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Abstract: Given the complex influence of various factors on soil nitrogen (N) and phosphorus (P) loss
through runoff in a karst environment, analyzing the importance of different factors to determine the
most efficient method for soil nutrient conservation remains a key challenge. Herein, we proposed a
novel intelligent analysis strategy based on the Random Forest (RF) regression algorithm to identify
the main features and discover the fundamental mechanisms among them under a rock-exposed
karst slope with synchronous existence of surface runoff and subsurface leakage. Typically, the results
indicated that the rock–soil angle (β) was the main factor influencing soil N and P loss, which was
further confirmed based on the RF regression-multifactor analysis. The proposed strategy was used
to characterize the relationships of inflow rate, soil bed–ground angle, and rock–soil angle with soil N
and P concentrations in soil surface runoff, subsurface runoff, and fissure runoff to study the potential
application of soil N and P loss under karst conditions. Our results provide a new approach and
promising potential for soil nutrient conservation and related soil and plant research.
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1. Introduction

Soil nitrogen (N) and phosphorus (P) are indispensable nutrient elements to plant
recolonization and establishment. The majority of soil’s N and P are not used efficiently,
but are instead lost through various runoff pathways as a result of water erosion, with
annual losses higher than 18.88 kg hm−2 for N and 81.05 kg hm−2 for P in northwest China.
Although great efforts have been made to reduce soil N and P loss through runoff, it is
still difficult due to the complex relationship of changes in many environmental factors,
such as inflow rate, slope gradients, and geological conditions [1–3]. Recently, it has been
reported that, under optimal conditions, the relationship between soil N and P los and
rainfall-produced runoff could be fitted as a mathematic function, but the pathways of soil
N and P loss in these models vary significantly [4–6]. Higher-level rainfall-produced runoff
causes soil N and P loss, mainly through particulate loss, whereas lower-level rainfall runoff
causes soluble soil N and P loss. Due to these significant differences, it is not surprising
that many parameters could have simultaneous influences on soil N and P loss via runoff,
with various factors affecting different pathways (e.g., surface loss, subsurface loss, and
leakage) and levels. The relationship between soil N and P loss and these factors would
be too complicated to be fitted using specific mathematic functions. To the best of our
knowledge, no studies have presented such experiments and fundamental mechanisms
of interactions among various features (i.e., inflow rate, slope gradients, and geological
conditions) in the complex soil N and P loss system.

Karst trough valleys are some of the most widespread landforms in the world. The
karst regions are crucial water providers, accounting for 10.2% of the Earth’s area and
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supplying approximately 25% of the world’s water [7]. Due to the special geological
structure and chemical composition of the bedrock, such as a high concentration level of
CaCO3, the karst environment is characterized by significant water erosion and losses of
soil nutrients [8]. Specifically, due to the exposed rocks and the synchronous existence of
surface runoff and subsurface leakage in karst environments, such as the karst trough valley
slope, analyzing the importance of different environmental factors is still a key challenge
(e.g., inflow rates, soil bed–ground angles, and rock–soil angles) to find the most efficient
method for soil N and P loss prediction. Indeed, characterization of the relationships
between these environmental factors and soil N and P loss will be crucial for soil and plant
studies in karst trough valleys.

During the analysis of various characteristics of soil N and P loss, the intrinsic charac-
teristics of complexity, uncertainty, and non-linearity, and especially the nonlinear responses
among them, should be considered. The common methods mostly adopt a single regression
model including inflow rates, soil bed–ground angles and rock–soil angles and some other
related features, which is less practical and thus it is hard to build an accurate predictive
computational model [9–12]. In recent years, machine learning algorithms have been tested
for their ability to identify main features and the complex relationship among them [13,14],
which has gradually become the mainstream alternative resolution for complex systems.
Among various machine learning algorithms, the emerging Random Forest (RF) algorithm
has been regarded as one of the most precise prediction methods for classification and
regression to efficiently model complex interactions among various features due to its
capability to discover complex nonlinear relationships among independent or dependent
variables without statistical assumptions [15–17].

To date, RF algorithms have been successfully employed in studies of environmental
research, such as water quality and its related effects, demonstrating great potential as
an efficient resolution to identify complex nonlinear relationships among various factors
in complex systems [18,19]. Commonly, RF algorithms use multiple decision trees with
the same distribution to set up a forest based on a combination of tree predictors, where
each tree is generated using a random vector sampled independently from the input
vector and the decision tree is a non-parametric supervised learning method to summarize
decision rules from a series of data with features and labels and present these rules to solve
classification and the regression problem via the structure of the tree. To the best of our
knowledge, few studies have reported the use of the RF regression algorithm for estimating
the key factors of soil N and P loss under simultaneous rock-exposed karst conditions with
the existence of surface runoff and subsurface leakage, although it may be an efficient and
useful model [19].

Herein, we proposed a novel intelligent analysis strategy based on the RF regression
algorithm to identify the main features and discover complex nonlinear relationships and
fundamental mechanisms among them to generate the key factor of soil N and P loss via
runoff under a simulated rock-exposed karst slope with variable inflow rates (v), soil bed–
ground angles (α), and rock–soil angles (β). Typically, a laboratory scouring experimental
system was used at varying α and β, as shown in Scheme 1, and the collected water
was obtained from soil surface runoff, subsurface runoff, and fissure runoff to study the
distribution of soil N and P loss via different pathways to evaluate the main features in
this system with the RF regression algorithm. Based on the relationships between the main
features and soil N and P loss, we expected to propose the main features of various N and
P loss pathways through runoff, providing a new avenue for soil and plant research in the
karst environment worldwide.
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Scheme 1. Schematic diagram of the proposed intelligent analysis strategy based on RF regression
algorithm (soil surface runoff, subsurface runoff, and fissure runoff). A: Schematic diagram of the
different rock-soil angles; B: The photo of the experimental setup; C: Scheme of the staggered steel
plates with holes of the experimental setup.

2. Materials and Methods
2.1. Soil Sample

The test soil in this study was loessial loam collected from farming land in the Jigong
Mountain area (106◦27′19′′ E, 29◦47′41′′ N), Chongqing City, which is one of the typical
karst trough valley areas in southwest China. The bulk soil was first gently crushed and
separated using a 10 cm diameter sieve to remove plant roots, rocks, and other debris. The
soil particle size distribution and bulk density of the test soil are listed in Table 1 and were
determined based on the pipette method according to previous reference [20].

Table 1. Particle size distribution and bulk density of the test soil.

Soil Particle Size Distribution Bulk Density
g cm−3<0.002 mm 0.002–0.02 mm >0.02 mm

28.23% 51.09% 20.68% 1.21

2.2. Experimental Setup

The experimental water scouring simulation was carried out using specially designed
experimental equipment that included a water runoff setup, a soil flume, and three water
collecting devices (Scheme 1). Specifically, the water runoff setup contained a water supply
and simulator with water pipes and a simulated water controlling chamber. The 5.0 m long,
1.0 m wide, and 0.2 m deep soil flume was specially designed with three steel catchment
collectors to collect soil surface runoff, subsurface runoff, and fissure runoff in containers.
In this study, α was set as 10, 15, and 20 by adjusting the hydraulic jack of the flume, β was
set as 30, 60, 90 120, 150, and 180 (0) by changing the angle of the rocks, and v was set as 5,
7.5, and 10 dm3 min−1 by changing the water pressure [21].

Before the start of the test, the crevasses were adjusted to meet the test requirements by
adjusting the dislocation of the round holes in the soil tank floor. After fixing the soil, the
test fill thickness was 20 cm. After calculating the fill amount according to the lower layer
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of 5 cm (bulk weight 1.3 g cm−3) and the upper layer of 15 cm (bulk weight 1.2 g cm−3), the
load was filled by weighing layers. In order to reduce the edge effect, when filling the soil
tank, Vaseline was applied on both sides of the inner wall, and the height was filled slightly.
During the filling process, special wooden boards were used to compact the layers and the
soil was raked to ensure that the soil was smooth. After filling the soil, 9 limestone blocks
with a diameter greater than 25 cm prepared before were randomly arranged in the soil
tank according to the corresponding fixed contact area of rock and soil. The inclinometer
was used to adjust the rock–slope angle, their placement was fixed, and the area exposed to
the soil surface was measured to ensure that the rock exposure rate is consistent with the
natural condition.

2.3. Experimental Processes

In this study, v, α, and β were the three main features used as a model to construct
the intelligent analysis strategy and investigate its application characteristics to generate
the relationship between them and soil N and P loss. Figure 1 shows the experimental
conditions, in which three different conditions were employed for every feature. Before
the experimental study, the treated soil sample was placed in the steel flume with a bulk
density of 1.21 g cm−3 and an increment of 5 cm. Additionally, some rocks with a rock–soil
angle were added onto the soil surface to simulate the condition of a karst trough valley
area. To achieve uniform water content in the profile, an amount of water was sprayed
and a plastic film was applied to the soil surface. After that, the flume was adjusted to
the designed soil bed–ground angle before the scouring experiment began. Each scouring
experimental run lasted for 18 min, and soil surface runoff, subsurface runoff, and fissure
runoff were collected every 1 min for the first 6 min and every 1.5 min for the last 12 min
in a plastic bucket. Under varied conditions, soil surface runoff, subsurface runoff, and
fissure runoff were used for runoff N and P testing.
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Figure 1. Experimental conditions in this study with different v, α, and β.

According to previous references with some modifications, soluble nitrogen (SN)
concentration in different runoff waters was measured using the alkaline potassium persi-
flage digestion UV spectrophotometric method with separation, ammonium (NH4

+)-based
nitrogen (NH4-N) concentration was measured based on Nessler’s colorimetric method,
NO3

−-based nitrogen (NO3-N) concentration was measured using the UV spectrophotomet-
ric method, total nitrogen (TN) concentration was measured using the alkaline potassium
persiflage digestion UV spectrophotometric method, soluble phosphorus (SP) concentration
was measured based on the ammonium molybdate spectrophotometric method with sepa-
ration, and total phosphorus (TP) concentration was measured based on the ammonium
molybdate spectrophotometric method [22–25]. In these analytical measurements, absorp-
tion spectra were measured using a UV-vis spectrophotometer, type UV-2450 (Shimadzu,
Kyoto, Japan). A pH-3C digital pH-meter (Shanghai LeiCi Device Works, Shanghai, China)
was employed in all of the pH tests in the experiment. Ultrapure water with a resistivity of
18.2 MΩ·cm was used throughout this study.



Forests 2023, 14, 2109 5 of 12

2.4. Data Set

The data set mainly contained three model features including v, α and β. More than
three factors for each feature were employed as input characteristics of the experimental
data, and SN, TN, NH4-N, NO3-N, SP, and TP concentrations were employed as the output
characteristics to study the relationship between model features and soil N and P loss
with different pathways and mechanisms. Furthermore, RF algorithms depend on various
conditions and characteristics performances were used to generate the relationships with
more than 5000 results, and the employed program code is supported in the Supporting
Information.

2.5. Data Analysis with Random Forest Regression

RF is a machine learning algorithm based on a classification tree developed by
Breimanz on the basis of the Bagging algorithm, which can handle classification and
regression problems [26–29]. When the dependent variable is a continuous variable, the RF
regression model can be used to explain the influence of several independent variables on
the dependent variable. The basic principle of the RF algorithm is to use the bootstrap re-
peated sampling method to randomly extract some observations of the dependent variable
from the data set, randomly select a specified number of variables from the independent
variables to determine the nodes of the classification tree, and randomly construct hun-
dreds of classification trees. After selecting the one with the highest degree of repetition,
regression trees are used to form a combined model, and the predicted value of the model is
formed by calculating the average of multiple regression trees. In this RF system, multiple
linear regression requires the data to satisfy many assumptions, while the RF algorithm
does not need to pre-set the function form, is insensitive to multicollinearity, and can more
accurately fit up to thousands of independent variables. The interaction between variables
can be considered in the calculation process to complicate the nonlinear relationship with
dependent variables. When the RF algorithm deals with multi-level categorical variables, it
can avoid the problem of a large increase in estimated parameters and over-fitting. The RF
algorithm has no effect on outliers and has strong anti-interference ability. It can still show
a robust prediction effect even when there are many discrete and missing values, and it can
evaluate the effect of each independent variable on the dependent variable importance.

2.6. Statistical Analysis

In this study, all experimental results were subjected to analysis of variance using the
Statistical Studies for Social Sciences software package SPSS v. 17.0 (IBM, New York, NY,
USA). Principal component analysis (PCA) was employed to evaluate the relationships of
various chemicals and to calculate soil nutrition with N and P.

3. Results
3.1. Characteristics Analysis based on the Normal Single Factor Analysis

In this study, the relationship between the N concentration and v, α, and β in the soil
surface runoff, subsurface runoff and fissure runoff, respectively, were characterized based
on the normal single factor analysis. As shown in Figure 2, there was a correlation between
the SN concentration and v, α, and β in the soil surface runoff, subsurface runoff, and fissure
runoff, respectively. In the soil surface runoff, the SN concentration increased slightly when
the inflow rate increased from 5 to 10 dm3 min−1. Although there was an obvious linear
relationship between v and SN based on the average value of SN with the same v and
different a and b, the correlation coefficient and slope value of the linear function was about
0, indicating that there was no significant relationship between v and SN based on the
functional correlation, which could be confirmed by the Pearson correlation coefficient
between v and SN of 0.024 (v-SN) based on the statistical analysis, which was significantly
lower than 0.05. Similar results were obtained for the soil bed–ground angle. The SN
concentration increased when the rock–soil angle was in the range of 30 to 90 and then
decreased when the rock–soil angle was higher than 90. It is important to note that the
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relative standard deviation for all of these results was clearly higher than that of the used
method, and the relative standard deviations of the v and α were significantly higher
than that of β, which may have resulted from the effect of different features. Accurately,
the v and α had minimal influence on the SN concentration, resulting in a lower relative
standard deviation in the relationship between the SN concentration and β. The β had a
large influence on the SN concentration and thus resulted in a higher relative standard
deviation in the relationship between the SN concentration and the v and α, indicating
that different features had different influences on the SN concentration and β may be the
main feature of the SN concentration in the soil surface runoff rather than v and α. An
accurate relationship among them could not be calculated based on the normal single factor
analysis, although it has been widely employed in related studies. Similar results were
obtained from the results of the relationship between the TN, NH4-N, NO3-N, SP, and TP
concentrations and v, α, and β in the soil subsurface runoff and fissure runoff, respectively,
which are shown in Supplementary Figures S1–S5.
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3.2. Characteristics of the Features Based on the Random Forest Regression

To clearly characterize the effect of different features with v, α, and β as a model on the
soil N and P loss with the SN, TN, NH4-N, NO3-N, SP, and TP concentrations in soil surface
runoff, subsurface runoff, and fissure runoff, respectively, the RF regression was used to
investigate the effect of these different features with a special value named as “Importance”,
which was in range of 0 to 1, indicating the possible effect and relationship value between
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each variable, such as the soil N and P loss with the SN, TN, NH4-N, NO3-N, SP, and TP,
and dependent variables such as the v, α, and β. In this system, the relationship between
the soil N and P loss and some potential features could be generated as the function f (v,
α, β). Due to the different effects of these features, the function was nonlinear, and each
single function had a different weight, named f 1 (v), f 2 (α), and f 3 (β), and thus the function
f (v, α, β) could be generated as a f 1 (v) + b f 2 (α) + c f 3 (β), in which a, b, and c were the
weight of every single function. As shown in Figure 3, the obviously different importance
was obtained, indicating the different effects of these features on soil N and P loss. For
the SN concentration in the soil surface runoff, an importance of approximately 0.75 was
obtained for β, which was significantly higher than that of approximately 0.1 for v and α.
Similar results were obtained for the SN concentration in interflow and soil percolating
water. All the results indicated that β would be the main feature for the SN concentration
in the soil surface runoff, subsurface runoff, and fissure runoff, as indicated in the previous
reference that the lower-level rainfall runoff may generate higher soluble soil N and P
loss in special conditions. Further studies were performed for the characterization of the
v, α, and β of the TN, NH4-N, NO3-N, and TP concentrations in the soil surface runoff,
subsurface runoff, and fissure runoff, respectively, and similar results were obtained (Figure
S6). More importantly, these results generate the Importance factor to estimate the effect of
every feature on the soil N and P loss. Additionally, for the results of soil surface runoff,
subsurface runoff, and fissure runoff, there was a little difference, indicating that there
would be a distribution for the soil N and P loss, which may be important for soil N and P
loss, soil fertility, and some other related research.
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3.3. Characteristics Analysis Based on the RF Regression Multifactor Analysis

To verify the practicality of the proposed intelligent analysis strategy based on the
RF regression algorithm to identify the main features, a complex nonlinear multifactor
analysis was structured with v, α, and β on the TN, NH4-N, NO3-N, and TP concentrations
in the soil surface runoff, subsurface runoff, and fissure runoff, respectively. As shown
in Figure 4A for the SN concentration in the soil surface runoff, there was no significant
difference when v and α changed. Clearly, the SN concentration was strongly related
to the rock–soil angle (β) due to the lack of an obvious difference with different v and
α, and similar shape to that shown in Figure 4B,C. The change in SN concentration in
interflow and soil percolating water was similar, although the influence of β was minimal,
indicating that β has the greatest effect on the SN concentration in different waters flows.
Further studies were conducted based on the complex nonlinear multifactor analysis for
the characterization of v, α, and β on TN, NH4-N, NO3-N, and TP concentrations in the
soil surface runoff, subsurface runoff, and fissure runoff, respectively, and similar results
were obtained (Figures S7–S11). All these results confirmed the Importance factor analysis
based on the RF regression and generated the main factors under different conditions, with
the Importance factor being slightly different under some special conditions, such as the
results in NH4-N characterizations.
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3.4. Nitrogen and Phosphorus Nutrition Value Characterizations

To fully evaluate soil nutrition using N and P, a new N and P index known as the
NP value was calculated using PCA to overcome the limitation of a single feature, which
was calculated based on the complete evaluation of SN, TN, NH4-N, NO3-N, SP, and
TP concentrations in soil surface runoff, subsurface runoff, and fissure runoff, two main
components with effect values of 1.792 and 1.405, when the cumulative percentage was
53.30%. Thus, a complete principal component matrix could be obtained, as illustrated
in Figure 5. As can be seen, NO3-N concentration had a major impact on the NP value.
Furthermore, a modified NP value could be calculated using the PCA equation, especially
as NP value = 0.25 TN + 0.39 TP + 0.35 SN + 0.28 SP − 0.20 NH4 + 0.87 NO3. Thus, the
relationship between the NP value and the related effects could be evaluated, including v,
α, and β in the soil surface runoff, subsurface runoff, and fissure runoff, respectively. As
shown in Figure 6, v, α, and β had an obvious effect on the NP value, with the rock–soil
angle having the largest effect of approximately 90, providing a new perspective on N and
P loss.
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4. Discussion

In this study, we have developed a novel intelligent analysis strategy based on the
RF regression algorithm to identify the main features and discover complex nonlinear
relationships and fundamental mechanisms among them for the key factor of soil N and P
loss under simultaneous rock-exposed karst conditions with the existence of surface runoff
and subsurface leakage. Similarly, Wright’s group put a lot of effort into investigating the
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predictors of soil microbial biomass C, N, and P to incorporate the broad-scale soil microbial
nutritional properties and the associated processes into biogeochemical models [1]. The
storages of soil C, N, and P in the top soil surface have been successfully estimated.
Although the different chemical forms of soil C, N, and P have been strongly identified,
the response of these different chemical forms to specific environmental factors is still
unclear, such as the inflow rate, soil bed–ground angle, and rock–soil angle in this study.
Xu and coauthors described the various impacts on river water quality based on the
case of Dongjiang Lake Basin, generating the different environmental factors that could
influence water indicators based on the different paths and mechanisms, including C, N,
and P with different chemical forms [30]. However, the relationships still needed to be
studied further. Kotha and coauthors used machine learning algorithms to calculate the
multiplex relationships among various factors, especially based on the RF and some other
algorithm models, performing successful multiplex system research [30]. The applications
of machine learning algorithms, such as the RF model, under different experimental
conditions confirmed the great potential of incorporating machine learning algorithms
into the biogeochemical model, which reveal the cycling mechanisms of representative soil
nutrients in detail, such as the study of N and P elements here. These studies provided
new insights and approaches to ecological informatics, ecological analysis, soil nutrient
conservation, and related plant studies.

5. Conclusions

Herein, with the characterization of the relationship between v, α, and β and SN,
TN, NH4-N, NO3-N, SP, and TP concentrations in soil surface runoff, subsurface runoff,
and fissure runoff, respectively, as a model, the proposed RF regression algorithm was
successful in generating the main factors of different features within a complex nonlinear
relationship. Furthermore, the relationship between the main feature and soil N and
P loss was identified using the nonlinear multifactor analysis. As expected, this study
proposed these relationships, each of which had significant importance for soil N and P
loss, providing a new avenue and promising potential for soil conservation and the related
soil and plant studies, indicating that v, α, and β presented combined effects on soil N
and P loss, and should be considered as the key parameters when developing a universal
soil nutrient loss model in karst trough valleys. Importantly, these results will not only
contribute to the understanding of the mechanisms of nutrient exports via surface runoff
and subsurface leakage in the karst region worldwide, but also provide new insights into
the main factors in different features and new avenues for soil conservation and the related
soil and plant studies.
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concentration in the soil surface runoff, subsurface runoff, and fissure runoff, respectively; Figures
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in the soil surface runoff (A–C), subsurface runoff (D–F), and fissure runoff (G–I) and the v, α, and
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