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Abstract: Fertility variation, defined as a difference in the ability to create progeny (i.e., reproductive
success) among individuals, was reviewed using the related available theoretical and practical
literature in an attempt to contribute to and improve future studies on the subject. Fertility variation
is a useful guide for various purposes such as gene conservation, seed production programs, forest
genetic resource (i.e., seed sources) management, other forestry practices (e.g., regeneration), and
evolutional and physiological studies. Many papers and proceedings have been published, including
both theoretical and practical approaches, on how fertility variation has improved in the last two
decades. Large variations in fertility were widely reported among populations within species and
among species. We reviewed the literature and combined our diverse knowledge to examine fertility
variations and their linkage parameters. Fertility variations and their related parameters (e.g., gene
diversity, status number, effective parent number, parental–balance curves) estimated based on
reproductive characteristics have been studied for many years using easy and cheap surveys that are
used for different purposes in forest sciences. Their importance is increasing and their use is becoming
more widespread because of these advantages, leading to improvements in research papers. While
many research papers have recently been published on fertility variations and linkage parameters,
a review paper has not been published to date. Therefore, a review paper is needed based on a
literature survey and unpublished experience, as a guide for future studies.

Keywords: coancestry; effective population size; fecundity; parental balance; reproductive output;
sibling coefficient

1. Introduction

Foresters and agriculturalists expect abundant reproductive output for the highest
yield and low cost [1–3]. Plant growth is promoted for different treatments, such as pruning,
hormone application, and soil fertilization. However, geneticists focus on the equal or
acceptable contribution of individual plants to gene pool, which can produce a genetically
high-quality seed crop [4–6]. High variations in the contribution also could help to achieve
a balance using theoretical and practical tools [7–9], while large fertility variations were
reported in different populations and years in 99 stands and 36 seed orchards of different
forest tree species [10–12], and in Pinus brutia [13] and Cedrus libani [14].

Fertility, also referred to as fecundity, is the ability to produce progeny in the next
generation through reproductive traits. Estimating fertility variations serves a multitude of
purposes, such as the estimation of gene diversity in seed orchards, forest genetic resource
management, gene conservation, regeneration practices, and evolutional studies. In the
realm of plant genetics and breeding, the estimation of fertility variations stands as a
significant tool [10–19]. Moreover, it has wide application in the selection, establishment,
and management of seed sources [18]. One aspect of these applications involves considering
gene diversity in order to monitor and increase genetic variation in seed crops [11,17].

Estimating fertility in plants is commonly accomplished through the assessment of
pollen, flowers, cones, fruits, and seed production [20–27]. This method is widely embraced
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in the field of plant science due to its speed, simplicity, and cost-effectiveness, meaning
that it can serve various research purposes. Additionally, the utilization of marker-assisted
selection (MAS), including DNA markers such as RFLP, RAPD, AFLP, SSR, SNP, and others,
has significantly enhanced the efficiency of plant breeding. This advancement has led
to improvements in both the speed and the accuracy of breeding, with the mapping of
numerous quantitative trait loci (QTLs) making MAS particularly valuable for identifying
genes associated with fertility variations [28].

Among the various available methods, the assessment of cone production emerges
as the favored option. This preference stems from the simplicity and accuracy of data
collection, particularly when contrasted with the task of tallying strobili. Trees consistently
produce cones year-round, rendering cone evaluation a more accessible and dependable
approach [17]. Nonetheless, the species’ inflorescence biology, whether monoecious or
dioecious, can influence the selection of reproductive characteristics. Additionally, the
flowering phenology of the species at the specific location should also be considered when
making this choice.

Theoretical studies have demonstrated the significance of female–male gametic fertility
variations [29,30], and zygotic fertility variations in estimating gene diversity within plant
populations. Although numerous research papers have explored fertility variations and
linkage parameters in both theoretical and applied contexts, including seed orchards, seed
stands, plantations, and natural populations, there has not been a comprehensive review
paper published on this subject to date [31–49]. Furthermore, there have been no dedicated
reviews focusing solely on fertility variation. Recent research papers also indicate a growing
prominence of fertility variation being used as a significant keyword [50–52]. These studies
underscore the need for a comprehensive review paper dedicated to exploring the topic of
fertility variation in various aspects of plant genetics, including seed orchards.

This review paper serves as a comprehensive guide for future research, offering in-
sights deriving from an extensive literature survey and various other sources of knowledge.
It aims to contribute to the widely used estimations of fertility variation and linkage pa-
rameters. We introduce several key concepts, such as coancestry, group coancestry, gene
diversity, status number, and effective parent number. We define the coancestry between a
pair of individuals as the probability that genes taken at random from each of the concerned
individuals are identical by descent. The group coancestry is the average of all coancestries
among population members in a coancestry matrix, including self-coancestry. It is also
the probability that two genes taken at random (with replacement) from a population are
identical by descent [43,44]. Diversity in genes indicates that the genes are different, and
this can be considered synonymous with expected heterozygosity in this review.

The status number was defined as the half of the inverse of group coancestry by Lind-
gren and Mullin [5], which has the same meaning as half of the inverse of the probability
that two genes drawn at random from a population are identical in their descent. The
status number is an intuitively appealing way of presenting group coancestry, as it connects
to the familiar concept of numbers (i.e., effective population size), describing the census
number of unrelated individuals corresponding to the gene diversity of the resulting seed
crops. The ratio of the status number and the census number will be useful to determine
the relative status number.

Additionally, the authors provide theoretical frameworks based on their research. With
this in mind, our review paper addresses the crucial role of fertility variations and their
linkage parameters in the field of plant science. By understanding and effectively managing
fertility variations, researchers can significantly contribute to gene conservation efforts,
improve seed production programs, and gain deeper insights into the evolutionary and
physiological aspects of plant populations. The integration of molecular studies, specialized
software, and new applications in seed source establishment for climate resilience holds
great promise for advancing this field of research.
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2. Materials and Methods

The published papers were surveyed using the keywords “fertility variation” and other
linkage parameters such as “status number”, “gene diversity” and “sibling coefficient”
from the Web of Science and Google Scholar databases. English papers were selected
from the databases. They were combined according to the unpublished experience and
knowledge of the authors.

3. Results
3.1. Fertility Variations Estimation
3.1.1. Variations in Female and Male Fertility

Female and male fertilities of the ith individual (denoted as ψf and ψm) were defined
as the ability to produce female and male strobili, respectively. This fertility difference was
estimated by calculating the relative proportion of female and male strobilus production
in relation to the entire population, following the method proposed by Muller-Starck and
Ziehe [53]. To assess the variations in female and male fertility, also known as female
and male gametic fertility variations, the coefficient of variation (CV) for female and
male strobilus production was employed, as suggested by Kang and Lindgren [32]. The
estimation of ψf and ψm was carried out using the following equations:

ψ f = N∑ N
i=1 f 2

i = CV2
f + 1 and ψm = N∑ N

i=1m2
i = CV2

m + 1 (1)

In these equations, N represents the census number, fi and mi correspond to the
fertilities of female and male ith individuals, and CVf and CVm denote the coefficients of
variation in female and male strobilus production, respectively, among individuals in the
studied population.

Moreover, the fertility variations among individuals were estimated based on the
proportion of cone production (e.g., fruit, conelet, acorn, and berry) within the popula-
tion. The variations in cone fertility (ΨC), with the total contribution representing zygotic
parents, was estimated by Kang and Lindgren [29] and by Bilir [30], as expressed by the
following equation:

ΨC = N∑ N
i=1Con2

i = CV2
C + 1 (2)

Here, Coni represents the cone fertility of the ith individual; CV2
C stands for the co-

efficient of variation in total fertility. In this paper, the fertility of the ith individual was
estimated by the proportion of cone production in the population.

However, many biotic and abiotic factors can affect this proportion. For instance, a posi-
tive and significant correlation was reported between female and male strobili productions in
Pinus taeda [54], opposite to that reported for P. eliotti [55], P. sylvestris [56] and P. contorta [57].
In addition, positive and significant correlations were found between the numbers of cones
and filled seeds in Picea sitchensis [3], P. abies [56] and Pseudotsuga menziesii [2,25]. Bhumib-
hamon [57] reported a positive and significant relation between strobili production and
crown volume in Pinus sylvestris [58], similar to Picea abies [59,60] while this correlation was
negative in Pinus taeda [54] and P. sylvestris [61]. Low correlations were reported between
tree height and strobili production in Pinus contorta [57] and Picea abies [62]. Tree age was an
important factor in seed production in Pinus sylvestris [39,63]. The results also indicated the
importance of genetical and traditional (i.e., pruning) practices in the proportion [64–66].

3.1.2. Total Fertility Variation (Sibling Coefficient)

Sibling coefficient is defined as the probability that sibs occur compared to the situation
in which parents have equal fertility. It is a standardized measure that is independent
of the census number of parents, and only dependent on how variable their fertility
variation is [11]. The combined variations in the fertility of both females and males lead
to the total fertility variation, designated by the symbol of Ψ and referred to as the sibling
coefficient. The total fertility variation (Ψ) can be calculated using the equation by Kang
and Lindgren [29]:
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Ψ = N∑ N
i=1

(
0.5 fi

∑ fi
+

0.5mi

∑ mi

)2
= 0.25

[
N∑ N

i=1
f 2
i

∑ fi
+ N∑ N

i=1
m2

i
∑ mi

+ N∑ N
i=1

2 fimi

∑ fi∑ mi

]
(3)

The total fertility variation (Ψ) can be also calculated using Kang’s equation [11]:

Ψ = N∑ N
i=1 p2

i = N∑ N
i=1

(
fi + mi

2

)2
= 0.25N∑ N

i=1

(
f 2
i + m2

i + 2 fimi

)
(4)

In Equations (3) and (4), N is the census number, fi and mi are the fertilities as female
and male parents of the ith individual, respectively. pi is the total fertility as the whole parent
of the ith individual, which is the average of female and male gametophytes’ contribution
to the offspring.

Equations (3) and (4) were simplified as follows [13]:

Ψ =

(
CVf

2 + CVm
2

4

)
+ 0.5

(
N∑ N

n=1
fimi

∑ fi∑ mi
+ 1
)

(5)

If there is no correlation between female and male fertility, total fertility variation (Ψ)
is calculated based on the coefficient of variations in female (CVf) and male (CVm) fertility
by Kang and Lindgren [32], and based on the female fertility (ψ f ) and male fertility (ψm)
variations recorded by Kang and Lindgren [29] and Bilir [30] as:

Ψ= 0.25
(

CV2
f + CV2

m

)
+ 1 and Ψ = 0.25

(
ψ f + ψm

)
+ 0.5 (6)

When equal seed harvesting is imposed in a seed stand population, Formula (6) is
then described as Ψ = 0.25ψm + 0.5, where only male fertility variation remains. This can
then be expressed as stated by Kamalakannan et al. [40]:

Ψ =
ψm + 2

4
(7)

Equations (3) and (5), delivered by Kang and Lindgren [32] and Bilir et al. [13], were
improved under the correlation (r) between female and male fertility. The new equation
was implemented for the estimation of total fertility variation (Ψ) [67] as follows:

Ψ = 0.25
(

ψ f + ψm

)
+ 0.5[1 + r

√(
ψ f − 1

)
(ψm − 1) ] (8)

where r is the correlation coefficient between female and male strobilus production in
the population.

Formula (9) is also improved as a theoretical framework for the estimation of total
fertility variation (Ψ), as presented by Bilir and Kang [17]:

Ψ = 0.25
[

ψ f + ψm + 2N∑ N
i=1

fimi

∑ fi∑ mi

]
(9)

where N is the census number, ψf is the female fertility, ψm is the male fertility and fi and mi
are the number of female and male strobili of the ith individual, respectively.

Fertility differences among population members can be described by the coefficient of
variation (CV) in fertility and the size of the sample (n), as stated by Kang [11]:

Ψ =
CV2(n− 1)

n
+ 1 (10)



Forests 2023, 14, 2172 5 of 14

When making predictions for objects that are neither juvenile nor characterized by poor
flowering, a rough generalized heuristic rule is suggested: Ψ equals 2 (CV in fertility = 100%)
for seed orchards and Ψ = 3 (CV = 140%) for natural stands [10,12]. According to Equation
(10), the Ψ value will be larger than 1. If all individuals contribute equally, then the Ψ equals
1, and the Ψ = 2 when the probability that two individuals share a parent is twice as high
compared to when parental fertility is equal across the population [18]. A Ψ lower than 2 is
an acceptable level in most of the empirical studies. However, it is expected to be 1 in an
idealized situation (i.e., under the Hardy–Weinberg equilibrium) where mating is random
and individuals are equally fertile in a population without any disruptive circumstances
(i.e., under conditions that rule out mutation, migration, genetic drift, and natural selection).

In Equations (1), (2), (5), (6) and (10), fertilities are related to the coefficient of variation
(CV). Forest owners and seed source managers expect equal parental gamete contribution
from all parents to decrease the CV value (Figure 1). In orchard A, all parents contribute
equally, so there are no fertility variations, and the census number for the orchard is the
same as the status number of the orchard crop [11,18].
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Unlike agricultural crop plants, forest trees have large differences in fertility. Addi-
tionally, the reproductive capacity of trees varies greatly depending on their age. In years
of good seed production, the variations in fertility smaller among individuals, and the
variations are larger in poor years [15,23,30].

3.2. Linkage of Parameters of Gene Diversity
3.2.1. Coancestry and Group Coancestry

Coancestry (f, θ) is defined as a quantification of the relatedness between two indi-
viduals, representing the probability that genes taken from those individuals are identical
by descent (IBD). Synonyms for coancestry include coancestry coefficient, kinship, and
consanguinity.

Group coancestry (Θ) is the probability that two individuals are IBD, and this term
was introduced by Cockerham in 1967 [43]. The group coancestry (Θ) of orchard crops can
also be calculated from the contributions of parents (pi) using the formula by Kang [11,64]:

Θ = 0.5∑ N
i=1 p2

i (11)

If all parents are assumed to be unrelated and non-inbred, all self-coancestry equals
0.5. When they are related to each other (i.e., θij), the group coancestry can be calculated
as follows:

Θ =

(
0.5 + (N − 1)∑ N

i=1∑ N
i 6=jθij

)
Ψ

N
(12)
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Group coancestry (ΘΨ) is estimated by considering parental fertility (pi) male and
female fertility [64] as:

ΘΨ = 0.5∑ N
i=1

(
fi + mi

2

)2
=0.5∑ N

i=1 pi
2 (13)

Here, N is the census number, fi is the female fertility, mi is the male fertility of the
individual i, and pi is the probability that two genes in the offspring come from the same
parent i. The accumulation of group coancestry is faster and higher when the fertility
variation is large [10,11,33], as shown in Figure 2.
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3.2.2. Gene Diversity and Status Number

Gene diversity (GD) is one of the most important criteria to assess the quality of
seed crops and resistance of forest establishment to biotic and abiotic damages (i.e., global
warming), ass discussed by Ivetić et al. [65]. Gene diversity could be an environmentally
friendly solution to biotic (e.g., insect damage) and abiotic (e.g., climate change) problems
based on artificial and natural selections. Gene diversity can be a reflector of the genetic
quality of seed crop, as well as its commercial value and choosing by the forest owner.

Group coancestry represents the probability that two genes in a population are IBD.
Diversity refers to differences, and gene diversity indicates differences in genes. Notably,
1-group coancestry (Θ) denotes the probability that the genes are non-identical and thus
diverse (i.e., gene diversity).

GD = 1−Θ (14)

The number of “ideal” trees shows the trees that have the same gene diversity as the
considered population. The status number (Ns) is a way of expressing group coancestry as
an effective number. An appealing property of the status number is that, for a population
of unrelated, non-inbred individuals, it is equal to the census number. The status number
connects to the familiar concept of population size.
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The status number has similarities with “effective number” in the classical sense, as it
predicts inbreeding using random mating. Status number (Ns) is equal to half the inverse
of group coancestry. It is also related to gene diversity [5,10,32,64]:

Ns = 1/2Θ and GD = 1− 0.5/Ns (15)

When clones are unrelated and non-inbred, the status numbers of female (Ns(f )) and
male parents (Ns(m)) are calculated as [10,11,18,42]:

Ns( f ) =
1

∑ N
i=1 f 2

i
and Ns(m)

=
1

∑ N
i=1m2

i
(16)

where fi and mi correspond to the fertility of females and males of clone i, and N is the
census number in the seed orchard. Fertility is estimated based on the strobilus assessment.

Status number (Ns) based on total fertility (i.e., clone fertility) is calculated as fol-
lows [11,16,35,39]:

Ns =
4N[

ψ f + ψm + 2 + 2r
√(

ψ f − 1
)
(ψm − 1)

] (17)

where ψf and ψm are the fertility variations in female and male parents, equivalent to
CVf

2 + 1 and CVm
2 + 1, respectively. r is the correlation coefficient between female and

male fertility.
The effective number of parents (Np) can be defined as the number of genotypes

divided by the sibling coefficient (Ψ) [15]. This is further divided into the effective num-
ber of female parents [Np(f ) = N/(CVf

2 + 1)] and the effective number of male parents
[Np(m) = N/(CVm

2 + 1)]. Considering the correlations between female and male fertility, Np
is calculated as follows [16,35]:

Np =
N
Ψ

=
4N

CV2
f + CV2

m + 2rCVf CVm + 4
(18)

Here, CVf and CVm are the coefficients of variation in female and male fertility, respec-
tively, r is the correlation coefficient between female and male fertility, and N is the number
of individuals. Fertility is estimated based on the flowering assessment [66].

3.2.3. Covariance between Female and Male Fertility

Under various scenarios of female and male fertility covariations (correlation), the
effective number of parents is stochastically simulated across a range of correlation coeffi-
cients [67] (Figure 3). Generally, when there is no or limited covariation in female and male
parental reproductive output fertility, the effective number of parents (Np) is equivalent to
the census number (N), assuming the seed orchard parents are unrelated and non-inbred.
Positive covariations in female and male parental reproductive output fertility increase the
parental fertility variations (Ψ), as this is affected by variations in both females (ψf) and
males (ψm), leading to a decline in the effective number of parents (Figure 3a–c). On the
other hand, negative covariations in female and male parental reproductive output fertility
mitigates the asymmetrical variations between ψf and ψm (fertility variation imbalances),
increasing the effective number of parents (Figure 3d–f).
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Figure 3. Stochastic simulation of the effective number of parents (Np) with female and male fertility
variations (CVf, CVm) under various covariation (correlation coefficients, r) between female and male
reproductive outputs, where the census number is 100 (N = 100) in the population. Reproduced with
permission from [67].

3.2.4. Sibling Coefficient and Relative Effective Number

The sibling coefficient (Ψ) can be interpreted as the likelihood of two random gametes
being identical by descent in a set of gametes from the same group, considering fertility
variations [2]. Thus, Ψ = 1 means that there that individuals made an equal contribution
to the gamete gene pool in the population. When an equal number of seeds is collected
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from each tree, the female fertility is constant; thus, CVf = 0 (i.e., equal contribution among
seed parents). Under equal seed harvesting conditions, the effective number of parents
(Equation (18)) can be simplified [33,35,37] as:

Np =
4N

CV2
m + 4

(19)

The relative effective number of parent or relative status number (Nr) is the proportion
of the status number (Ns) or effective number of parents (Np) to the census number (N),
as follows:

Nr = Ns/N and Nr = Np/N (20)

The relative effective number of parents for female (Nr(f)) and male fertility (Nr(m)) are
also estimated based on female (ψf) and male fertility (ψm), as follows:

Nr( f ) = 1/ψ f and Nr(m) = 1/ψm (21)

The relative effective number of parent (Nr) and relative status number (Nr) for the
total gene pool is estimated based on total fertility variation (Ψ), as follows:

Nr = 1/Ψ (22)

3.2.5. Parental Balance Curve and Maleness Index

Parental balance curves are shown as an example in Figure 4 [17] using cumulative ga-
mete contribution. Parental balance can be assessed using a cumulative gamete contribution
curve [18,23,25,37,39]. This is an important guide tool for plant geneticists.
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Figure 4. Parental balance curves for reproductive outputs in a population of Taurus cedar. Repro-
duced with permission from [17].

Variations in the parental contribution among families could be described using the
parental cumulative curve shown in Figure 4. The cumulative contribution curve is linear,
and the dotted diagonal line in Figure 4 denotes equal fertility among trees.

Maleness index (Mi) was defined as the proportion of a clone’s reproductive success
that is transmitted through its pollen, that is, by paternal parents (Figure 5) [31,32,68]. The
Mi represents the sexual asymmetry of parental contribution to seed crops among clones
and provides a quantitative measure of gender [68–70] under some assumptions, such as
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equal fertility, and equality between ovule and pollen production. The Mi based on female
and male fertility (e.g., female and male strobilus production) was calculated as follows:

Mi =
mi

fi + mi
(23)

where mi is the proportion of male strobilus production and fi is that of female strobilus
production of the ith clone. Femaleness index equals 1 − Mi, denoting the proportion
of reproductive success transmitted by maternal parents. The high maleness of a clone
indicates that the clone is contributing more as a father than as a mother parent when
compared with other clones in the orchard [31,70].
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The synchronization of flowering plays a vital role in assessing fertility variations,
parental balance curves and the determination of the maleness index. Floral synchrony is
closely tied to phenology, which is the most significant factor affecting the mating system
and flower pollination in seed orchards [71,72]. For instance, in a second-generation clonal
seed orchard of the Chinese fir, Cunninghamia lanceolata, a positive correlation was observed
between the phenological synchronization index and both seed and cone production [73].
Moreover, by utilizing the phenological overlap index (proposed by [74]), researchers
calculated the level of synchronicity required for optimal seed yield in a clonal seed orchard
of northern red oak (Quercus rubra) and found that a high index was essential [75].

Furthermore, various reproductive indicators, such as cone length, cone weight, fertile
scale count, a proportion of aborted ovules, a presence of empty and filled seeds, (referred
to as seed efficiency), seed weight, ratio of empty to developed seeds, and weight of
filled seeds and cones, should all be considered [76]. Additionally, when assessing the
fertility of seed orchard crops, it is crucial to determine the depth of genetic diversity in
future generations and their ability to withstand unpredictable environmental challenges.
The range of variation in reproductive success can serve as a fundamental basis for this
evaluation [77]. The entire process of fertility variations can be comprehensively examined,
extending from seed germination tests to growth tests.
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4. Conclusions

This comprehensive review provides valuable insights into fertility variations and
their linkage parameters in the field of forest population genetics. Understanding the
differences in reproductive success among individuals, known as fertility variations, has
significant implications for gene conservation, seed production programs, managing forest
genetic resources, and evolutionary and physiological studies.

Through an extensive analysis of the existing literature and knowledge, we created
a comprehensive guide for future research on fertility variations and gene diversity. This
review fills a notable gap in the literature by addressing the lack of a dedicated review
paper specifically focusing on fertility variations and their linkage parameters. Fertility
variation estimations, particularly through reproductive character assessments like cone
production, have emerged as a cost-effective and widely used tool in plant sciences. They
have found applications in seed orchards, seed stands, plantations, and natural populations.
The increasing importance and popularity of fertility variations can be attributed to their
numerous advantages and the ongoing research advancements.

We explored various methodologies for estimating fertility variations, including vari-
ations in female and male fertilities, total fertility variation (i.e., sibling coefficient), and
effective parent numbers. Additionally, we discussed important linkage parameters such as
coancestry, group coancestry, gene diversity, status number, and the effective number of par-
ents. These parameters provide valuable insights into relatedness and gene diversity within
forest populations, aiding in the management and conservation of forest genetic resources.

Furthermore, we highlighted the significance of parental balance curves as a tool for
evaluating the contribution of individual parents to the overall gene pool. These curves
visually represent cumulative gamete contribution and serve as a guide for breeding
programs and seed production efforts. To further advance the field, we recommend in-
corporating molecular studies to support fertility research (i.e., marker-assisted selection
(MAS)). Developing specialized stochastic software that is specifically designed for fertility
variation and linkage parameter estimations would streamline calculations and analyses,
leading to enhanced accuracy and efficiency. Moreover, fertility variations and their linkage
parameters can be applied to new purposes, such as the establishment and selection of seed
sources to produce climate-resilient seed crops based on gene diversity.

In summary, this review paper fills an important gap in the existing literature by
providing a comprehensive overview of fertility variations and their linkage parameters. It
serves as an invaluable resource for researchers and practitioners interested in studying
and applying fertility variations in forest sciences. By understanding fertility variations,
we can significantly contribute to gene conservation efforts, improve seed production
programs, and gain deeper insights into the evolutionary and physiological aspects of
forest populations. The integration of molecular studies, the development of specialized
software, and the expansion of applications in seed source establishment and selection for
climate resilience further advance the field of fertility research.
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