that
are well conserved but still exhibit variations for phylogenetic analysis [25].

In this study, we aimed to elucidate the complete cp genome of H. sinosyriacus for the
first time. Additionally, by comparing in-depth the genome structure and variations with
its closely related species, we hope to help in future research such as marker development.
Furthermore, by clarifying the phylogenetic relationship with closely related species and
genera, we aimed to confirm the evolutionary position of H. sinosyriacus.

2. Materials and Methods
2.1. DNA Extraction, Sequencing, Assembly, and Annotation

Fresh leaves of H. sinosyriacus (“Melmauve”) were obtained from the Hibiscus Clonal
Archive of the National Institute of Forest Science (37.15° N, 126.57° E), Suwon, Republic
of Korea. Total DNA was extracted using a GeneAll® Exgene™ Genomic DNA Purifica-
tion Kit (GeneAll Biotechnology, Seoul, Republic of Korea). Next-generation sequencing
library construction was performed by Macrogen (Seoul, Republic of Korea) using a
TruSeq™ Nano DNA Kit (Illumina, San Diego, CA, USA). Genome sequencing was per-
formed using a NovaSeq™ 6000 platform (Illumina). The cp genome sequence was assem-
bled using NOVOPlasity 4.3.1, an organelle assembler based on the cp genome of H. syri-
acus (KR_259989), with k-mers of 27, 29, and 35 [26]. Genes, rRNAs, tRNAs annotations,
and circular maps were drawn using GeSeq (https://chlorobox.mpimp-
golm.mpg.de/geseq.html, accessed on 15 March 2023) containing annotators blatN, blatX,
and Chlorom [27]. Error correction was manually conducted using Sanger sequencing, by
designing primers around the nucleotides where the errors occurred.

2.2. Comparative Analyses of cp Genome Sequernces

To comprehensively compare the cp sequences of the 17 species of the Malvaceae
family, we used the mVISTA program. To observe the positional changes in genes at the
boundaries of each compartment structure, including hibiscus and its close relatives, we
used the GeSeq annotation program to identify the boundaries of each structure.

2.3. Simple sequnece repeats (SSRs) Analysis

MISA version 2.1 was used to identify SSRs in the cp genomes of H. sinosyriacus and
16 other species, including H. syriacus, H. coccineus, H. mutabilis, H. sabdariffa, H. rosa-sinen-
sis, H. trionum, H. cannabinus, H. taiwanensis, Gossypium gossypioides, G. herbaceum, G. hir-
sutum, G. raimondii, A. esculentus, A. manihot, A. moschatus, with Tilia amurensis as the out-
group [28]. The analysis was performed using parameters set at 8/mono, 3/di, 3/tri, 3/tetra,
and 3/penta. Statistical analyses of average SSRs across the three genera, excluding T.
amurensis, were conducted using R version 4.3.1 (The R Foundation, Vienna, Austria). To
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evaluate the significance among group means that did not adhere to a normal distribution,
we used the non-parametric Kruskal-Wallis test [29]. Subsequently, Dunn’s test with Bon-
ferroni correction was conducted for post hoc analysis [30].

2.4. Detection of Variants and Statistical Analyses

To compare the overall count of single-nucleotide polymorphisms (SNPs) and indels
in the complete cp genomes of 16 species, using H. sinosyriacus as a reference, sequences
were aligned using Clustal Omega version 1.2.4 [31]. Subsequently, the alignment results
were subjected to pairwise comparison analysis using CLC main workbench version
23.0.2, to determine the gaps, differences, distances, percent identities, and identities of
each species [32]. These metrics were calculated separately for the whole cp genome,
CDSs, and specific regions, including LSC, IRa, SSC, and IRb. For the identification of
SNPs and indels within the CDSs of nine species from the Hibiscus genus, the ClustalW
alignment tool embedded in the Vector NTI Advanced 10 software was used [33]. All
genes were annotated using BLAST X and Chlorom annotation engines within the GeSeq.
Statistical methods were used to determine whether there were significant differences in
variation across cp genomes between species and genera of the 17 species belonging to the
Malvaceae family. Given that the species within each genus did not follow a normal dis-
tribution, as determined using the Shapiro-Wilk test in R version 4.3.1, we utilized the
non-parametric Kruskal-Wallis test for statistical analysis. For post hoc analysis, the
Dunn’s test with Bonferroni correction was applied. Two methods were used to extract
samples from the 17 species. The first method utilized the pairwise averages of species
within each genus, whereas the second method used H. sinosyriacus as a reference.

2.5. Phylogenetic Tree Analysis

Alignment analyses of the complete cp genomes were performed using the same spe-
cies as those included in the SSR analysis—nine species of Hibiscus, including H. sinosyri-
acus, three species of Abelmoschus, and four species of Gossypium, with T. amurensis as the
outgroup—using Clustal Omega version 1.2.4. The following are the scientific names of
the plants used for phylogenetic analysis, along with their respective GenBank accession
numbers: H. sinosyriacus (MZ_367751), H. syriacus (KR_259989), H. mutabilis (MK_820657),
H. coccineus (OK_336487), H. sabdariffa (MZ_522720), H. rosa-sinensis (NC_042239), H. tri-
onum (OL_628829), H. cannabinus (NC_045873), H. taiwanensis (MK_937807), A. esculentus
(NC_035234), A. manihot (NC_053353), A. moschatus (NC_053355), G. gossypiodes
(NC_017894), G. herbaceum (JK_317353), G. hirsutum (NC_007944), G. raimondii
(NC_016668), and T. amurensis (MH_169573). Phylogenetic analyses were performed sep-
arately for each region, including the whole cp genome, LSC, SSC, IR, and CDS regions.
The analysis was performed using the neighbor-joining method in the CLC genomics
workbench program version 23.1, with 1000 bootstraps.

3. Results
3.1. Cp Genome Assembly and Annotation of H. sinosyriacus Genes

The assembly process utilized 121,987,386 total reads, 2,315,382 of which aligned with
the reference genome; 2,300,724 of these were used for assembly, with an average orga-
nelle coverage of 2173x. The complete cp genome of H. sinosyriacus was sequenced and
assembled, resulting in a circular genome 160,892 bp in length (Figure 1). This genome
was then deposited in GenBank, under the accession number MZ_367751. The genome
comprised four distinct regions: LSC, IRs (IRa and IRb), and SSC. The LSC region was
89,747 bp in length, the IRa and IRb regions were 25,742 bp each, and the SSC region was
19,661 bp in length. The GC content of H. sinosyriacus was 36.85%. The total annotation
included 130 genes, including 85 CDSs, 37 tRNAs, and 8 rRNAs (Table 1). Of the 85 CDSs,
there were 12 genes in the cp genome of H. sinosyriacus: petD, petB, atpF, ycf3, ndhB, ndhA,
rpoC1, rps16, rpsl2, rpll6, rpl2, and clpP1. Among these, ycf3 had three introns and clpP1
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had two introns, whereas the remaining 10 genes contained one intron each. Among the
37 tRNAs, eight tRNAs—trnK-UUU, trnS-UCC, trnL-UAA, trnV-UAC, two copies of trnE-
UUC, and two copies of trnA-UGC—each contained one intron (Table 2).

Hibiscus sinosyriacus
chloroplast genome
160,892 bp

UL~
matk—

psba,
mH-Gug

S
iy
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M photosystem I!
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[C] NADH dehydrogenase
M RubisCO large subunit 5
[ photosystem assembly/stability factors K3
Bl RNA polymerase

[ ribosomal proteins (SSU)

[ ribosomal proteins (LSU)

H transfer RNAs

Il ribosomal RNAs

[ clpP, matk

M other genes

[ hypothetical chioroplast reading frames (ycf)

Figure 1. Circular map of the chloroplast genome of H. sinosyriacus. Genes, tRNAs, and rRNAs are
presented as different-colored boxes on the outer circle. The inner circle shows the quadrant struc-
ture of the chloroplast genome. The dark gray circle shows the GC content, whereas light gray circle
shows the AT content along the genome. cp, chloroplast; LSC, large single-copy; IRA, inverted re-
peat A; SSC, small single-copy; IRB, inverted repeat B. * indicates the presence of one and more
introns.

Table 1. Summary of the complete cp genomes of 17 species of the Malvaceae family.

Protein
Genome 4 g IRB SSC IRA  NUMPEr o jing tRNA rRNA GC Contents (%)
Size (bp) of Genes
Genes
H. sinosyriacus 160,892 89,747 25,742 19,661 25,742 130 85 37 8 36.85
H. syriacus 161,022 89,701 25,745 19,831 25,745 130 85 37 8 36.83
H. mutabilis 160,879 89,353 26,300 18,926 26,300 130 85 37 8 36.92
H. coccineus 160,280 89,121 26,243 18,673 26,243 130 85 37 8 36.92
H. sabdariffa 162,428 90,327 26,100 19,901 26,100 130 85 37 8 36.74
H. rosa-sinensis 160,951 89,511 25,597 20,246 25,597 130 85 37 8 36.99
H. trionum 160,530 89,272 26,152 18,954 26,152 130 85 37 8 36.90
H. cannabinus 162,903 90,351 26,533 19,486 26,533 130 85 37 8 36.65
H. taiwanensis 161,056 89,538 25,419 20,680 25,419 130 85 37 8 36.89
G. gossypiodes 159,959 88,779 25,588 20,004 25,588 129 84 37 8 37.31
G. herbaceum 160,140 88,711 25,604 20,221 25,604 129 84 37 8 37.31
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G. hirsutum 160,301 88,817 25,602 20,280 25,602 129 84 37 8 37.24
G. raimondii 160,161 88,654 25,651 20,205 25,651 129 84 37 8 37.31
A. esculentus 163,121 88,091 27,999 19,032 27,999 133 88 37 8 36.74
A. manihot 163,428 88,214 28,140 18,934 28,140 133 88 37 8 36.70
A. moschatus 163,430 88,263 28,118 18,931 28,118 133 88 37 8 36.71
T. amurensis 162,564 91,100 25,493 20,478 25,493 129 84 37 8 36.51
Table 2. Gene contents in the cp genome of H. sinosyriacus.
Role Group of Gene Name of Gene No.
Photosystem I psaA, psaB, pasC, psal, psa] 5
A, psbK, psbl, D, psbF, H,
Photosystem II psbA, psbK, psbl, psbM, psbD, psbF, psbC, psbH, psb], 13
psbL, psbE, psbN, psbB
Cytoch b/f
y :(()jrrfglr: j f psbT, psbZ, petN, petA, petL, petG, petD 1, petB ! 8
ATP synthase atpl, atpH, atpA, atpF ', atpE, atpB 6
Phot thesi -
otosynthesis Cytochrome c type ccsA 1
synthesis
Assembly/stability 5
4(pafll 2
of photosystem I yef3(pafl)”, yefpafll
NADPH ndhB *, ndhH, ndhA ', ndhl, ndhG, ndh], ndhE, ndhF, 1
dehydrogenase ndhC, ndhK, ndhD
Rubisco rbcL 1
Small subunit of rpoA, rpoC2, rpoC1 7, rpoB, rps16 ', rps2, rps14, rps4, 18
ribosome rps18, rps12 ¥, rps1l, rps8, rps3, rpsl9, rps7 ¥, rpsld
Large subunit of  rpl33, rpl20, rpi36, rpl14, rpl16 ', rpl22, rpl2 *1, rpl23 *, 1
ribosome rpl32
. T.rén.slatlonal infA 1
initiation factor
Transcription and Ribosomal RNA rrml6 *, rrnd.5 ¥, rrnd *, rrn23 * 8
translation trnH-GUG, trnK-UUU 1, trnQ-UUG, trnS-GCU, trnS-

UCC Y, trnR-UCU, trnC-GCA, trnD-GUC,
trnY-GUA, trnE-UUC **, trnl-GGU, trnS-UGA,
Transfer RNA  trnG-UCC, trnfM-CAU **, trnS-GGA, trnT-UGU, trnL- 37
UAA?, trnF-GAA, trnV-UAC !, trnW-CCA, trnP-GGU,
trnL-CAA *, trnV-GAC *, trnA-UGC ™, trnR-ACG ¥,
trnN-GUU *, trulL-UAG, trnl-CAU

RNA processing matK 1
C
arbo.n cemA 1
metabolism
P |
Other Proteolysis clpP1? 1
Component of TIC yoft 1
complex
Hypoth.etical yof2 * 5
proteins
Total number of genes 130

! Contained one intron in the gene. 2 Contained two introns in the gene. 3 Contained three introns in
the gene. * There are two copies in the genome. ** There are three copies in the genome. *** Trans-
spliced gene.

3.2. Comparative Structural Analysis

The positions of the genes at the boundaries of each quadripartite structure of the cp
genome play a crucial role in observing insertions, deletions, and structural transfor-
mations in large frames [34,35]. The structural differences in 17 species, including 9 species
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of the genus Hibiscus, were analyzed to determine the gene loci at the beginning and end
of the structural boundaries (Figure 2). The average sizes of the cp genomes were 161,216
bp for the Hibiscus genus, 163,326 bp for the Abelmoschus genus, 160,140 bp for the Gossy-
pium genus, and 162,564 bp for T. amurensis. Among them, the Abelmoschus genus had the
largest genome, whereas Gossypium had the smallest. The average sizes of the LSC region
in the genera Hibiscus and Gossypium were 89,268 and 89,658 bp, respectively, whereas
that in the genus Abelmoschus was 88,189 bp, with a difference of 1079-1469 bp. Con-
versely, the genus Abelmoschus exhibited an expansion in the IR region by 1849-2593 bp,
compared with the other two genera, which was due to the presence of rps19, ¥pl22, and
rps3 genes. In the LSC region, the rps19 gene (excluding the genus Abelmoschus) spanned
the boundary of seven species: H. sinosyriacus, H. syriacus, H. sabdariffa, H. cannabinus, G.
gosyspioides, G. herbaceum, and G. raimondii. Additionally, the rps16 gene in the three spe-
cies of the Abelmoschus genus also crossed the boundary line. In contrast, there were seven
species for which no genes were located across the boundary: H. mutabilis, H. coccineus, H.
rosa-sinensis, H. trionum, H. taiwanensis, G. hirsutum, and T. amurensis. Notably, H. rosa-
sinensis exhibited the largest distance between the gene and the boundary (103 bp). In the
IRDb structure, three species from the Abelmoschus genus began with the ps3 gene, whereas
in the other species, the rpl2 gene appeared after the boundary with the LSC region. Within
the Hibiscus genus, the end of the ycfl fragment in H. sabdariffa was 489 bp before the start
of the small SSC region, a pattern similar to that observed in the Abelmoschus genus. The
ycfl fragment of H. coccineus showed a 116 bp difference from the SSC boundary. All other
ycfl fragments of Hibiscus species crossed the SSC boundary. In most cases, the last gene
of the IRa, rpl2, was located 57-137 bp before the LSC boundary, whereas in the case of
the Abelmoschus genus, the rpl16 gene was present.

The GC content of H. sinosyriacus was 36.85%, and the average GC content of the
genus Hibiscus was ~36.85%. The average GC content of the genus Abelmoschus was
36.72%, which was lower than that of the genus Hibiscus, whereas that of the genus Goss-
ypium was 37.29%, which was much higher. The GC content of T. amurensis was the lowest
(36.51%) (Table 1). Differences were observed in the number of genes in the cp genome
among the genera. The genus Abelmoschus had three additional genes compared with
other genera, as the IR region included rps19, rpl22, and rps3. Unlike other genera, the
genus Abelmoschus experienced an increase in gene count owing to the incorporation of
rps19, rpl22, and rps3 from the existing LSC region into the IR region, resulting in duplica-
tion. This led to a three-fold increase in the gene count. Although both synonymous and
non-synonymous SNPs were observed within the infA gene of plants of the Hibiscus and
Abelmoschus genera, they were well preserved within the cp genome. However, although
a deletion of 7 bp within the infA gene in the Gossypium genus led to the appearance of a
premature stop codon, an insertion of 11 bp resulted in a premature stop codon, confirm-
ing the loss of the infA gene in T. amurensis (Figure 3).
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Figure 3. Structural variations in the infA gene among different genera in the Malvaceae family.

3.3. SSRs Analysis

The total number of SSRs in H. sinosyriacus was 686, comprising 192 mononucleo-
tides, 408 dinucleotides, 76 trinucleotides, 6 tetranucleotides, and 4 pentanucleotides. A
analysis of SSRs across 17 species, including H. sinosyriacus, revealed an average total SSR
count of 692.35. The species with the highest number of SSRs was A. esculentus (748),
whereas the one with the lowest was G. raimondii (633). Among these, Abelmoschus had the
highest average SSR count (745.33), followed by T. amurensis (735), Hibiscus (689), and
Gossypium (649.5). Notably, within the Hibiscus genus, H. rosa-sinensis had a particularly
low SSR count (653). The distributions of total SSRs and monopenta-SSR motifs were not
proportional across species. A. moschatus had the highest number of mononucleotide
SSRs, whereas H. rosa-sinensis had the lowest. A. esculentus had the most dinucleotide
SSRs, whereas G. raimondii had the least. A. manihot had the highest number of trinucleo-
tide SSRs, whereas G. hirsutum had the lowest. With respect to the tetranucleotide SSRs,
A. manihot had the highest count, whereas H. sinsyriacus, H. rosa-sinensis, and G. hirsutum
had only six. T. amurensis had the highest count of pentanucleotides (11), whereas that in
the other species ranged between 1 and 4. The distribution of SSRs was also analyzed ac-
cording to region. SSRs in the LSC region accounted for ~63.3% of the total, whereas those
in the SSC and IR regions accounted for 11.7% and ~25% of the total, respectively. The LSC
region showed an SSR distribution pattern that was most similar to that of the overall
genome of the 17 species, whereas the SSC region displayed a distinct pattern. In particu-
lar, H. sinosyriacus and H. syriacus had a notably higher number of SSRs than the other
species, whereas pentanucleotide repeats were absent in all species. The IR regions had a
distribution pattern that was more similar to the SSR distribution of the overall genome
than that of the SSC region, but with a higher proportion of dinucleotides. Tetranucleotide
repeats were absent in all the species, except T. amurensis (Figure 4). In the comparison of
differences in the number of SSRs among the three closely related genera excluding T.
amurensis, the quantity of SSRs in the Hibiscus genus was intermediate between the other
two genera and showed no significant difference from them. However, there was a signif-
icant difference between Abelmoschus, which had the most SSRs, and Gossypium, which
had fewer SSRs (Table 3).
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Figure 4. SSR analysis in 17 species of the Malvaceae family. (Left), region-specific SSRs; (Right),
SSRs presented by repeat motif lengths.

Table 3. Statistical analysis of variants and differences in the cp genomes of Hibiscus sinosyriacus and
related species.

Variants Tvpe Kruskal-Wallis Test Post hoc Analysis
yp p-Value H-G G-A A-H
SSRs 7.39 x 1073 ** 1.32 x 10! 2.60 x 1073 ** 6.04 x 102
Identities 4.64 x 1078 *** 9.95 x 107 *** 1.00 6.64 x 104 ***
Differences 8.52 x 103 ** 3.56 x 102 * 4.42 x 103 ** 3.24 x 101
Gaps 1.39 x 102 * 230 x102* 1.17 x102* 6.87 x 101
Gaps and 121 x102* 2.67x102*  855x109*  546x 10"
differences

The non-parametric Kruskal-Wallis test was used to assess significance, followed by post hoc anal-
yses using the Dunn’s test with Bonferroni correction for multiple comparisons. H, Hibiscus genus;
G, Gossypium genus; A, Abelmoschus genus. *** p <0.001, ** 0.001 <p <0.01, * 0.01 <p <0.05.

3.4. Comparative Sequence Identification Analysis via Visualization

The mVISTA program, which visualizes the similarity of comparative sequences, was
used to understand these differences intuitively [36]. We explored the sequence variations
in 17 species using H. sinosyriacus as a reference (Figure 5). Generally, sequence differences
are observed more frequently in non-coding regions than in coding regions. In the non-
coding regions, significant differences were observed within the intron regions of matK-
atpA, atpF-atpl, rpoB-psbD, psbC-psaB, rps4-ndh], ndhC-atpE, atpB-rbcL, pafll-cemA, petA-psb],
and clpP1-rpl16. These differences were predominantly distributed in the LSC region. In
the coding regions, differences were frequently found within genes such as rpoC2, rpoB,
pafl, ycf2, ycfl, and ndhF. In the SSC region, differences were observed between the ndhF
and ccsA genes and within the intron region of ndhA. In the IR region, differences were
observed between rps12 and trnV-GAC. The location of the ycfI gene exhibited two distinct
patterns across species. The first pattern showed a portion of the ycfI gene initiated at the
start of the SSC region in the forward direction, with the entire sequence of the ycfl gene
located in the reverse direction at the end of the SSC. This pattern was observed in eight
species of the Hibiscus genus, excluding H. rosa-sinensis, and in three species of the Abel-
moschus genus. Conversely, the second pattern, distinct from the first, lacked the partial
ycfl gene at the beginning of the SSC but contained the complete sequence in the reverse
direction at the end. The latter pattern was characteristic of four species from the Gossy-
pium genus and T. amurensis. Notably, H. rosa-sinensis deviated from the first pattern,
where the species typically had an ycf1 partial sequence spanning 500-600 bp. Instead, H.
rosa-sinensis replicated only a short 113 bp partial sequence at the beginning. Additionally,
upon examining the sequence identity patterns, it was evident that the patterns were
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either grouped by genus or varied distinctly. Species-specific patterns were also observed.
For instance, a unique pattern was identified between the atpF and atpH introns in H. syr-
iacus and within the IR region between rps12 and trnV-GAC intron in H. trionum. Exclud-
ing H. syriacus, the remaining species showed similar patterns of variation; however,
unique patterns were often observed, depending on the species. Notably, H. syriacus
showed much less difference from H. sinosyriacus than the other species. Unlike other spe-
cies, these two species can be crossbred and have flower shapes similar to those of shrubs.
Noticeable differences between the two species were observed in the non-coding regions
of atpF and atpH, psbZ and rps14, accD and psal, petA and psb], rps18 and rpl20, rps12 and
trnV-GAC, rpl32 and trnL-UAG, and so on. H. mutabilis had a different pattern of sequence
similarity between atpF and atpH and trnR-ACG and trnN-GUU, as compared with the
other species. H. rosa-sinensis showed large differences in the rpoC2, ycf2, and ycfl partial
genes. In terms of sequence similarity, H. sinosyriacus, H. syriacus, H. mutabilis, H. coccineus,
H. sabdariffa, and H. cannabinus exhibited similar patterns.
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Figure 5. Visualization of alignment identity among 16 species. Sequences were annotated and iden-
tified using different colors. Sequence identity ratio has been presented through vertical depth, us-
ing H. sinosyriacus as a reference.

3.5. Comparison Analysis of Pairwise Heatmap

From the pairwise analysis results of 17 species in the Malvaceae family, we con-
firmed that they are well grouped by genus. First, the heatmaps of whole genome, within
the Hibiscus genus, the combinations of H. sinosyriacus and H. syriacus (99.72% and 2.43 x
10-%), and H. taiwanensis and H. mutabilis (99.81% and 3.23 x 10-*) showed similar values
for similarity and distance, respectively. H. coccineus showed close values with H. mutabilis
(97.59% and 5.01 x 10-8), H. trionum (96.99% and 5.47 x 10-3), and H. taiwanensis (97.56%
and 5.20 x 107?). In the Gossypium genus, G. gossypioides and G. reimondii had the closest
distance of 2.79 x 10-3, whereas G. herbaceum and G. reimondii were the most similar
(99.23%). In the Abelmoschus genus, A. manihot and A. moschatus were the closest, at 99.95%
similarity. The distances between A. esculentus and A. manihot and between A. esculentus
and A. moschatus were both 6.95 x 10-4. The pairwise heatmap for “Gaps and differences”
on the right appeared to be proportional to the sequence similarity on the left. Following
this, upon examining the heatmaps for CDS, the identity and distance in relation to CDS
displayed a pattern similar to that of the whole genome. The interspecies sequence simi-
larity did not show significant differences when compared with those of the whole ge-
nome. As CDS sequences are better conserved than non-coding sequences, the sequence
similarity for most species increased. However, the similarity between the combination of
H. sinosyriacus and H. syriacus was observed to decrease to 99.59%, compared with 99.72%
in the whole genome (Figure 6). Upon analyzing the sequence similarity differences
among the three genera, contrary to the results from the SSR analysis, there was no signif-
icant difference between the Gossypium and Abelmoschus genera. However, there was a
substantial difference between these two genera and Hibiscus, with values of 9.95 x 10-7
and 6.64 x 10, respectively. Furthermore, in the indices for gaps and differences, there
was no significant difference between Abelmoschus and Hibiscus. However, significant dif-
ferences were observed in the other two combinations, Hibiscus and Gossypium (2.67 x 10-
2) and Gossypium and Abelmoschus (8.55 x 10-%) (Table 3).
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Figure 6. Pairwise comparison heatmap. (a) Percent identities and distances of whole genomes, (b)
gaps and differences in whole genomes, (c) percent identities and distances of CDSs, and (d) gaps
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and differences in CDSs. (a,c) Top, distances; bottom, percent identities. (b,d) Top, differences; bot-
tom, gaps. CDS, coding sequence. 1, H. sinosyriacus; 2, H. syriacus; 3, H. coccineus; 4, H. mutabilis; 5,
H. sabdariffa; 6, H. rosa-sinensis; 7, H. trionum; 8, H. cannabinus; 9, H. taiwanensis; 10, G. gossypioides;
11, G. herbaceum; 12, G. hirsutum; 13, G. raimondii; 14, A. esculentus; 15, A. manihot; 16, A. moschatus;
17, T. amurensis.

3.6. Exploration of Variants in the CDS of Hibiscus spp.

In this comprehensive study of the cp genome of H. sinosyriacus, we successfully as-
sembled it for the first time and explored its evolutionary relationship with eight closely
related species, by examining variations within the CDS. Using H. sinosyriacus as the ref-
erence, 130 genes were examined. Notably, 36 genes showed no variations. These genes
included 28 tRNA genes (such as trnH-GUG, trnK-UUU, trnQ-UUU, trnS-GCU, trnG-UCC,
trnC-GCA, trnY-GUA, trnG-UCC, trnM-CAU, trnS-GGA, trnF-GAA, trnM-CAU, trnW-
CCA, trnM-CAU, trnL-CAA, trnV-GAC, trnl-GAU, trnA-UGC, trnR-ACG, trnN-GUU, trnL-
UAG, trnN-GUU, trnR-ACG, trnA-UGC, trnL-GAU, trnV-GAC, trnl-CAA, and trnl-CAU),
2 rRNA genes (rrn5), and 6 other genes. In an analysis of variants across different species,
several distinct patterns emerged. In H. sinosyriacus, species-specific SNPs were identified
in the CDS regions of the matK, psbC, ndhK, and ycf2 genes, with one SNP detected for each
gene, totaling four SNPs. H. syriacus had only 4 species-specific SNPs, 6 common SNPs,
and 3 species-specific inserts, resulting in a total variant count of 13. H. coccineus displayed
136 species-specific SNPs, 608 common SNPs, and a combined total of 198 indels, resulting
in 942 variants. Both H. mutabilis and H. taiwanensis showed 4 species-specific SNPs, 655
common SNPs, and 815 and 821 total variants, respectively. H. sabdariffa had 76 species-
specific SNPs, 708 common SNPs, and 1083 variants. H. rosa-sinensis contained 326 species-
specific SNPs, 311 common SNPs, and 877 variants. H. trionum had 89 species-specific
SNPs, 624 common SNPs, and 927 variants. Finally, H. cannabinus had 101 species-specific
SNPs, 705 common SNPs, and 1067 variants. Indel regions were identified in the following
13 genes: matK, rpoB, atpB, rbcL, rpl20, rpl23, ccsA, rpoC2, rps14, accD, ycf2, ndh5, and ycfl.
Species-specific indels were observed in several genes. The gene rpoC2 exhibited a species-
specific insert exclusive to H. rosa-sinensis. Similarly, rps14 exhibited a species-specific in-
sertion in H. rosa-sinensis. The accD gene revealed species-specific indels in H. trionum and
a unique insert in H. rosa-sinensis. The ycf2 gene displayed general indels with species-
specific inserts in H. trionum and H. rosa-sinensis. The ndh5 gene had species-specific indels
in H. sabdariffa, H. trionum, and H. rosa-sinensis. Finally, the ycfl gene presented general
indels and species-specific indels in H. syriacus, H. rosa-sinensis, and H. coccineus. The ycf1
gene is particularly notable for its extensive variation. It harbored a diverse range of in-
dels, especially between positions 5688 and 5742 bp, and was densely populated with spe-
cies-specific SNPs and indels. Intriguingly, although H. sinosyriacus and H. syriacus exhib-
ited significant similarities, a unique indel specific to H. syriacus was identified in this re-
gion. Among the 13 genes analyzed, matK, rpoB, atpB, rbcL, rpl20, rpoC2, and rps14 were
located in the LSC region, whereas accD, ccsA, ndh5, and ycfl were located in the SSC re-
gion, and rpl23 and ycf2 were duplicated and present in the IR regions (Table 4).

In the analysis of stop codon usage across various species, we examined the termina-
tion codons in 85 genes (Table S1). The distribution of stop codons was as follows: TAA,
55.95%; TGA, 20.78%; TAG, 23.27%. Among the nine Hibiscus spp. analyzed, variations in
stop codons were observed for five genes: atpB, accD, petA, rpl16, and ccsA (Table 5). Spe-
cifically, for the atpB gene, H. sabdariffa and H. cannabinus both utilized TAG, whereas the
remaining seven species used TGA. In the case of the accD gene, only H. trionum had TAA,
whereas the other eight species used TAG. In the case of the petA gene, both H. sinosyriacus
and H. syriacus used TAA, whereas the other seven species used TAG. In the case of the
rpl16 gene, H. coccineus was the only species with TAA, with TAG being prevalent in the
other eight species. Finally, in the case of the ccsA gene, only H. rosa-sinensis had TAA,
whereas TGA was observed in the remaining eight species. The distribution of the
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variations was as follows: TAG to TGA in one instance, TAA to TAG in three instances,
and TAA to TGA in one instance.

Table 4. Summary of variation among CDS of nine Hibiscus spp.

SNP Indels
Species- Species- Species- Variants
Name Specific Common Total SNP Specific Specific C(I)::;;m %(:::t?g;l ;r:;: Total
SNP Insert Deletion
H. sinosyriacus 4 - 4 - - - - - 4
H. syriacus 4 6 10 3 - - - 3 13
H. coccineus 136 608 744 6 18 99 75 198 942
H. mutabilis 4 655 659 - - 87 69 156 815
H. sabdariffa 76 708 784 19 15 156 109 299 1083
H. rosa-sinensis 326 311 637 102 15 51 72 240 877
H. trionum 89 624 713 26 8 105 75 214 927
H. cannabinus 101 705 806 6 2 144 109 261 1067
H. taiwanensis 4 655 659 - - 87 75 162 821
Table 5. Variation of stop codons among genes of nine Hibiscus spp.
Gene H. sinosyr- . H. coc- H.mutabi- H. sabdar- H. rosa- . H. cannabi- H. taiwan-
. H. syriacus . . . . . H.trionum .
Name iacus cineus lis iffa sinensis nus ensis
atpB TGA TGA TGA TGA TAG TGA TGA TAG TGA
accD TAG TAG TAG TAG TAG TAG TAA TAG TAG
petA TAA TAA TAG TAG TAG TAG TAG TAG TAG
rpll6 TAG TAG TAA TAG TAG TAG TAG TAG TAG
ccsA TGA TGA TGA TGA TGA TAA TGA TGA TGA

3.7. Compararive Phylogenetic Analyses

We performed a comparative analysis of phylogenetic trees derived from both the
whole cp genome and CDS regions (Figure 7). The results from the pairwise heatmap
analysis displayed minor differences between the whole genome and CDS. However, the
comparative outcomes utilizing both phylogenetic trees were almost identical. Using 17
species from four genera of the Malvaceae family, we investigated the evolutionary pro-
cess of H. sinosyriacus. Among the four genera, T. amurensis, which was anticipated to have
the greatest genetic distance, appropriately diverged early as an outgroup. Subsequently,
the Gossypium genus differentiated earlier than the other two genera. H. sinosyriacus, H.
syriacus, and H. rosa-sinensis diverged earlier from other species, with H. sinosyriacus and
H. syriacus displaying a monophyletic relationship. This was followed by the divergence
of H. cannabinus and H. sabdariffa, both showing a monophyletic structure. H. coccineus and
H. trionum sequentially differentiated in a paraphyletic manner. The remaining species of
the Hibiscus genus, H. mutabilis and H. taiwanensis, diverged with the species of the Abel-
moschus genus in a monophyletic pattern.
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Figure 7. Phylogenetic analysis of 17 species of the Malvaceae family. (a) Phylogenetic tree derived
from whole cp genome, (b) phylogenetic tree derived from CDS, and (c) cladogram. Phylograms
were drawn using the maximum likelihood method, with the CLC main workbench version 23.0.2
program. Bootstrap values derived from 1000 pseudo replicates were indicated near the nodes. The
numbers at the tips of the branches in phylogenetic trees (a,b) correspond to the numbered species
in the cladogram (c).

4. Discussion

This study successfully executed the assembly of the cp genome of H. sinosyriacus,
and the data obtained from this study offer profound insights into the structure and con-
tent of the cp genome of this species. Notably, the lengths and compositions of the four
distinct regions of the genome—LSC, IRs (IRa and IRb), and SSC—were consistent with
those of many other angiosperm cp genomes. Additionally, the number of intrinsic genes
and tRNAs found in the H. sinosyriacus cp genome underscores its complexity and diver-
sity. The number of genes containing introns and their locations can indicate the structural
characteristics and evolutionary significance of the genome.

An analysis of the cp genome structure of H. sinosyriacus and other related species
provides crucial information for elucidating the structural differences and features of each
genome. Gene positions at the boundaries between the four distinct regions of each ge-
nome play a pivotal role in observing large-frame insertions, deletions, and structural al-
terations within the genome. Specifically, the genome of the genus Abelmoschus showed
an increase in the number of genes owing to the expansion of the IR region and the inclu-
sion of rps19, rpl22, and rps3. Such changes may be associated with the movement or rep-
lication of specific genes during genome evolution. Moreover, the infA gene is the most
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mobile cp gene known in plants, and species of the genera Gossypium and Tilia have prob-
ably repeatedly transferred the infA gene from the cp to the nucleus for functional or evo-
lutionary reasons [37]. Additionally, as plants evolve into higher plants, the infA gene
tends to disappear from the cp. Although the gene is reported to be almost absent in the
Malvales order, it has been confirmed that it remains intact in the cp of many higher
plants, including those in the Hibiscus and Abelmoschus genera [17].

An analysis of SSRs in the cp genomes of 17 species, including H. sinosyriacus, pro-
vides vital information for understanding the structural characteristics and evolutionary
patterns of the genome. The total number and distribution of SSRs varied between species
and genera. In particular, Abelmoschus had the highest average number of SSRs. Such dif-
ferences may stem from the evolutionary background and structural changes in the ge-
nomes of each genus. Statistical analysis revealed significant differences in SSR distribu-
tion among the three genera, interpreted as reflecting the evolutionary characteristics and
genomic structural variability of each genus. In particular, the differences between Abel-
moschus and Gossypium may be related to the evolutionary distance between the two gen-
era. These findings offer valuable insights into plant evolution and diversity through SSR
analyses of the cp genome.

Visualization analysis using the mVISTA program clearly delineated the cp genome
sequence differences among 17 species, including H. sinosyriacus. Generally, sequence dif-
ferences are observed more frequently in non-coding regions than in coding regions. In
particular, the differences in the LSC region were noteworthy. In the coding regions, dif-
ferences were frequently observed within specific genes, potentially reflecting evolution-
ary differences between species. Additionally, the position of the ycfI gene exhibited two
distinct patterns depending on the species. These differences in pattern may be related to
the evolutionary background [22]. The similarities between H. sinosyriacus and H. syriacus
align with the fact that the two species can be interbred and have similar flower morphol-
ogies. Furthermore, the unique sequence similarity patterns observed only in specific spe-
cies may indicate a unique evolutionary background of this species.

Through a pairwise heatmap analysis of the overall identity and distance of the cp
genome, clear genetic differences among the three genera, Hibiscus, Gossypium, and Abel-
moschus, were identified. Color-coded clustering facilitates an intuitive understanding of
sequence similarities and differences between species. Specifically, the Hibiscus genus
showed significant genetic differences in most regions, compared with the other two gen-
era. However, no significant differences were observed between Abelmoschus and Gossy-
pium. These findings suggest that the Hibiscus genus may have unique evolutionary char-
acteristics compared to the other two genera.

By studying the cp genome of H. sinosyriacus, evolutionary relationships with eight
species were successfully explored, focusing on variations within the CDS. In this study,
130 genes were reviewed, with no variations found in 36 genes. These results suggested
that certain genes maintained stable characteristics throughout the evolutionary process.
Several unique patterns emerged in the analysis of variation among various species. No-
tably, a high similarity was observed between H. syriacus and H. sinosyriacus, but species-
specific indels were found in H. syriacus. These results indicated that despite the close
relationship between the two species, each has unique evolutionary characteristics. Addi-
tionally, species-specific indels were observed in each species, especially in the ycf1 gene,
where various indels, as well as species-specific SNPs and indels, were densely distrib-
uted. These results indicated that the ycfl gene underwent various mutations during the
evolutionary process. An extensive analysis of stop codon usage confirmed the distribu-
tions of TAA, TGA, and TAG. For specific genes, there were species-specific differences in
stop codon usage, which might be related to the genetic characteristics [38].

In this study, the comparative analysis of the phylogenetic tree based on the whole
cp genome and the CDS region provides a crucial key to deeply understanding the evo-
lutionary relationships among species within the Malvaceae family. The subtle differences
in the pairwise heatmap analysis between the whole genome and the CDS region offer
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significant insights into how information is extracted from various parts of the genome.
The early branching and interspecific relationships within the genera Gossypium and Hi-
biscus clarify the evolutionary characteristics and timeline of these genera. In particular,
the close relationship between H. sinosyriacus and H. syriacus suggests that these two spe-
cies share a common recent ancestor and are evolutionarily proximate. Additionally, the
classification of T. amurensis emphasizes how this species is evolutionarily unique com-
pared with other species.

5. Conclusions

This study offers foundational insights into the structure and function of the H. si-
nosyriacus cp genome and establishes a basis for more in-depth research on its evolution-
ary position. We provide a comprehensive understanding of the cp genome structure of
H. sinosyriacus and related species, whereas emphasizing the significance of gene positions
within their respective boundaries. These structural variations and gene placements re-
flect the evolutionary traits and adaptations of each species. Such data are pivotal for phy-
logenetic and evolutionary studies of these taxa. Our findings shed light on the genetic
relationships and evolutionary nuances of species within the Hibiscus genus. The numer-
ous species-specific variations and characteristics identified through interspecific varia-
tion analysis will be useful for distinguishing species and developing various markers in
the future. This study underscores the significance of the cp genome in understanding
plant evolution and offers a foundation for future research in the Malvaceae family.
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