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Abstract: Scenario-based simulation in land use and cover change (LUCC) is a practical approach to
maintaining ecological security. Many studies generally set constraints of LUCC utilizing ecological
patches but without consideration of corridors connecting these patches. Here, we constructed a
framework to balance urban growth and ecological security by integrating ecological security patterns
(ESPs) into the PLUS model. This study selected Chang-Zhu-Tan Metropolitan Area (CZTMA) in
central China as a typical case. Specifically, coupling quantitative demand with spatial constraints
of multiple levels of ESPs, this study designed four scenarios, including historical tendency (HT),
urban growth (UG), ecological conservation (EC), and coordinating city development and ecological
protection (CCE). Then, the transformations and landscape patterns of LUCC were analyzed to
evaluate the future land change from 2020 to 2050. The results show sixty-one key ecological
sources in the CZTMA, mainly in higher-elevation forested areas. Forty-six ecological corridors were
estimated using circuit theory. The building expansion was driven by accessibility to transportation
and government locations and will contribute to the loss of forest and cropland in the future. The
feature of different scenarios in alleviating the increasing fragmentation of patches and reducing
the loss amount of ecological land showed EC > CCE > HT > UG. This study developed the ESP-
PLUS framework and its modeling idea, which has the potential to be applied in other regions. This
extension would assist decision-makers and urban planners in formulating sustainable land strategies
that effectively reconcile eco-environmental conservation with robust economic growth, achieving a
mutually beneficial outcome.

Keywords: land use and cover change; ecological security pattern; multiple scenarios simulation;
PLUS model; Chang-Zhu-Tan metropolitan area

1. Introduction

The global land use and cover change (LUCC) has become significant due to the
progress of industrialization, urbanization, and the increased intensity of human activi-
ties [1,2]. It leads to issues that threaten human well-being, such as wetland loss, land
degradation, climate extremes, and biodiversity reduction [3–6]. Previous research showed
that about 60% of global land change directly relates to human activities [7]. Meanwhile,
the global impervious surface increased by 480 thousand km2 while the forest decreased
by 1.47 million km2 during the past four decades [8]. The LUCC is more prominent in
metropolitan areas than other regions driven by population agglomeration from rural to
urban areas and rapid economic growth, which puts enormous pressure on the local ecolog-
ical environment [9,10]. Therefore, simulating and understanding LUCC in metropolitan
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regions and their potential trends from ecological security is essential for coordinating
socioeconomic development and ecological conservation.

Predicting the spatiotemporal processes of LUCC is recognized as a helpful approach
to supporting urban planning and optimizing land use allocations [11]. The primary
differences among models that simulate the LUCC dynamics are spatial and non-spatial.
The non-spatial models primarily emphasize the simulation of change in amount and
speed with relatively little focus on space operation. Examples of such models include
multi-objective programming (MOP) [12], grey-system models (GM) [13], system dynamics
(SD) [14], and Markov chains (MC) [15]. The utilization of cellular automata (CA) has
gained significant recognition in geographical modeling and parallel data processing,
primarily attributed to its robust capabilities [16]. Nevertheless, the single model does
possess several limitations despite its inherent benefits. As a typical coupling model, CA-
Markov is broadly employed to explore future land use/cover evolution [17–19] because it
can effectively absorb the benefits of time series forecast and spatial projection of CA and
MC methods.

To better determine the transition rules in land change modeling, scientists have pro-
posed admirable models and algorithms based on CA, such as multi-criteria evaluation
(MCE) [20], logistic regression (LR) [21], multiple layer perception (MLP)-ANN [22], GEO-
MOD [23], the SLEUTH model [24], conversion of land use and its effects (CLUE) family
models [25–27], and the future land use simulation (FLUS) model [28]. However, most
available models are weak in detecting the driving factor’s contribution to land use change
and capturing the evolutionary rules of the multiple-type patches. Liang et al. [29] recently
introduced a patch-generating land use simulation (PLUS) model. This model incorpo-
rates enhancements to the adaptable inertia and roulette competition processes shown in
the FLUS model and integrates the random forest method. Relevant evidence suggests
that the PLUS model can deal with multicollinearity in driving factors and simulate the
patterns of LUCC more accurately than the previous models could [30–32]. The model
has superior performance among simulation results in Rwanda [33], the ecological area of
western Beijing [34], the Shiyang watersheds of arid regions [35], and the Qinghai–Tibet
Plateau [36]. Thus, adopting the PLUS model and verifying its suitability in metropolitan
areas could provide new thoughts for the LUCC simulation in other parts of the world.
Moreover, it is essential to model the LUCC considering ecological security when urban
growth is inevitable [37].

In simulating land changes, natural reserves [38], biological habitats [39], ecological
red-line regions [40], and areas where ecosystem services work well [41] were used as
constraints to optimize land use patterns and control urban sprawl. However, those ap-
proaches remain issues that deserve further exploration. Firstly, the ecological patches of
those constraints are isolated and do not constitute a structured ecological network system.
Corridors as belt regions in ecological security patterns are crucial for connecting mate-
rial, energy, and information flows, especially for animal migrations [42]. Consequently,
incorporating ecological corridors into the constraints can fill this deficiency. Secondly,
most of the previous ecological constraints are relatively single, which cannot match land
demand under multiple scenarios of LUCC [43]. The quantitative land use/cover demands
for various scenarios could be designed by adjusting the future transition probabilities
across land categories based on the MC approach. Hence, the spatial constraints could be
diverse rather than unchanging when modelers develop multiple scenarios.

With urbanization and industrialization, the demands of human activities on land
resources are increasing, especially in developing metropolitan areas [44]. Although
metropolitans have achieved remarkable progress in socioeconomic areas, unprecedented
transformations in land use and cover have occurred and resulted in resources and envi-
ronmental problems, such as declining air quality [45], extreme traffic by congestion [46],
high potential in soil erosion risk [47], lowered water tables [48], urban waterlogging [49],
deforestation [50], and occupied cropland [51]. At the same time, these consequences
restricted the transition of socioeconomic areas and reduced the level of regional ecological
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security [52]. Therefore, studying LUCC in metropolitan areas is meaningful for achiev-
ing ecological civilization and healthy urban development. The Chang-Zhu-Tan urban
agglomeration became a comprehensive reform zone for China’s resource-saving and
environmentally friendly society in 2007 [53]. Since then, it has received more support
in national policy and entered a stage of rapid economic advancement. However, there
are still significant gaps in the overall level of economic development compared to other
developed cities. It is challenging to drive the development of neighboring cities [54].
Hence, in February 2022, the Chinese Government set up the Chang-Zhu-Tan Metropolitan
Area (CZTMA) to promote sustainable development throughout the region by accelerating
the integration of the three cities (Changsha, Zhuzhou, and Xiangtan) in space, industry,
and resource [55].

The CZTMA, as the growth core of Hunan Province’s economic development, plays
a crucial role in promoting the rise of central China. However, the land use and cover in
the CZTMA have remarkably changed due to human disturbance and the urgent need
for economic growth [56]. Furthermore, climate change and extreme weather events such
as typhoons, floods, and droughts threaten the regional ecological security [57,58]. In
the previous studies on the Chang-Zhu-Tan region, the analytical perspectives of land
change focused on quantifying land transformation [59], land use carbon emissions [60],
eco-environmental quality assessment [55], and urban boundary delineation [61]. More-
over, scientists examined ecological network evolution at small scales [62]. They predicted
temporal future land changes under coordinated scenarios from urban development and
ecological protection [53], involving parts of the CZTMA, which overlooked the simultane-
ous quantitative and spatial conservation for ecological resources. Meanwhile, the studies
on multi-scenario simulation of LUCC incorporating ESPs in the CZTMA are still lacking.
Thus, we formulated the two research questions of this study as follows:

• How to frame a predictive modeling for LUCC that considers ecological security?
• What are the LUCC dynamics and their enlightenment under the framework?

Accordingly, we selected the CZTMA as a typical case. This research aimed to model
a technical framework to forecast the LUCC trend via combining the PLUS model with
the multi-threshold ESPs, evaluate and compare the future LUCC and landscape char-
acteristics, and explore diverse spatial variables’ impacts on the LUCC. This study can
provide informative references and modeling ideas for guiding orderly cities’ growth and
sustaining the overall safety of regional ecosystems in metropolitan areas.

2. Materials and Methods
2.1. Study Area

Since 2021, the Chinese government has established seven national-level metropolitan
areas to promote industrial and population concentration and high-quality socioeconomic
development. The Chang-Zhu-Tan Metropolitan Area (CZTMA) was designed to integrate
the three cities to generate stronger economic radiation and accelerate the growth of
underdeveloped regions [55]. The CZTMA is situated in Hunan Province’s north-central
region (111◦53′–114◦16′ E, 27◦13′–28◦40′ N). The cities serve as the economic, cultural, and
industrial cores of Hunan Province, playing a significant role in driving the achievement
of high-quality development in central China. The extent of this study encompasses the
complete geographical region of Changsha City and selected portions of Zhuzhou City and
Xiangtan City, with an area of roughly 18,900 km2 (Figure 1).
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Figure 1. Location (a) and administrative divisions (b) of the CZTMA in China.

The study area’s population grew from 12.39 million in 2000 to 16.99 million in 2022,
and its GDP reached 2.57 hundred billion dollars [63]. The intercity trains run across the
region, and the Beijing–Guangzhou, Shanghai–Kunming, and Chongqing–Xiamen high-
speed railways come together here. The climatic conditions observed in the research area
can be classified as subtropical monsoon, which is characterized by an average annual
temperature ranging from 16 to 18 ◦C and an annual precipitation ranging from 1200
to 1500 mm. Here, imbalanced rainfall can cause floods or droughts. The Xiangjiang
River, flowing from south to north, is a first-class part of the Yangtze River. The region’s
topography is characterized by the Luoxiao Mountains in the east, hills in the west, and
plains along the river in the center.

2.2. Data Source and Processing

Several models and tools are used in this study, and they require different data formats
and types. The Resources and Environmental Sciences Data Center of the Chinese Academy
of Sciences (http://www.resdc.cn/, accessed on 11 May 2022) provides land use/cover data
from 2000, 2010, and 2020. These data rely on multi-temporal remote sensing imagery from
Landsat TM/ETM+/OLI and are then interpreted through human–machine interaction
with a spatial resolution of 30 m. It has 6 first-classes and 25 subclasses, among which the
accuracy of first-class interpretation is above 85% [64,65]. We employed the data product’s
first-level classification, which comprises cropland, forest, grassland, waters, buildings,
and unused land (Table 1). The unused land with a small area was classified as grassland,
according to the observation of Google Earth images. Finally, we divided land categories
into cropland, forest, grassland, waters, and buildings in the study area.

Table 1. The first-level classification of land use and cover data in the study.

Category Description

Cropland
Cropland refers to land on which crops are grown, including cultivated land, newly
opened land, fallow land, swidden agriculture land, grass-field rotation land, and
agricultural fruits and mulberries, mainly cultivated with crops.

Forest Forest refers to forestry land where trees, shrubs, bamboo, and coastal mangrove
land grow.

Grassland
Grassland refers to all types of grassland with a predominantly herbaceous growth and a
cover of 5% or more, including scrub grassland with a largely pastoral growth and sparse
grassland with a canopy density of less than 10%.

Waters Waters refers to natural terrestrial waters and land for water facilities, such as lakes, ponds,
reservoirs, and shallows.

Buildings Buildings refers to urban and rural settlements and other industrial, mining,
transportation, and other land.

Unused land Unused land refers to currently unutilized land, including land that is difficult to use, such
as sandy land, the Gobi, saline land, and bare land.

http://www.resdc.cn/
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The administrative boundary, highway, and railway data are from the Chinese Basic
Geographic Information Center’s Resource Service System (http://www.webmap.cn/,
accessed on 20 September 2022). DEM data with 90 m resolution is available from the
Landsat Collection 2 DEM product on the United States Geological Survey (USGS) website
(https://earthexplorer.usgs.gov/, accessed on 2 May 2023). It can be used to generate
slope data. Population density, GDP, soil type, and annual temperature and precipitation
(2010–2020) are openly accessible from the website (http://www.resdc.cn). These data’s
pixel sizes are all 1 km.

Moreover, it is necessary to input multiple driving factors into the PLUS model
when simulating future land use patterns. Nevertheless, this model does not support
vector format. We, therefore, used the Euclidean Distance module of ArcGIS Pro software
(Version 2.5, Esri, Redlands, CA, USA) to process the location point data and traffic linear
data. Twenty-three remote sensing images with a spatial resolution of 250 m in 2020
were downloaded from the MOD13Q1 dataset (https://ladweb.modaps.eosdis.nasa.gov/,
accessed on 10 December 2022). We used a mean value method to synthesize those images
and obtain the normalized difference vegetation index (NDVI). Ultimately, there are thirteen
types of drivers input into the PLUS model, including natural environment class: soil
type, slope, DEM, NDVI, temperature, and precipitation; socioeconomic class: population
density and GDP; and spatial accessibility: distance to rivers, governments, roads, railways,
and highways. We set all data as Krasovsky_1940_Albers projection using ArcGIS Pro
tools. Additionally, the ArcGIS Pro 2.5 software’s resampling tool was used to unify the
spatial resolution of the driver data to 30 m. The null value problem in the DEM data was
addressed before input to the PLUS model. We used the conditional function in the raster
calculator of the GIS tool to assign the null value to 1, and other values remain unchanged.
Since the model operates automatically, it is not necessary to normalize all the drivers.

2.3. Methods

We constructed an ESP-PLUS framework to model multiple scenarios of LUCC consid-
ering ecological security. The framework involves four parts (Figure 2). First, multi-level
ecological security patterns using MSPA and circuit theory were constructed. Second, the
transition probabilities between land categories were modified by the MC model, and then
we set the land demand of multiple scenarios combining the multi-ESP. Third, the outputs
of the first two parts were incorporated into the PLUS model to project multiple scenarios
of LUCC. Finally, to evaluate future LUCC under different scenarios, we analyzed the
LUCC processes at the different levels and spatial pattern evolution.
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Figure 2. Technical framework of the study.
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2.3.1. Land Transition Matrix

The land transition matrix can characterize conversion size among land use/cover
categories, which can be deconstructed into top-down interval, category, and transition
levels, as detailed in Table 2. These progressive and hierarchical analyses help scientists
systematically understand the land change process. By adopting the transfer matrix and its
three levels, this study explored the spatiotemporal characteristics of future LUCC patterns
in the CZTMA and compared the land changes in multiple scenarios. The methodology’s
form is a cross-tabulation [66], whose elements on the diagonal represent the size of the
unchanged areas of different land categories during a single period. Therefore, the total
LUCC in a region extent is the sum of the value of other cells except the diagonal cells. If
observed from a row, the non-diagonal cells represent the size that a category loses to other
categories at a time interval. If observed from a column, these cells can represent the size
that a category gains from other categories at a time interval. In Table 1, B15 represents
the area of cropland transition to buildings in the study area; B1+ and B+1 represent the
areas of cropland in initial time and in the end time, respectively; B1+–B11 show the losing
size of cropland; B+1–B11 show the gaining size of cropland; and Bt is the total size of the
study area.

Table 2. Land transition matrix for five categories.

End Time

Cropland Forest Grassland Waters Buildings Total in Start Loss

Start time
Cropland B11 B12 B13 B14 B15 B1+ B1+–B11

Forest B21 B22 B23 B24 B25 B2+ B2+–B22
Grassland B31 B32 B33 B34 B35 B3+ B3+–B33

Waters B41 B42 B43 B44 B45 B4+ B4+–B44
Buildings B51 B52 B53 B54 B55 B5+ B5+–B55

Total in end B+1 B+2 B+3 B+4 B+5 Bt
Gain B+1–B11 B+2–B22 B+3–B33 B+4–B44 B+5–B55

2.3.2. Identifying Ecological Sources

We applied the morphological spatial pattern analysis (MSPA) to conduct a compre-
hensive landscape analysis and then extracted ecological sources through connectivity
assessment. MSPA is an identifying and segmenting method of raster image process-
ing by erosion, expansion, and open/close arithmetic, which can effectively determine
the landscape type and structure [67]. The forest and waters have good ecological func-
tions and less disturbance by human activities, which are ideal spaces for species to
survive [68,69]. Buildings and cropland are greatly affected by human activities [70,71].
Moreover, the grassland’s ecological quality in the study area is poor compared with the
forest, and the grassland lacks a better environment for species to forage and rest. Hence,
based on the previous works, we selected forest and waters in 2020 as foreground pixels
and other land use and cover categories in 2020 as background pixels. Using Guidos-
Toolbox software (Version 3.2, European Commission, Joint Research Centre (JRC), Ispra
(VA), Italy, https://forest.jrc.ec.europa.eu/en/activities/lpa/, accessed on 12 February
2023) [72,73], the shape, connectivity, and spatial arrangement detection of binary images in
8-bit tiff format were performed using the eight-neighborhood approach. Next, the images
were segmented into seven landscape types: core, islet, perforation, edge, loop, bridging,
and branch.

Ecological sources are areas with sufficient material exchange and energy movement,
and their precise identification is critical for constructing ecological security patterns [74].
Specifically, this study considered the size and connectivity of patches to select ecological
sources, which avoids subjectively defining core ecological sources as large patches. We
inputted the core area recognized by MSPA into the Conefor Sensinode (Version 2.6, Uni-

https://forest.jrc.ec.europa.eu/en/activities/lpa/
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versity of Lleida, Lleida, Spain) and then computed the connectivity. The Conefor tool and
its manual are accessible on the website (http://www.conefor.org/coneforsensinode.html,
accessed on 17 May 2023) [75]. Equations (1) and (2) give the formulas to calculate the
probability of connectivity (PC) and the delta of PC (∆PC) for each patch [67]. The PC
and ∆PC can evaluate regional landscape connectivity and the importance of patches to
landscape connectivity, respectively. Finally, we regarded the patches with an area larger
than five square kilometers and a ∆PC value greater than 0.3 as ecological sources.

PC =
∑n

i=1

(
∑n

j=1 ai × aj × P∗ij
)

S2
t

(1)

∆PC =
PC− PCi

PC
× 100% (2)

where St is the total source area; n represents the number of source patches; and ai and aj
are the patches i and j sizes, respectively. Pij shows the possible connectivity index between
patches i and j, and its range is 0–1. A larger PC represents better connectivity among
patches; PCi is the value of the overall connectivity after removing patch i. A more excellent
∆PC value represents a higher importance of the patch to sustain landscape connectivity.

2.3.3. Setting Resistance Surface

The resistance surface is the spatial distribution patterns of ecological process re-
sistance. Firstly, a resistance surface factor system was established, combining previous
studies and the study area [76]. We chose slope, elevation, land use category, MSPA land-
scape type, and distance to buildings as resistance factors. Then, the analytic hierarchy
process (AHP) was used to determine the weights of each factor (Table 3).

Table 3. Design and weight of resistance surface factors.

Resistance Factor Weight
Resistance Value

1 3 5 7 9

Slope 0.17 <3◦ 3◦–8◦ 8◦–15◦ 15◦–25◦ >25◦

Elevation 0.07 <50 m 50–150 m 150–250 m 250–350 m >350 m
Land use category 0.37 Forest Grassland Cropland Waters Buildings

MSPA landscape type 0.17 Core Loop, Bridge Islet, Branch Perforation, Edge Background
Distance to buildings 0.22 >1500 m 1000–1500 m 500–1000 m 200–500 m <200 m

2.3.4. Extraction of Ecological Corridors

Corridors show pathways communicate ecological sources. They are crucial structural
areas for improving landscape connectivity in ecological restoration programs to decrease
the probability of interception and segmentation for ecological processes [77]. Circuit
theory abstracts patches as nodes and resistances [74]. It can identify ecological corridors
using thoughts of random wandering characteristics of charges and a minimum cumulative
resistance (MCR), as detailed in Equation (3).

MCR = fmin∑i=x
j=y Dij ×Vi (3)

where MCR is the minimum cumulative resistance value from an ecological source to grid
unit; f is a function that indicates the positive correlation between minimum cumulative
resistance and ecological processes; Dij is the spatial distance from source j to grid i; and Vi
is the resistance value in grid i.

We identified the ecological corridors of the CZTMA using the GIS tool Linkage
Mapper (http://www.circuitscape.org/linkagemapper, accessed on 18 May 2023). The
corridor areas were determined according to the threshold of cumulative resistance, and the
areas where the cumulative resistance exceeded the threshold were excluded. The detailed

http://www.conefor.org/coneforsensinode.html
http://www.circuitscape.org/linkagemapper
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identification process is as follows. First, the neighboring source areas were identified using
cost allocation and Euclidean allocation functions in ArcGIS software (Version 10.2, Esri,
Redlands, CA, USA). Based on the source polygons and the resistance raster, the raster file
was created to assign grid cells to the nearest Euclidean space of a source area. Second, a
network of source areas was built via adjacency and distance data. This network includes
line data connecting two patches, resulting in a stick map. The attribute of the stick map
represents the Euclidean distance between patches. Third, we performed a cost-weighted
distance computation for each source area based on the source polygons, resistance raster,
and linked table from step one. Finally, the minimum cumulative cost distance between
a pair of source areas was acquired, and then the shortest path was identified. Such an
operation requires n(n − 1)/2 times where n shows the number of sources until all source
areas are calculated, forming all corridors among the ecological source. An ecological
corridor is the optimal corridor with the lowest cumulative cost consumption and the
shortest distance, and these corridors cannot be a straight line but rather an irregular curve,
as shown in Figure 3.
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Figure 3. Setting of ecological constraints under the four scenarios. Note: identification of three
levels of ESPs (a–c); ecological constraint designations for different scenarios (d–g); HT: historical
tendency; UG: urban growth; EC: ecological conservation; CCE: coordinating city development and
ecological protection.

2.3.5. Different Levels of ESPs and Multi-Scenario Settings

Different ESP levels were structured according to the extent of ecological corridors
formed by various cumulative resistance thresholds. Studies have found that the mini-
mum width required to protect birds is 200 m, the minimum width required to form a
diverse landscape structure is 600 m, and the minimum width required to foster a close
natural habitat is 1200 m [78,79]. According to previous research, ecological corridors with
cumulative resistance thresholds of 1000, 2400, and 3200 were designed, corresponding
to ESP1, ESP3, and ESP2 [43]. Also, Figure 3 shows the four spatial constraints under
different scenarios.

Changes in demand for future development impact land use evolution. The land
use prediction in a metropolitan area under multiple scenarios is designed to provide
decision-makers with various decision-making perspectives. These perspectives can help
planners scientifically judge the spatial patterns and transition direction among land use
types, which are significant to the harmony of human–land relationships and sustainable
socioeconomic development. Therefore, we have designed the four scenarios, as shown in
Table 4.
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Table 4. Four scenario designs regarding land change modeling.

Scenario Description Parameter

Historical tendency (HT)

This scenario continues the evolutionary
trend of the different land categories over

the historical period (2010–2020) and is the
reference for the parameters setting of the
other scenarios. The spatial constraint for
the HT scenario consists of the key water

bodies, corresponding to Figure 3d.

This scenario maintains the probabilities of
transitions among land use categories

calculated from Markov chains between
2000 and 2020. We extrapolated the land

use demands in 2030, 2040, and 2050,
starting with 2020.

Urban growth (UG)

This scenario mainly focuses on urban
expansion to ensure regional economic

advances. The loss of forest, grassland, and
cropland accelerates. It also added ESP1

spatial constraint to the HT scenario,
corresponding to Figure 3e.

The probability of a transition from
cropland, forest, and grassland to buildings

increases by 20%; the probability of a
transition from buildings to other

categories decreases by 30%, while the
probability of a transition from buildings to

cropland stays.

Ecological conservation (EC)

In the context of emphasizing ecological
restoration and protection, ecological land
is prioritized for protection to reduce its

shrinkage rate. The ESP2 spatial constraint
was added to the EC scenario,

corresponding to Figure 3f.

We set the probability of a transition from
other categories to buildings decreased by

30%, and the probability of a transition
from buildings to others increased by 20%

(except for the transition to cropland)

Coordinating city development and
ecological protection (CCE)

The CZTMA is in a critical period of
economic recovery and industrial

upgrading. Appropriate growth of urban
areas remains a realistic need for the

socioeconomic development of the region,
but in accordance with the requirements of

ecological civilization. The ESP3 spatial
constraint was added to the scenario,

corresponding to Figure 3g.

The probability of a transition from forest
and cropland to buildings reduced by 10%;
the probability of a transition from waters
and grassland to buildings decreased by
20%; the probability of a transition from
buildings to forest reduced by 20%; the

probability of a transition from buildings to
waters and grassland reduced by 10%.

2.3.6. LUCC Scenario Simulation

The PLUS model is comprised of a rule mining framework that utilizes the land
expansion analysis method (LEAS) and a cellular automaton (CA) model that is based on
multi-type random patch seeds (CARS) [29]. Initially, the LEAS module is responsible for
extracting the expansion pattern of each land category from the land use maps at two time
points. The subsequent analysis elucidates the variations in the impact of individual driving
variables on LUCC, as determined by implementing the random forest classification (RFC)
algorithm. Next, the module can understand the land transition rules, calculate each land
category’s probabilities, and produce their spatial distribution map. Equation (4) shows
the formula to compute the probability of land category k on pix i [29].

Pd
i, k(x) =

∑M
n=1 I = {hn(x) = d}

M
(4)

where d is a binary variable that takes 0 or 1; if d equals 1, it shows other land categories
converted to category k; if d equals 0, it shows the other transition occurs. The vector x
is comprised of many drivers, where each driver represents a certain component; hn(x)
represents the predicted category of the n-th decision tree’s vector x; and M shows the total
number of decision trees in the analysis. The indicator function i is used to denote the
decision tree, indicating if a particular driver is present or not.

After the steps in the above module are completed, the CARS module requires the
input of development probabilities, neighborhood weights, and transition costs for all cate-
gories. Also, we can import a constraint factor into this module. According to Equation (5),
the neighborhood weights for cropland, forest, grassland, waters, and buildings were
set in Table 5, respectively, according to the percentage of area in category change. The
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model incorporates a combination of stochastic seed generation and threshold-decreasing
mechanisms to simulate the generation of patches. Each patch is ultimately represented as
a land category, which is determined by the overall probability of the land use category
as described in Equation (6) [29]. The feedback mechanisms of macro-demand and local
competition influence the specific outcome of the model.

Weighti =
Gaini

∑5
i=1 Gaini

(5)

OPd=1, t
i, k = Pd=1

i, k ×Ωt
i, k × Dt

k (6)

where Weighti is the weight of land category i; Gaini denotes the expansion area of category i
between 2010 and 2020; i represents one of the five land categories in the study area; OPd=1, t

i, k
is the overall probability of land category k on pix i; Pd=1

i, k is the transition probability of
land use category k on pix i; Ωt

i, k denotes the neighborhood effect of land category k on
pix i; Dt

k shows the influence of future demand for land category k and also represents
the adaptive drive coefficient, whose magnitude is decided by the deviation between the
iterated quantity and the macro demand for category k at time t.

Table 5. Neighborhood weights for land category.

Land Category Cropland Forest Grassland Waters Buildings

Weight 0.251 0.257 0.008 0.033 0.451

The overall accuracy (OA) index was used to check the PLUS model’s simulation
performance. The OA is the proportion of pixels consistent between simulated and observed
land use maps in 2020. We also used the figure of merit (FoM) coefficient to determine how
accurate the PLUS simulation was by comparing the change in the simulation to the change
seen from 2010 to 2020 [80]. The final OA and FoM values for the simulated land use map
are 92.5% and 0.22, respectively. According to previous investigations, the precision results
were acceptable. The FoM is computed in the following manner:

FoM =
Hits

Misses + Hits + False alarms + Wrong hits
(7)

where Misses is the pixels that simulate as change but are observed as unchanged; Hits is
the pixels that are both simulated and observed as change; False alarms is the pixels that are
simulated as unchanged but observed as change; and Wrong hits is the pixels that are both
simulated and observed as change but simulated as an error category.

2.3.7. Landscape Pattern Metrics

Landscape metrics can quantitatively express the characteristics of patch, shape, and
clustering in land use/cover patterns [81]. We selected eight indices, including the number
of patches, mean patch size, edge density, fractional dimension, contagion, aggregation
index, Shannon’s diversity index (SHDI), and Shannon’s evenness index (SHEI). Land use
maps were converted to raster format using ArcGIS Pro software. Then, we calculated
these indices based on Fragstats software (Version 4.2, Portland, OR, USA).

3. Results
3.1. Ecological Security Pattern in the CZTMA

Figure 4 shows the different landscape types in the study area using the MSPA method.
According to the data presented in Figure 4, the cumulative area of the seven distinct
landscape types amounts to 11,639.2 km2 and 61.5% of the overall research area. The core
area has the largest expanse, measuring 7816.4 km2, while the bridge area represents the
smallest region, spanning a mere 43.8 km2. The primary region is dispersed across the



Forests 2023, 14, 2131 11 of 22

eastern and southern sectors of the CZTMA, predominantly inside the Luoxiao Mountains
(Figure 4a). The center and western regions have fewer patches and a more fragmented core
area, which hinders the efficient cycling of materials and energy conversion in ecological
processes. The perforation and edge areas serve as protective buffers for the core region,
acting as transitional zones between the core area and other landscape types. These areas
account for 2.1% and 13.2% of the study extent. It reveals that the core patches in the
CZTMA have stability and can resist the impacts produced by the disturbances of external
influences.

Forests 2023, 14, x FOR PEER REVIEW 8 of 24 

Figure 4. Identification of ecological sources and corridors in the CZTMA. Note: (a) landscape
distribution under the MSPA method; (b) resistance surface; (c) ecological security pattern; (d) land-
scape structure.

Determining the weights of the five factors using the AHP method, we obtain a
comprehensive resistance surface of the CZTMA by weighted overlay (Figure 4b). The
northern and central parts of the study area have higher resistance values due to the
influence of cropland and buildings in these areas. The resistance distribution is high in
the center and low in the surroundings, which could affect the exchange of ecological
information and species migration between the eastern and western core areas. Finally,
46 ecological corridors were estimated, of which the length of 26 corridors was greater than
15 km and had a maximum length of about 126 km (Figure 4c).

3.2. Future Prediction of LUCC under Multi-Scenario

We inputted the parameters of the four modeling scenarios into the CARS module.
This study forecasted the LUCC dynamics for the next 30 years by taking 2020 as the base
year, as shown in Figure 5 and Table 6.



Forests 2023, 14, 2131 12 of 22

Forests 2023, 14, x FOR PEER REVIEW 8 of 24 

Figure 5. Historical land use/cover maps (a,b) and simulated maps (c–f) in 2050 under the four
scenarios in the CZTMA. HT: historical tendency; UG: urban growth; EC: ecological conservation;
CCE: coordinating city development and ecological protection.

Table 6. Change dynamics in land categories’ area during 2000–2050 (Unit: km2).

Scenario Year Cropland Forest Grassland Waters Buildings

Actual observation 2000 6210.5 11,593.7 172.2 412.0 526.4
2010 5919.2 11,383.4 173.4 429.7 1009.3
2020 5681.6 11,208.5 171.2 430.8 1422.9

Historical tendency
(HT)

2030 5467.8 11,014.3 168.4 430.2 1801.1
2040 5283.8 10,853.1 166.3 431.1 2147.4
2050 5122.2 10,723.9 164.2 432.1 2439.4

Urban growth
(UG)

2030 5421.5 10,963.2 168.1 427.2 1901.8
2040 5203.8 10,775.8 166.2 426.8 2309.1
2050 5010.3 10,570.2 163.8 424.6 2712.7

Ecological conservation
(EC)

2030 5537.9 11,083.9 168.7 419.5 1671.7
2040 5582.4 11,015.8 167.6 415.6 1700.3
2050 5309.0 10,926.3 166.0 407.2 2073.2

Coordinating city development
and ecological protection (CCE)

2030 5491.3 11,029.1 168.5 431.6 1761.2
2040 5332.1 10,906.3 167.2 425.6 2050.6
2050 5187.5 10,762.2 165.3 437.4 2329.4

In 2020, the study area was dominated by forest, cropland, and buildings, with
5681.6 km2, 11,208.5 km2, and 1422.9 km2, respectively. Figure 5 shows that the land use
structure’s characteristics will remain stable under all the scenarios during 2020–2050. Land-
use categories change to concentrate on cropland, forest, and buildings. The expansion
of buildings is evident. Each land use type remains consistent in spatial distribution,
with cropland mainly distributed in the plains with flat terrain and well-developed water
systems. Forest is predominantly spread in hilly and mountainous locations with higher
topography in the west and south. Buildings are mainly clustered on both sides of the rivers,
that is, along the Xiangjiang River and its tributaries, the Liuyang River and the Weishui
River. The extension of buildings is predicated upon the initial spatial allocation and further
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extends in a linear fashion adjacent to the river. Urban growth occurs mainly in Changsha
County, Wangcheng District, Yuhu District, Ningxiang City, and Tianyuan District by
occupying cropland and forests that have ecological functions. If land urbanization is not
restricted, it will threaten the ecological security of the metropolitan area.

There are differences in the dynamic trends of land categories during 2020–2050
(Table 6). The buildings’ area has increased, while cropland, forest, and grassland have
all shrunk, and waters is unstable. Under the HT scenario, the buildings’ area will be
2439.4 km2 by 2050, which is an increase of 71% compared to 2020. The buildings’ area in
2050 is 2712.7 km2, which is an increase of 90% compared to 2020 under the UG scenario.
In the EC and CCE scenario, the buildings’ areas in 2050 are 2073.2 km2 and 2329.4 km2,
respectively. Among land types, the building expansion is the most significant. In the
context of urbanization, without strong policy intervention measures, city construction
areas will continue to sprawl to meet the needs of urban population growth and economic
development for land carriers. Urban expansion will mainly sacrifice forest and cropland.
The future directions of forest and cropland inherit the feature in the historical period
2000–2020, showing a net decrease. During the 2020–2050 HT scenario, the area of cropland
and forest decreased by 559.4 km2 and 484.6 km2, respectively. Compared to the HT
scenario, the cropland, forest, and grassland change rates were reduced in the EC scenario.
Furthermore, the EC scenario may effectively reduce the environmental pressure brought
on by built-up areas engulfing agriculture and forests under the influence of ecological
network restrictions, which gives decision-makers a foundation for ensuring the security
of the regional ecosystem. Nonetheless, it is challenging to prevent a rise in the size of
buildings when local governments are tasked with establishing goals for superior economic
growth. Forest and cropland will still be compressed to some extent in the future, although
the EC scenario can effectively control the rate of ecological land reduction.

3.3. Scenarios Comparison and Analysis
3.3.1. Comparison Based on the LUCC Processes

Figure 6 shows the LUCC processes and their impact on the ecological area under
future scenarios during 2020–2050. From the time interval level (Figure 6a), the land use’s
overall change under the four future scenarios is UG > HT > CCE > EC. The change size
in the UG scenario reached 2938.95 km2 (15.55%), with the most drastic land dynamics.
It demonstrates that the priority given to enhancing urban and rural construction in the
future possibly results in a speedy rate of land change. Compared with the UG scenario,
the EC scenario’s land change area is 6.79% of the study area, reducing the scale by half,
which implies that appropriate ecological network protection measures in the future can
effectively curb the size of land use change in the metropolitan area.

There were differences in the category’s gain and loss under different scenarios
(Figure 6b). Regarding category loss, the forest is the largest (3.53%–6.22%), followed
by cropland (3.41%–4.53%). Additionally, the buildings’ gain is huge (3.72%–7.14%) de-
spite the small proportion of buildings within the study extent. From the perspective of
scenarios, the areas of forest and cropland loss under the UG scenario are 1177.47 km2

(6.23%) and 979.12 km2 (5.18%), respectively, indicating a significant deforestation process.
Under the EC scenario, the shrinkage in forest and cropland can be mitigated. Regarding
the transition size to buildings (Figure 6d), the UG scenario has an enormous transition
size, and the EC scenario has the smallest. Between 2000 and 2050, the transition area
from forest to buildings is 381.78–893.97 km2 (2.02%–4.73%), with the most significant
UG scenario. Throughout the four scenarios, it is clear that the overall characteristic of
the LUCC processes is that the CCE scenario falls between the HT scenario and the UG
scenarios, and the UG scenario is larger than the historical trend scenario.
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Figure 6. Scenario comparison in the land change process during 2020–2050. Note: different scenar-
ios’ overall changes at interval level (a); scenario differences at category level (b); ecological area
and buildings gain from 2020–2050 under the HT scenario (c); other land categories’ transition to
buildings (d); ecological area loss distribution due to buildings growth under the HT scenario (e);
HT: historical tendency; UG: urban growth; EC: ecological conservation; CCE: coordinating city
development and ecological protection.

We overlaid the building expansion under the HT scenario and the ESP3 level ecologi-
cal area. Then, we identified the loss distribution of different ecological areas caused by
building growth (Figure 6c,e). As shown in Figure 6c, building expansion mainly takes
buildings in 2020 as the source of growth, significantly encroaching on critical ecological
land that maintains ecological security. Also, the increase of buildings has occurred in the
green heart area of the CZTMA. Therefore, in the future, the development of green heart
parks should pay attention to protecting the core ecological patches within the region to
prevent “constructive” damage to the surrounding ecological environment. In the context
of the HT scenario, it is seen that the ecological regions occupied by buildings are primarily
concentrated in the central region of the CZTMA and exhibit proximity to the metropolitan
center. Hence, using the ESP as a restricted conversion area can help optimize future
urban land growth, protect core ecological areas, and ensure crucial ecological processes in
socioeconomic development. Figure 6e shows that the main types of ecological loss from
2020 to 2050 will be ecological corridors (188.79 km2), followed by ecological source areas
and river corridors.

3.3.2. Comparison Based on Pattern Metrics

Figure 7 shows the dynamic situations of eight pattern indices from 2000 to 2050 in
the different scenarios. As shown in Figure 7, the patch numbers in the future scenarios
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are greater than in the historical period and show an upward trend. In contrast, the future
mean patch sizes are smaller than the historical period and decrease. Compared to the
other scenarios, the UG scenario has the most enormous patch numbers and the smallest
mean patch sizes. In future scenarios, edge density and fractional dimensions showed
an increase and decrease, respectively, but the change in fractional dimensions was small.
The values of contagion and aggregation keep getting smaller. The trend with the mean
patch size characteristics could reflect the dispersion and fragmentation of patches in the
CZTMA. It results in spatial isolation of ecological patches. The SHDI showed an increasing
trend, especially in the HT scenario. Also, the SHEI characterizes the landscape equilibrium
development and shows a continuous increase.

Figure 7. Landscape pattern analysis in the CZTMA. Note: number of patches and mean patch
size (a); edge density and fractal dimension (b); contagion and aggregation index (c); SHDI and
SHEI (d); HT: historical tendency; UG: urban growth; EC: ecological conservation; CCE: coordinating
city development and ecological protection. The left side of the red dashed line shows the historical
period, and the right side shows different scenarios in the future.

3.4. Driving Forces Analysis Using the PLUS Model

Thirteen geographical variables were chosen as influential aspects derived from the
natural environment, spatial proximity, population, and economics. The LEAS module
utilized the land use maps from 2010 and 2020 and spatial drivers, as input data. We set
random sampling by category proportion; the sampling rate is 0.01, the number of decision
trees is 20, and the number of training features of random forest is 13. Figure 8 shows
the degree of contribution of each driving factor to the change of land categories in the
study area.
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Figure 8. Contribution of spatial variables to the dynamic changes of (a) cropland, (b) forest, and
(c) buildings in the CZTMA.

As shown in Figure 8a, the major factors influencing the change in cropland are
population density, elevation, and slope. Cropland significantly contributes to the growth
of buildings in Figure 6b. On the one hand, population density impacts cropland’s dynamics
because population density determines the demand for residential, transportation, and
productive lands. The population constitutes the primary entity of urban growth, and,
to a certain degree, it indicates a city’s liveliness. The population density increased from
656 people/km2 in 2000 to 899 people/km2 in 2020 in the CZTMA, and the population was
concentrated in the city. The rising population density in urban areas means expanding
buildings, thereby modifying the spatial pattern of forest and cropland around the cities.
Thus, the reduction of forest and cropland is likely influenced by housing and infrastructure
development. On the other hand, cropland serves as an essential space for local food
production. Under the influence of China’s cropland occupation and supplementation
policy, the loss of cropland due to urban sprawl can be accompanied by increasing cropland
in the periphery away from the cities.

The main driver affecting the forest is elevation, followed by NDVI, population
density, and slope (Figure 8b). The distances to government, roads, and railroads impact
buildings more in Figure 8c. In addition, elevation as a natural factor contributes relatively
more than other natural factors. Meanwhile, administrative and transportation location
accessibility significantly impacts buildings because urban land, rural settlements, and
industrial land usually spread along both sides of the road. The development of the
CZTMA is driven by the internal desire for ongoing urban growth, which aligns with the
plan for the rise of central China. The growth needs to comply with the requirements of
requisition-compensation balance of cropland and ecological civilization construction in
China. Therefore, analyzing the driving factors for the shrinkage of cropland and forests
can similarly reflect the reasons for the building expansion.

4. Discussion
4.1. The ESP-PLUS Framework to Balance Urban Growth and Ecological Protection

This ESP-PLUS framework can quantitatively and spatially restrict the future land
use evolution, which provides a technical approach for balancing ecological protection
and urban development. Many studies have set the land demand under different sce-
narios using MC, SD, MOP, and transition cost methods to optimize future land use
patterns [12,19,82]. Nonetheless, they could ignore the spatial constraints on the land use
modeling process. As a result, these investigations to achieve spatial optimization of land
use are challenging despite realizing it in quantity. For example, the eastern part of a city
is highly productive cropland, while the northern part is unproductive grassland. If only
the quantitative constraints on urban areas were applied, preventing urban sprawl from
encroaching on these croplands would be difficult. Suppose we spatially and quantitatively
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restrict the city’s eastern part to experience transformation. In that case, the city will expand
northwards or in some other direction instead of eastwards in the simulated results. When
Zhang et al. [41] predicted LUCC in the Yangtze River Delta (YRD) region, they considered
the ecological sources derived from ecosystem services analysis to be a spatial constraint.
Liu et al. [83] extracted key ecological areas as limiting factors to optimize land use in
Jinan City according to high ecosystem service value (ESV) principles. Also, scientists
input natural reserves and ecological red lines as restriction factors in the LUCC simulation
model [33,40]. Although previous studies considered ecological protection, few involved
underlying corridors between ecological zones when forecasting LUCC. These studies
would have been more interesting if they had synthesized the ecological security pattern
containing pathways to connect core patches. In addition, researchers have constructed
future ecological security patterns based on predictive land use and cover maps [84,85].
Their modeling ideas are helpful but differ from our study.

The validated results from this study’s simulation have confirmed the ESP-PLUS
framework’s efficacy in ecological land conservation. The forest area will decline in the
future, similar to the trend from 2000 to 2020 in Table 6. The apparent shrinkage of the forest
area was curbed under the EC and CCE scenarios (Figure 6). Furthermore, landscape frag-
mentation was comparatively smaller in the EC and CCE scenarios than in the remaining
two (Figure 7). The results are similar to some studies that have employed ecological source
lands as spatial constraints [37,84]. In contrast to traditional ecological limits such as nature
reserves, national parks, rivers, and forests, our ecological protection scenarios incorporate
corridors and their connectivity qualities, showing a more comprehensive representation of
an ecosystem. This study broadens the research perspective of a multi-scenario simulation
of land use to some extent.

4.2. Relevant Development Suggestions

Urban expansion and dramatic human activities significantly alter the structure and
function of land cover [7]. Under the principle of maximizing economic interests, the
structural integrity of ecosystems is neglected in urban development, resulting in the
excessive occupation of ecological land by urban land, which leads to the degradation of
ecosystem functions. Understanding LUCC is crucial in protecting the regional ecological
security pattern [52]. Forests, water areas, and grasslands with high coverage have a
good ecosystem service function [86,87]. The building area in the CZTMA increased
from 526.4 km2 in 2000 to 1422.9 km2 in 2020 (Table 6). Under various scenarios, the
predicted area will reach 2073.2–2712.7 km2 in 2050. Such expansion sprawl may cause
irreversible environmental destruction if this region’s key ecological zones (i.e., sources
and corridors) are not protected. There are 19 county-level governments in the CZTMA.
The county level is the basic administrative unit in China. The life of planning depends on
the implementation [67,76]. A problem is that every local government has independent
plans and intentions, so they need a unified understanding of the overall planning. It
divides the whole ecosystem and regional development to a certain extent and might
indirectly cause the loss of socioeconomic and ecological benefits. Therefore, we suggested
that establishing a provincial-level senior leadership coordination mechanism strengthens
the coordination and guidance for the development of the CZTMA, which improves the
ability to resolve significant challenges in a coordinated manner and minimizes unhealthy
competition among cities.

In the plan for the metropolitan area, a central park will be built in the middle of the
three cities and along the Xiangjiang River [54]. The park, also known as the “Green Heart”,
covers an area of approximately 523 km2. It will provide the surrounding residents with
eco-tourism vacations and rural leisure services. At the same time, it will facilitate the
development of future eco-industries in the CZTMA, which promotes natural environment
conservation. Additionally, we found that the ecological patches at the central park are
one of the vital pathways to connect the ecological sources on both sides of the study
area (Figure 4c). It implies that the park provides essential residence for species that need
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long-distance migration and wildlife habitats, which can help sustain regional biodiversity.
Habitat fragmentation caused by anthropogenic activities has affected the movement and
dispersal of wildlife, eventually leading to an increased probability of species extinction [52].
Therefore, planners and managers must give precedence to the conservation and restoration
of ecological areas in the core region of the study area while also taking measures to avoid
the depletion of ecological corridors dispersed throughout agricultural land.

Firstly, the local government should firmly grasp the “overall situation”, adhere to
the basic guiding principles of coordinated regional development and green ecological
priority, and optimize the mechanism of coordinated diagnosis, treatment, and restoration
of the ecological environment. Secondly, the city’s planning department should consider
the protection and development of the ecological green heart within the metropolitan
area and, on the one hand, strengthen the ecological restoration of the fragile areas of
the green heart and strictly control the ecological red line area. On the other hand, it is
necessary to optimize and revitalize the “stock” of buildings and improve the level of
intensive and economical use. Finally, it is necessary to pay attention to the importance of
waters and wetlands in maintaining the diversity of ecosystems in the region as well as
regulating the hydrological process, setting up a blue line for the protection of key waters,
and strengthening the management and protection of the shorelines of Xiangjiang River
and other lakes to ensure the safety of water resources.

Liuyang City dominates the eastern part of the CZTMA. The region is at a relatively
high altitude and has a wide distribution and good connectivity of ecological sources,
hence the relatively few corridors. The local government has recently introduced many
papermaking, furniture manufacturing, and wood processing enterprises. They have
become an essential part of supporting the local economy. However, these companies
have also brought tremendous pressure on local environmental protection. For example,
papermaking generates sewage that contains large amounts of poisonous and hard-treated
chlorinated organic matter, which is strongly toxic to wildlife and humans. Moreover,
papermaking requires much wood, inevitably causing extensive deforestation. The res-
idents and the government should strengthen the regulation of effluent treatment and
increase the penalties for improperly operated enterprises. The environmental adminis-
tration departments should enhance their dynamic observation of ecological sources and
corridors using remote sensing and GIS technology to prevent critical ecological areas
from pollution and disruption. In addition, the departments can build an early warning
system for the negative impacts of future LUCC on ecological security patterns, which
helps decision-makers prevent the risks in advance.

4.3. Limitations and Future Scope

When researchers perform multi-scenario simulations of LUCC, the framework can be
combined with time-series forecasting techniques, such as MOP and SD. This facilitates
researchers to synthesize the effects of regional policies, current socioeconomic develop-
ment law, and natural resources on the temporal changes of LUCC. There are still several
limitations inherent in our study. On the one hand, spatial heterogeneity exists in the
importance of both source and corridor in the regional ESP, which may require relevant
managers to design a more considerable protection extent for more important sources
and corridors. For example, corridors connecting patches far from each other are more
susceptible to external environmental influences, and thus, they need to be protected by
wider buffer zones. However, this study’s edge width and distance threshold parameters
were set mainly with existing studies without thoroughly analyzing the relationship be-
tween vegetation, biological activities, and ecological networks in the study area. This
may lead to some uncertainty. In future work, more field surveys will be needed to set the
corresponding parameters according to the features of the study area.

On the other hand, although we adjusted the transition probability between land
types using the MC method for land demand, the land policies related to food security,
socioeconomic functions of forests, and urban planning in the CZTMA were not included
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in the scenario setting. Therefore, the primary task ahead is to incorporate the SD model
that can capture socioeconomic and policy factors into the ESP-PLUS framework. Our study
provided valuable thoughts on urban growth optimization and ecological resource protection.

5. Conclusions

This study proposed an ESP-PLUS prediction framework. The MSPA and circuit theory
were employed to identify the multi-level ESPs and were coupled with the PLUS model
to simulate the LUCC under multiple scenarios. The framework widens the approach to
ecological security-oriented land change modeling. It provides a reference for curbing the
occupation of critical ecological patches and corridors by the buildings and protecting the
security of ecosystems.

From 2000 to 2050, the forest accounts for 56%–61% of the study area extent while
the buildings account for 3%–14%. The patch number of ecological sources is sixty-one,
with a total area of about 5942.5 km2, and forty-six ecological corridors are determined in
the CZTMA. In the future, the buildings will keep a net increase. In contrast, the forest
and cropland show a net decrease trend. The rate of overall LUCC in different scenarios is
UG > HT > CCE > EC. The amounts of building gain and forest loss are enormous in
all scenarios, and the largest contributor to the expansion of buildings is forest, followed
by cropland. By analyzing landscape patterns, the EC and CCE scenarios could mitigate
increased patch fragmentation and shape complexity compared with other scenarios.

The metropolitan area’s local governments should optimize the allocation of buildings
through integrated planning and government guidance based on the “stock” of existing
buildings, promote the integration of ecological protection and governance in the metropoli-
tan area, and strengthen the key supervision of the construction of ecological green centers
to reduce the risk of destruction of regional ecological corridors.

Author Contributions: Conceptualization, B.Q.; methodology, Z.D.; software, Z.D.; validation, B.Q.,
Z.D. and H.Z.; formal analysis, Z.D.; investigation, Z.D.; resources, B.Q.; data curation, B.Q. and Z.Z.;
writing—original draft preparation, Z.D.; writing—review and editing, Z.D., B.Q., H.Z. and H.X.;
visualization, Z.D.; supervision, B.Q. and H.Z.; project administration, B.Q.; funding acquisition, B.Q.
and H.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Open Foundation of Hengyang Base of International
Centre on Space Technologies for Natural and Cultural Heritage under the auspices of UNESCO
(grant 2021HSKFJJ029 and 2022HSKFJJ009), the Natural Science Foundation of Hunan Province (grant
2023JJ30096), Scientific Research Fund of Hunan Provincial Education Department (grant 22B0722),
and the Science Foundation of Hengyang Normal University (grant 2021QD02).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al.

Global consequences of land use. Science 2005, 309, 570–574. [CrossRef] [PubMed]
2. Asselen, S.V.; Verburg, P.H. Land cover change or land-use intensification: Simulating land system change with a global-scale

land change model. Glob. Chang. Biol. 2013, 19, 3648–3667. [CrossRef] [PubMed]
3. Hu, S.; Niu, Z.; Chen, Y.; Li, L.; Zhang, H. Global wetlands: Potential distribution, wetland loss, and status. Sci. Total Environ.

2017, 586, 319–327. [CrossRef] [PubMed]
4. Mao, D.; Wang, Z.; Wu, B.; Zeng, Y.; Luo, L.; Zhang, B. Land degradation and restoration in the arid and semiarid zones of China:

Quantified evidence and implications from satellites. Land Degrad. Dev. 2018, 29, 3841–3851. [CrossRef]
5. Findell, K.L.; Berg, A.; Gentine, P.; Krasting, J.P.; Lintner, B.R.; Malyshev, S.; Santanello, J.A., Jr.; Shevliakova, E. The impact of

anthropogenic land use and land cover change on regional climate extremes. Nat. Commun. 2017, 8, 989–998. [CrossRef]
6. Li, G.; Fang, C.; Li, Y.; Wang, Z.; Sun, S.; He, S.; Qi, W.; Bao, C.; Ma, H.; Fan, Y.; et al. Global impacts of future urban expansion on

terrestrial vertebrate diversity. Nat. Commun. 2022, 13, 1628–1640. [CrossRef]

https://doi.org/10.1126/science.1111772
https://www.ncbi.nlm.nih.gov/pubmed/16040698
https://doi.org/10.1111/gcb.12331
https://www.ncbi.nlm.nih.gov/pubmed/23893426
https://doi.org/10.1016/j.scitotenv.2017.02.001
https://www.ncbi.nlm.nih.gov/pubmed/28190574
https://doi.org/10.1002/ldr.3135
https://doi.org/10.1038/s41467-017-01038-w
https://doi.org/10.1038/s41467-022-29324-2


Forests 2023, 14, 2131 20 of 22

7. Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from
1982 to 2016. Nature 2018, 560, 639–643. [CrossRef]

8. Liu, H.; Gong, P.; Wang, J.; Wang, X.; Ning, G.; Xu, B. Production of global daily seamless data cubes and quantification of global
land cover change from 1985 to 2020—iMap World 1.0. Remote Sens. Environ. 2021, 258, 112364. [CrossRef]

9. Deng, H.; Zhang, K.; Wang, F.; Dang, A. Compact or disperse? Evolution patterns and coupling of urban land expansion and
population distribution evolution of major cities in China, 1998–2018. Habitat Int. 2021, 108, 102324. [CrossRef]

10. Wang, Q.; Wang, H.; Chang, R.; Zeng, H.; Bai, X. Dynamic simulation patterns and spatiotemporal analysis of land-use/land-cover
changes in the Wuhan metropolitan area, China. Ecol. Model. 2022, 464, 109850. [CrossRef]

11. Gao, J.; O’Neill, B.C. Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic
Pathways. Nat. Commun. 2020, 11, 2302–2313. [CrossRef] [PubMed]

12. Zhang, H.-b.; Zhang, X.-H. Land use structural optimization of Lilin based on GMOP-ESV. Trans. Nonferrous Met. Soc. China 2011,
21, s738–s742. [CrossRef]

13. Li, C.; Gao, X.; Wu, J.; Wu, K. Demand prediction and regulation zoning of urban-industrial land: Evidence from Beijing-Tianjin-
Hebei Urban Agglomeration, China. Environ. Monit. Assess. 2019, 191, 412–425. [CrossRef] [PubMed]

14. Tan, Y.; Jiao, L.; Shuai, C.; Shen, L. A system dynamics model for simulating urban sustainability performance: A China case
study. J. Clean. Prod. 2018, 199, 1107–1115. [CrossRef]

15. López, E.; Bocco, G.; Mendoza, M.; Duhau, E. Markov Predicting land-cover and land-use change in the urban fringe: A case in
Morelia city, Mexico. Landsc. Urban Plan. 2001, 55, 271–285. [CrossRef]

16. Liu, X.; Li, X.; Shi, X.; Wu, S.; Liu, T. Simulating complex urban development using kernel-based non-linear cellular automata.
Ecol. Model. 2008, 211, 169–181. [CrossRef]

17. Sang, L.; Zhang, C.; Yang, J.; Zhu, D.; Yun, W. Simulation of land use spatial pattern of towns and villages based on CA–Markov
model. Math. Comput. Model. 2011, 54, 938–943. [CrossRef]

18. Nouri, J.; Gharagozlou, A.; Arjmandi, R.; Faryadi, S.; Adl, M. Predicting Urban Land Use Changes Using a CA–Markov Model.
Arab. J. Sci. Eng. 2014, 39, 5565–5573. [CrossRef]

19. Mansour, S.; Al-Belushi, M.; Al-Awadhi, T. Monitoring land use and land cover changes in the mountainous cities of Oman using
GIS and CA-Markov modelling techniques. Land Use Policy 2020, 91, 104414. [CrossRef]

20. Cunha, E.R.D.; Santos, C.A.G.; Silva, R.M.D.; Bacani, V.M.; Pott, A. Future scenarios based on a CA-Markov land use and
land cover simulation model for a tropical humid basin in the Cerrado/Atlantic forest ecotone of Brazil. Land Use Policy 2021,
101, 105141. [CrossRef]

21. Hu, Z.; Lo, C.P. Modeling urban growth in Atlanta using logistic regression. Comput. Environ. Urban Syst. 2007, 31, 667–688.
[CrossRef]

22. Islam, K.; Rahman, M.F.; Jashimuddin, M. Modeling land use change using Cellular Automata and Artificial Neural Network:
The case of Chunati Wildlife Sanctuary, Bangladesh. Ecol. Indic. 2018, 88, 439–453. [CrossRef]

23. Pontius Jr, R.G.; Boersma, W.; Castella, J.-C.; Clarke, K.; de Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; et al.
Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [CrossRef]

24. Silva, E.A.; Clarke, K.C. Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Comput. Environ. Urban
Syst. 2002, 26, 525–552. [CrossRef]

25. Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S. Modeling the spatial dynamics of regional
land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [CrossRef]

26. Verburg, P.H.; Overmars, K.P. Combining top-down and bottom-up dynamics in land use modeling: Exploring the future of
abandoned farmlands in Europe with the Dyna-CLUE model. Landsc. Ecol. 2009, 24, 1167–1181. [CrossRef]

27. Wang, H.; Jin, Y.; Hong, X.; Tian, F.; Wu, J.; Nie, X. Integrating IPAT and CLUMondo Models to Assess the Impact of Carbon Peak
on Land Use. Land 2022, 11, 573. [CrossRef]

28. Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating
multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [CrossRef]

29. Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using
a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021,
85, 101569. [CrossRef]

30. Wang, M.; Jiang, Z.; Li, T.; Yang, Y.; Jia, Z. Analysis on absolute conflict and relative conflict of land use in Xining metropolitan
area under different scenarios in 2030 by PLUS and PFCI. Cities 2023, 137, 104314. [CrossRef]

31. Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based
on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [CrossRef]

32. Deng, Z.; Quan, B. Intensity Characteristics and Multi-Scenario Projection of Land Use and Land Cover Change in Hengyang,
China. Int. J. Environ. Res. Public Health 2022, 19, 8491. [CrossRef] [PubMed]

33. Li, C.; Yang, M.; Li, Z.; Wang, B. How Will Rwandan Land Use/Land Cover Change under High Population Pressure and
Changing Climate? Appl. Sci. 2021, 11, 5376. [CrossRef]

34. Wang, J.; Zhang, J.; Xiong, N.; Liang, B.; Wang, Z.; Cressey, E. Spatial and Temporal Variation, Simulation and Prediction of Land
Use in Ecological Conservation Area of Western Beijing. Remote Sens. 2022, 14, 1452. [CrossRef]

https://doi.org/10.1038/s41586-018-0411-9
https://doi.org/10.1016/j.rse.2021.112364
https://doi.org/10.1016/j.habitatint.2021.102324
https://doi.org/10.1016/j.ecolmodel.2021.109850
https://doi.org/10.1038/s41467-020-15788-7
https://www.ncbi.nlm.nih.gov/pubmed/32385275
https://doi.org/10.1016/S1003-6326(12)61672-0
https://doi.org/10.1007/s10661-019-7547-4
https://www.ncbi.nlm.nih.gov/pubmed/31165935
https://doi.org/10.1016/j.jclepro.2018.07.154
https://doi.org/10.1016/S0169-2046(01)00160-8
https://doi.org/10.1016/j.ecolmodel.2007.08.024
https://doi.org/10.1016/j.mcm.2010.11.019
https://doi.org/10.1007/s13369-014-1119-2
https://doi.org/10.1016/j.landusepol.2019.104414
https://doi.org/10.1016/j.landusepol.2020.105141
https://doi.org/10.1016/j.compenvurbsys.2006.11.001
https://doi.org/10.1016/j.ecolind.2018.01.047
https://doi.org/10.1007/s00168-007-0138-2
https://doi.org/10.1016/S0198-9715(01)00014-X
https://doi.org/10.1007/s00267-002-2630-x
https://doi.org/10.1007/s10980-009-9355-7
https://doi.org/10.3390/land11040573
https://doi.org/10.1016/j.landurbplan.2017.09.019
https://doi.org/10.1016/j.compenvurbsys.2020.101569
https://doi.org/10.1016/j.cities.2023.104314
https://doi.org/10.1016/j.ecolind.2021.108499
https://doi.org/10.3390/ijerph19148491
https://www.ncbi.nlm.nih.gov/pubmed/35886343
https://doi.org/10.3390/app11125376
https://doi.org/10.3390/rs14061452


Forests 2023, 14, 2131 21 of 22

35. Wang, Q.; Guan, Q.; Sun, Y.; Du, Q.; Xiao, X.; Luo, H.; Zhang, J.; Mi, J. Simulation of future land use/cover change (LUCC) in
typical watersheds of arid regions under multiple scenarios. J. Environ. Manag. 2023, 335, 117543. [CrossRef]

36. Li, M.; Liu, S.; Wang, F.; Liu, H.; Liu, Y.; Wang, Q. Cost-benefit analysis of ecological restoration based on land use scenario
simulation and ecosystem service on the Qinghai-Tibet Plateau. Glob. Ecol. Conserv. 2022, 34, e02006. [CrossRef]

37. Xie, H.; He, Y.; Choi, Y.; Chen, Q.; Cheng, H. Warning of negative effects of land-use changes on ecological security based on GIS.
Sci. Total Environ. 2020, 704, 135427. [CrossRef]

38. Chen, Z.; Huang, M.; Zhu, D.; Altan, O. Integrating Remote Sensing and a Markov-FLUS Model to Simulate Future Land Use
Changes in Hokkaido, Japan. Remote Sens. 2021, 13, 2621. [CrossRef]

39. Martinuzzi, S.; Radeloff, V.C.; Joppa, L.N.; Hamilton, C.M.; Helmers, D.P.; Plantinga, A.J.; Lewis, D.J. Scenarios of future land use
change around United States’ protected areas. Biol. Conserv. 2015, 184, 446–455. [CrossRef]

40. Yang, Y.; Bao, W.; Liu, Y. Scenario simulation of land system change in the Beijing-Tianjin-Hebei region. Land Use Policy 2020,
96, 104677. [CrossRef]

41. Zhang, D.; Wang, X.; Qu, L.; Li, S.; Lin, Y.; Yao, R.; Zhou, X.; Li, J. Land use/cover predictions incorporating ecological security for
the Yangtze River Delta region, China. Ecol. Indic. 2020, 119, 106841. [CrossRef]

42. Peng, J.; Pan, Y.; Liu, Y.; Zhao, H.; Wang, Y. Linking ecological degradation risk to identify ecological security patterns in a rapidly
urbanizing landscape. Habitat Int. 2018, 71, 110–124. [CrossRef]

43. Nie, W.; Xu, B.; Yang, F.; Shi, Y.; Liu, B.; Wu, R.; Lin, W.; Pei, H.; Bao, Z. Simulating future land use by coupling ecological security
patterns and multiple scenarios. Sci. Total Environ. 2023, 859, 160262. [CrossRef] [PubMed]

44. Xia, X.; Zhang, Y.; Shi, X.; Chen, J.; Rao, T. Simulation of Dynamic Urban Growth Boundary Combining Urban Vitality and
Ecological Networks: A Case Study in Chengdu Metropolitan Area. Land 2022, 11, 1793. [CrossRef]

45. Sun, L.; Wei, J.; Duan, D.H.; Guo, Y.M.; Yang, D.X.; Jia, C.; Mi, X.T. Impact of Land-Use and Land-Cover Change on urban air
quality in representative cities of China. J. Atmos. Sol. Terr. Phys. 2016, 142, 43–54. [CrossRef]

46. Cervero, R. Linking urban transport and land use in developing countries. J. Transp. Land Use 2013, 6, 7–24. [CrossRef]
47. Marondedze, A.K.; Schütt, B. Predicting the Impact of Future Land Use and Climate Change on Potential Soil Erosion Risk in an

Urban District of the Harare Metropolitan Province, Zimbabwe. Remote Sens. 2021, 13, 4360. [CrossRef]
48. Yar, P.; Huafu, J.; Khan, M.A.; Rashid, W.; Khan, S. Modification of Land Use/Land Cover and Its Impact on Groundwater in

Peshawar City, Pakistan. J. Indian Soc. Remote Sens. 2022, 50, 159–174. [CrossRef]
49. Zhang, Q.; Wu, Z.; Zhang, H.; Dalla Fontana, G.; Tarolli, P. Identifying dominant factors of waterlogging events in metropolitan

coastal cities: The case study of Guangzhou, China. J. Environ. Manag. 2020, 271, 110951. [CrossRef]
50. Santos, Y.L.F.; Yanai, A.M.; Ramos, C.J.P.; Graça, P.M.L.A.; Veiga, J.A.P.; Correia, F.W.S.; Fearnside, P.M. Amazon deforestation and

urban expansion: Simulating future growth in the Manaus Metropolitan Region, Brazil. J. Environ. Manag. 2022, 304, 114279.
[CrossRef]

51. Meng, B.; Wang, X.; Zhang, Z.; Huang, P. Spatio-Temporal Pattern and Driving Force Evolution of Cultivated Land Occupied by
Urban Expansion in the Chengdu Metropolitan Area. Land 2022, 11, 1458. [CrossRef]

52. Li, Y.; Liu, W.; Feng, Q.; Zhu, M.; Yang, L.; Zhang, J.; Yin, X. The role of land use change in affecting ecosystem services and the
ecological security pattern of the Hexi Regions, Northwest China. Sci. Total Environ. 2023, 855, 158940. [CrossRef] [PubMed]

53. Li, J.; Ouyang, X.; Zhu, X. Land space simulation of urban agglomerations from the perspective of the symbiosis of urban
development and ecological protection: A case study of Changsha-Zhuzhou-Xiangtan urban agglomeration. Ecol. Indic. 2021,
126, 107669. [CrossRef]

54. Zhou, G.; Li, Q. From Chang-Zhu-Tan urban agglomeration to Chang-Zhu-Tan metropolitan circle: Interpreting the development
plan of Chang-Zhu-Tan Metropolitan Circle. China Investig. 2022, 543, 66–70.

55. Zhang, Y.; She, J.; Long, X.; Zhang, M. Spatio-temporal evolution and driving factors of eco-environmental quality based on RSEI
in Chang-Zhu-Tan metropolitan circle, central China. Ecol. Indic. 2022, 144, 109436. [CrossRef]

56. Li, Z.; Jiang, W.; Wang, W.; Lei, X.; Deng, Y. Exploring spatial-temporal change and gravity center movement of construction land
in the Chang-Zhu-Tan urban agglomeration. J. Geogr. Sci. 2019, 29, 1363–1380. [CrossRef]

57. Huang, J.; Yu, H.; Han, D.; Zhang, G.; Wei, Y.; Huang, J.; An, L.; Liu, X.; Ren, Y. Declines in global ecological security under
climate change. Ecol. Indic. 2020, 117, 106651. [CrossRef]

58. Wang, J.; Wang, K.; Zhang, M.; Zhang, C. Impacts of climate change and human activities on vegetation cover in hilly southern
China. Ecol. Eng. 2015, 81, 451–461. [CrossRef]

59. Quan, B.; Ren, H.; Pontius, R.G., Jr.; Liu, P. Quantifying spatiotemporal patterns concerning land change in Changsha, China.
Landsc. Ecol. Eng. 2018, 14, 257–267. [CrossRef]

60. Yang, X.; Liu, X. Path analysis and mediating effects of influencing factors of land use carbon emissions in Chang-Zhu-Tan urban
agglomeration. Technol. Forecast. Soc. Chang. 2023, 188, 122268. [CrossRef]

61. Ma, S.; Zhao, Y.; Tan, X. Exploring Smart Growth Boundaries of Urban Agglomeration with Land Use Spatial Optimization: A
Case Study of Changsha-Zhuzhou-Xiangtan City Group, China. Chin. Geogr. Sci. 2020, 30, 665–676. [CrossRef]

62. Xie, J.; Xie, B.; Zhou, K.; Li, J.; Xiao, J.; Liu, C. Impacts of landscape pattern on ecological network evolution in Changsha-
Zhuzhou-Xiangtan Urban Agglomeration, China. Ecol. Indic. 2022, 145, 109716. [CrossRef]

63. Hunan Provincial Bureau of Statistics. Hunan Province Statistical Yearbook 2021; China Statistics Press: Beijing, China, 2021.

https://doi.org/10.1016/j.jenvman.2023.117543
https://doi.org/10.1016/j.gecco.2022.e02006
https://doi.org/10.1016/j.scitotenv.2019.135427
https://doi.org/10.3390/rs13132621
https://doi.org/10.1016/j.biocon.2015.02.015
https://doi.org/10.1016/j.landusepol.2020.104677
https://doi.org/10.1016/j.ecolind.2020.106841
https://doi.org/10.1016/j.habitatint.2017.11.010
https://doi.org/10.1016/j.scitotenv.2022.160262
https://www.ncbi.nlm.nih.gov/pubmed/36400298
https://doi.org/10.3390/land11101793
https://doi.org/10.1016/j.jastp.2016.02.022
https://doi.org/10.5198/jtlu.v6i1.425
https://doi.org/10.3390/rs13214360
https://doi.org/10.1007/s12524-021-01464-w
https://doi.org/10.1016/j.jenvman.2020.110951
https://doi.org/10.1016/j.jenvman.2021.114279
https://doi.org/10.3390/land11091458
https://doi.org/10.1016/j.scitotenv.2022.158940
https://www.ncbi.nlm.nih.gov/pubmed/36152856
https://doi.org/10.1016/j.ecolind.2021.107669
https://doi.org/10.1016/j.ecolind.2022.109436
https://doi.org/10.1007/s11442-019-1664-5
https://doi.org/10.1016/j.ecolind.2020.106651
https://doi.org/10.1016/j.ecoleng.2015.04.022
https://doi.org/10.1007/s11355-018-0349-y
https://doi.org/10.1016/j.techfore.2022.122268
https://doi.org/10.1007/s11769-020-1140-1
https://doi.org/10.1016/j.ecolind.2022.109716


Forests 2023, 14, 2131 22 of 22

64. Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics
of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [CrossRef]

65. Kuang, W.; Zhang, S.; Du, G.; Yan, C.; Wu, S.; Li, R.; Lu, D.; Pan, T.; Ning, J.; Guo, C. Remotely sensed mapping and analysis of
spatio-temporal patterns of land use change across China in 2015–2020. Acta Geogr. Sin. 2022, 77, 1056–1071. [CrossRef]

66. Pontius, R.G., Jr.; Shusas, E.; McEachern, M. Detecting important categorical land changes while accounting for persistence. Agric.
Ecosyst. Environ. 2004, 101, 251–268. [CrossRef]

67. Wei, Q.; Halike, A.; Yao, K.; Chen, L.; Balati, M. Construction and optimization of ecological security pattern in Ebinur Lake Basin
based on MSPA-MCR models. Ecol. Indic. 2022, 138, 108857. [CrossRef]
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