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Abstract: The increasing level of atmospheric carbon dioxide and its effects on our climate system
has become a global environment issue. The forest ecosystem is essential for the stability of carbon in
the atmosphere as it operates as a carbon sink and provides a habitat for numerous species. Therefore,
our understanding of the structural elements of the forest ecosystem is vital for the estimation of
forest biomass or terrestrial carbon stocks. Over the last two decades, light detection and ranging
(LIDAR) technology has significantly revolutionized our understanding of forest structures and
enhanced our ability to monitor forest biomass. This paper presents a review of metrics for forest
biomass estimation, outlines metrics selection methods for biomass modeling, and addresses various
assessment criteria for the selection of allometric equations for the aboveground forest biomass
estimations, using LIDAR data. After examining one hundred publications written by different
authors between 1999 and 2023, it was observed that LIDAR technology has become a dominant data
collection tool for aboveground biomass estimation with most studies focusing on the use of airborne
LIDAR data for the plot-level analysis on a local scale. Parametric-based models dominated in most
studies with coefficient of determination (R2) and root mean square error (RMSE) as assessment
criteria. In addition, mean top canopy height (MCH) and quadratic mean height (QMH) were
reported as strong predictors for aboveground biomass (AGB) estimation. Pixel-based uncertainty
analysis was found to be a reliable method for assessing spatial variations in uncertainties.

Keywords: biomass; LIDAR; forest structure; remote sensing; metrics; assessment

1. Introduction

The total land area of the Earth’s surface is largely occupied by 30% of forest [1].
The forest represents a source of biodiversity and covers about 80% of plant biomass on
the planet Earth [2]. Biomass is considered as an important climate parameter [3], and
quantifies the mass of dead or live organic matter usually presented as dry weight per
unit surface area. Quantifying forest carbon and forest biomass is relevant for detailed
understanding of the relative impact of land use on climate change [4]. Biomass information
is also vital to programs such as the United Nations Agenda on Biodiversity, Sustainable
Development Goals, United Nations Convention on Forests, and United Nations Forum
to eradicate Desertification. Information on the spatio-temporal dynamics of biomass
change is essential for effective planning to mitigate and adapt interventions, as well as the
implementation of sustainable policies. Government officials, decision makers, and forest
managers who oversee forest protection activities are typical stakeholders of the forest
conservation agenda in this context. Information on forest biomass critically influences
researchers’ efforts to describe the Earth’s climate changes [5].
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Forest biomass prediction over a broad domain or area has been determined through
different methods, including measurements interpolated from a few plots purposely for
ecological research and biogeochemical modeling [6]. Among the biomass estimation
techniques, the remote sensing method is desirable since it provides an explicit estimate
of the plant biomass at the location of each pixel, rather than estimating the total plant
biomass in a particular inventory unit [7].

Forest biomass estimation via remotely sensed data has been significantly influenced
by key variables like the vegetation indices, spectral reflectance, leaf area index, and
vegetation cover, or combinations of them [8]. Optical images and radio detecting and
ranging (radar) were conventionally utilized as remotely sensed data [9]. The major setback
of radar and optical data is the saturation or insensitivity of the emitted signals at medium
to high biomass quantities. The complexities associated with vegetation characteristics
and biophysical environments, including the species constituents, phenology, health, and
growth stages, affect plant spectral signatures. Hence, biomass prediction models derived
from optical spectral data cannot be extended to diverse catchment zones for biomass
inventory tracking [10]. The presence of cloud on the acquired images especially in tropical
areas is another challenge limiting its application to these areas [11].

LIDAR technology is an innovative approach for estimating forest biomass. This is
due to the fact that the LIDAR approach can detect forest biomass at very high levels
(>1000 t/ha) and does not significantly saturate [9]. LIDAR data acquisition uses active
sensors that radiate near-infrared energy at high frequencies [12]. LIDAR remote sensing
techniques with their active systems have proven to be capable of giving accurate mea-
surement of forest patterns such height, basal area, vertical profile, crown size, and stem
volume [13]. These are all connected to biomass estimation. In addition, LIDAR technology
provides the means for distant measurement of forest patterns from spaceborne/terrestrial
and airborne platforms.

To help prospective users of LIDAR technology for forest biomass assessment and
monitoring, this study provides an overview of LIDAR remote sensing technology and its
application to forest biomass mapping. The main objectives of this study are to (1) conduct
a review of metrics for forest biomass estimation and the metrics selection methods for
biomass modeling using LIDAR data, and (2) examine the various assessment criteria for
the selection of appropriate allometric equations for plot-level biomass estimation. This
study has been prepared to make significant contributions to the following topics: LIDAR
technology for biomass studies, LIDAR measurement accuracies, height metrics for biomass
models, biomass estimation methods, biomass model assessments, and uncertainty analysis.

Criteria for Literature Review

To conduct this review, relevant literature was gathered from Scopus, Google Scholar,
and Web of Science using various search terms related to forest biomass remote sensing.
Articles in the English language published between January 1999 and April 2023 were
considered, as shown in Table 1. Search items (1) and (2) were tailored to meet the two
objectives of this paper. Additionally, important materials categorized as book chapters
and internet reports were also included in this review.

Table 1. Literature selection criteria.

Criteria Search Terms

Type of Document Articles, Conference papers, Book chapters
Keywords (1) “LIDAR” “Aboveground biomass” “Metrics” “Estimation”
Keywords (2) “Biomass” “Allometric equation” “Assessment” “Criteria” “Uncertainty”
Period January 1999–April 2023
Language English

A total of 280 papers were obtained from the databases mentioned above. Out of
these, Scopus yielded 90 papers, Google Scholar 80 papers, and Web of Science 110 papers.
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After downloading, a comprehensive analysis of the title and abstract of each paper was
conducted. One hundred publications were selected from the initial 280 based on specific
criteria that meet the objectives of this paper. These criteria required that the publication
(1) employs LIDAR technology to measure forest structures; (2) include height metrics for
biomass models; and (3) includes assessment criteria for selecting allometric equations.
After removing irrelevant publications, the remaining papers were divided into three
categories. Table 2 shows that the first group, comprising 31% of the selected publications,
focuses on LIDAR technology in estimating forest biomass. The second group, which
comprises 47% of the selected papers, discusses methods and techniques for selecting
LIDAR metrics to estimate biomass. Lastly, about 22% of the papers relate to the assessment
criteria for selecting allometric equations.

Table 2. Summary of selected literature.

Publication Categories Based on
Research Objectives

Number of
Papers

Percentage Reviewed
Literature References

LIDAR technology for biomass studies 31 31% [1–31]
Height metrics for biomass models 47 47% [32–78]
Assessment criteria for the selection of
allometric equation 22 22% [79–100]

2. LIDAR Technology for Biomass Studies

LIDAR technology employs active sensors to capture details about the terrain and
physical features like forests [14]. This technology is categorized into waveform or discrete
return signals; small or large footprint sizes; profiling or scanning patterns; and airborne,
terrestrial, or spaceborne platforms.

2.1. Waveform or Discrete Return Signal

Waveform LIDAR devices typically capture the interval transit time of the returning
beam for each laser beam to measure height distribution of the illuminated surfaces [15].
This device performs sampling at a relatively coarser spatial resolution between 10 m
and 100 m, and often in combination with a complete digitized vertical spatial resolution,
yielding full vertical profiles at a sub-meter scale. Full waveform LIDAR device are
primarily used for research purposes [12].

Discrete-return LIDAR devices quantify either a few multiple-return signals or single
return of features. The focus is on measuring the return signal where significant peaks
present distinct features on the signal path [15]. Multiple-return laser systems can capture
between one and five signal returns from a single laser beam [16], and when the laser beam
is obscured by a feature, signals are reflected to the receiver end, which is captured by the
system as the first return. In many cases, the LIDAR pulse may be reflected by objects that
are closer to the ground resulting in second- or third-return signals. The final-return signal
is usually reflected from the ground surface. This phenomenon is frequently observed in
forested areas where the tree canopies are close together [17].

2.2. Profiling or Scanning Pattern

The profiling system records data specifically along a narrow transect whilst the
scanning chamber also captures data across a broad swath width [15]. It systematically
captures location footprints at a given pace along the trajectory defined by the sensor
relative to the ground [18]. The operational rule suggests that laser beams are emitted with
higher frequency as the aircraft moves forward while the emitted energy strikes the ground
along the line of the flight’s direction [19]. Implementing this approach ensures extensive
sampling of the designated areas. However, to measure biophysical variables in plots that
have missing data, distinct procedures are required [18].

Profiling LIDAR systems obtain data along a swath equivalent to the diameter of the
target using one pulse, while scanning LIDAR systems disperse laser pulses throughout



Forests 2023, 14, 2095 4 of 22

a swath of different dimensions, which rely on various parameters such as scan angle,
pulse density, and flying altitude. For normal forestry operations, swath widths ranging
from 500 to 1000 m are frequently used. However, compared to profiling LIDAR sys-
tems, a single trajectory of scanning LIDAR stored information will produce a vertical
profile across a particular swath width, giving an increased attribute suite for a stand-level
characterization [20].

2.3. Small or Large Footprint Size

The interface sensed by the laser transmitted by the LIDAR system is contextually
referred to as the LIDAR footprint. The footprints sizes are estimated by the LIDAR instru-
ment target and divergence of the laser beam. Regardless of whether the LIDAR footprint is
several meters (for satellite platforms), several centimeters (for airborne sensors), or several
millimeters (for terrestrial laser systems), its fundamental principle remains the same for
all types of laser systems [18]. The size of LIDAR footprint (not necessarily divergence) is a
contributing factor in forestry application. When looking for the appropriate footprint size,
two opposing ideas frequently emerge which are (1) striking tree apices as often as possible
and (2) achieving a high spatial resolution and high penetration rate. The first objective
imposes a bigger LIDAR footprint while the second demands a small LIDAR footprint. It
is less likely to strike tree apices of smaller footprint size as it usually accounted for with
very high energy or pulse return densities [21].

Dubayah and Drake [22] noted that a small LIDAR footprint size may not be optimal
especially when used for forest structure mapping. They attributed this to the fact that
small-diameter laser beams often oversample crown shoulders and eventually miss the top
of the trees. Unless several shots are taken, the true canopy formation may be regenerated
statistically. Moreover, mapping large regions with small-diameter laser beams may require
extensive flying. Regardless, Dubayah and Drake [22] elaborated on several advantages
that large LIDAR footprint size systems may have over small LIDAR footprint size systems.
Firstly, the biases which are often encountered by small-footprint sensors are wiped out
by sensors with large footprint sizes. Secondly, mapping related expenditure from large-
footprint sensors with regards to bigger forest areas is less costly compared to small-
footprint systems. These may be due to the wider image swath areas covered by large-
footprint sensors. Finally, digitization of signal returns occurs in large-footprint systems to
enhance data provision of vertical structures from the crown to the ground.

2.4. Spaceborne, Airborne, or Terrestrial Platform

In recent times, there are unprecedented opportunities to measure forest structure
from different space technologies as shown in Figure 1. For example, most current and
forthcoming Earth observation missions like NASA-ISRO SAR, ICESat-2, NASA’s GEDI,
and the upcoming ESA BIOMASS [23] will provide information that is essential to 3D
vegetation biomass and vegetation structure [24]. Spaceborne LIDAR technology operates
based on a large footprint with a radius ranging from 25 m to 80 m and moves across undu-
lating topography with sensor beams or orbital tracks sampling various forest structures in
an organized manner [25]. For this reason, the intensity of sampled points increases with
respect to the motion of the satellite across the surface of the Earth [26].

Airborne LIDAR measurements with sub-meter level accuracy have a significant im-
pact on 3D imaging of forest patterns on the Earth’s surface. Many projects have employed
airborne LIDAR systems with small footprints for mapping forest and vegetation cover
for different purposes like biomass studies, forest inventory, and habitat modeling. The
measurements taken by airborne systems with a small footprint (<1 m) can be classified
as a discrete return or waveform return when the sensor is operating at 1064 nm infrared
wavelengths and moving at low heights depending on the LIDAR measurement require-
ments and the presence of clouds. Small-footprint LIDAR systems record multiple sampled
datapoints for specific sampled areas with good accuracies and this allows detailed sam-
pling of forest structural components. Airborne LIDAR systems are commonly used in
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tropical areas to obtain valuable information over large areas to produce inventory samples
for national and regional carbon quantification [26], or as wall-to-wall coverage [27].

Terrestrial LIDAR systems or terrestrial laser scanning (TLS) systems have proven
to be effective for the assessment of canopy tree structures [6]. Data captured with TLS
exhibit high-level details of the 3D structure of trees and forests. This enhances prediction
and generalization to national and regional scales using remote sensing techniques [28].
Various projects have efficiently utilized TLS from its traditional surveying applications
to tropical forest mapping [29] and extracted tree attributes ranging from diameter to
height-to-crown width [30]. Terrestrial laser systems have restrictions such as short or
limited working range as compared to other laser technologies. They are mostly designed
for capturing objects above a 50 m range. Hence, their ability to map canopy trees is
minimal due to occlusion. Usually, occlusion occurrence is realized in the uppermost
canopy, thereby limiting terrestrial laser scanning ability to capture remote details due
to occlusion occurrence caused by leaves, twigs, needles, or tree branches. Its demerits
include the high price per unit area of data processing and acquisition [31].
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Figure 1. Illustration of the various remote sensing platforms for forest structure measurements.

We noted in this review that, in most cases, forest structure measurements used by
most authors for biomass estimation analysis were obtained from airborne LIDAR. About
84% of the reviewed papers employed airborne LIDAR measurements, with only 12% of
them utilizing spaceborne LIDAR data. About 4% of the authors employed terrestrial
LIDAR data in their biomass studies. Furthermore, it was observed that studies were
primarily conducted on a local scale, with few studies carried out on a regional or global
scale. Plot-level analysis dominated forest biomass studies at approximately 76% compared
to tree-level analysis, which accounted for approximately 24%.



Forests 2023, 14, 2095 6 of 22

2.5. Errors and Accuracy of LIDAR Measurements

The error sources of LIDAR measurement are laser-induced and filtering-induced.
Errors related to laser-induced measurements are commonly caused by grain noise and
changes in height for the estimated points on the terrain surface (i.e., ridges and ditches) at
narrow angles. Global positioning system/inertial navigation unit/inertial measurement
unit (GPS/INU/IMU) errors are caused by variances in the measurements and initialization
errors. Filtering errors are related to excessive or incomplete removal of laser points.
Moreover, false readings from ground-based features like water bodies can cause LIDAR
measurement errors [32].

LIDAR accuracy level is usually estimated by statistical comparison between the mea-
sured LIDAR points and surveyed (known) points. It is typically measured as the standard
deviation (σ2) and root mean square error (RMSE) [33]. According to Evans et al. [33],
procedures for estimating and reporting horizontal and vertical accuracies of discrete return
LIDAR data should consistently follow standards as described in National Geodetic Sur-
vey [33], National Oceanic and Atmospheric Administration [33], and Federal Geographic
Data Committee 1998 [33]. This standard stipulates that the LIDAR data collected should be
in conformity to a minimum accuracy of value smaller than 0.55 m horizontal and 0.15 m
vertical RMSE for unvegetated ground with less steep slopes [32]. For example, a small-
footprint airborne LIDAR device used to acquire data for forest biomass estimation across
the lowland tropical forest in Indonesia achieved ± 0.15 m as absolute vertical accuracy with
±0.50 m RMSE [34]. The geospatial accuracy standard for vertical and horizontal accuracy
of spatial products introduced by the FGDC is largely based on the calculation of RMSE
(Table 3).

Table 3. LIDAR measurement accuracy.

Formula Description Reference

RMSE =

√
∑n

i=1 ∆2

n

∆ is the difference between an in situ checkpoint
measurement and measurement obtained from
remote sensing at the same site n is the total
number of tested checkpoints

[35]

Horizontal = 2.4477 × 0.5 ×
(RMSEx + RMSEy)

Horizontal accuracy determined with confidence
level of 0.95

Vertical = 1.96 × RMSEz
Vertical accuracy determined with confidence
level of 0.95

According to Jensen [35], the vertical equation and the horizontal accuracy equation
presume the error distributions for x and z are normally distributed with n > 20. The
accuracy of the checkpoints should be higher than that of the remote sensing derived
product under investigation.

Table 4 presents a summary of LIDAR measurement accuracies retrieved from a range
of publications reviewed. It was observed that the majority of the authors did not provide
information on the horizontal and vertical accuracies of the airborne LIDAR data utilized
for their research. Of those reported, the horizontal accuracies of the airborne LIDAR data
were generally consistent with standards set by NGS-58 (NOAA, 1997) and FGDC-STD-007
with minimum horizontal accuracy ranging from ±0.10 m to ±0.50 m. In contrast, most
of the reported vertical accuracies did not meet these same standards. Only one author
reported a vertical accuracy of ±0.15 m with the rest ranging from ±0.18 m to ±0.30 m.
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Table 4. A summary of LIDAR measurement accuracies identified in this review.

LIDAR
Platform Instrument Return Signal Scanning

Pattern Footprint Size Measurement
Accuracy Ref.

Airborne Riegl LMS—Q560 Airborne Laser
Scanner Waveform Scanning 0.25 m Footprint

Diameter

±0.15 m Vertical
Accuracy/±0.50 m
Horizontal Accuracy

[34]

Airborne TopoSys II Airborne LIDAR System Waveform Scanning 0.95 m Footprint
Diameter

±0.15 m Vertical
Accuracy/±0.50 m
Horizontal Accuracy

[36]

Airborne Leica Airborne Laser Scanner
(ALS70) Waveform Scanning 0.35 m Footprint

Diameter

±0.3 m Vertical
Accuracy/±0.1 m
Horizontal Accuracy

[37]

Airborne AeroScan Airborne LIDAR System Waveform Scanning 0.65 m
±0.25 m Vertical
Accuracy/±0.50 m
Horizontal Accuracy

[38]

Airborne Optech ALTM 2025 Airborne LIDAR
System Discrete Return Scanning 0.18 m

±0.18 m Vertical
Accuracy/±0.16 m
Horizontal Accuracy

[39]

Airborne RIEGL VZ—400 3D terrestrial laser
scanner Waveform Scanning - 5 mm Accuracy/3 mm

Precision [30]

Airborne
Geoscience Laser Altimeter System
(GLAS) onboard the Ice, Cloud, and
land Elevation Satellite (ICESat)

Waveform Profiling - - [25]

Airborne ATLAS onboard ICESat-2 Satellite Discrete Return Profiling 14 m - [40]

3. Height Metrics for Biomass Model

LIDAR height metrics used in constructing forest biomass models are essential in the
model’s broad application [26]. These metrics are extracted via individual tree-based or area
approaches [41]. The individual tree-based method involves tree feature identification like
crown boundary, treetop, or crown radius [38]. An individual tree-based approach is used
for single-tree level information extraction with the accessibility of highly dense LIDAR data.
In the past few years, numerous researchers have used different types of semi-automatic
and automated algorithms for single-tree-level attribute extraction. These algorithms
include the local curvature approach [42], the local maximum-based approach [43], the
watershed approach [44], and many others.

In the area-based approach, statistical variables or metrics are generated via the canopy
height model or laser returns [11]. This method produces LIDAR metrics, such as dominant
height, mean height, 3D point cloud density in various height percentiles, canopy cover,
kurtosis, and skewness for various plots by analyzing LIDAR data from the point cloud and
the echo heights [40]. Examples of LIDAR-based metrics retrieved from relevant literature
for this review paper are presented in Table 5. These metrics retrieved from point cloud
data are used to estimate stand-level attributes via comparison with plot-level data [45].
For instance, Pascual et al. [36] sampled LIDAR-based metrics such as standard deviation,
mean, and median of airborne laser scanning return heights obtained from grid cells which
match the pixel dimensions of the remotely sensed data over a test plot in central Spain.

In a similar case in Canada, Matasci et al. [46] extrapolated LIDAR-based metrics such
as standard deviation, mean, 95th percentile, and return proportions among others for
model validation and calibration purposes across broad forested lands. With the help of a
random forest machine learning algorithm, these researchers could develop models which
were validated on several plots for key dependent variables like aboveground biomass,
canopy cover, basal area, stand height, and stem volume. The results achieved by these
group of researchers demonstrated that LIDAR-based metrics combined with Landsat-
retrieved products could produce forest structure maps over a large area. In describing
the use of height metrics for forest biomass estimation, Wang and Weng [9] noted that it
is important to choose or extract metrics that frequently relate to biomass across a broad
scope of vegetation or forest conditions.
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Table 5. LIDAR metrics for forestry studies.

LIDAR-Based
Metric 1

LIDAR Return
Information Description 2 Ref.

Minimum First return xmin value -
Maximum First return xmax value -
Range First return [(xmax) − (xmin)] [33]
75th percentile value All returns - [20]
Hp25, Hp90 All returns 25th height percentile, 90th height percentile [47]
Kurtosis All returns

1
n ∑n

i=1(xi−µ)4

[ 1
n ∑n

i=1(xi−µ)2]
2 − 3 [33]

L-moment (kurtosis) First return - [20]
Canopy relief ratio All returns µ (h)−min(h)

max (h)−min(h)
[33]

1 Height percentile (Hp). 2 Total observation (n), mean (µ), numeric value (x), height (h), minimum (min),
maximum (max).

According to Dong and Chen [32], the canopy height model (CHM) forms the basis
upon which other tree-level information can be derived. This is demonstrated in a study
carried out by Li et al. [48] in which CHM generated from a digital surface model and
a digital terrain model via data pre-processing was utilized for single wood extraction
of eucalyptus globulus. Analysis performed based on the extraction results was used to
ascertain eucalyptus biomass estimation performance via multiple stepwise regression
and machine learning algorithms such as support vector machine, random forest, and
decision tree. This can also be seen in the case of Michez et al. [49] where they argued that a
dominant canopy height estimated from CHM serves as a key indicator extensively utilized
by forest supervisors, particularly in forested regions with the same structure. They further
explained that estimated dominant canopy height gives a clear signal of productivity when
combined with the stand age and would be beneficial for the estimation of forest biomass.

Regarding the estimation of tropical forest biomass, mean top canopy height (MCH) is
also reported by Jubanski et al. [34] as a good explanatory predictor. This was demonstrated
in research carried out by Meyer et al. [27] which sought to investigate the possibility of
quantifying changes in tropical forest biomass over an extended period in some forested
areas in Panama. In an analysis involving five different metrics, MCH emerged with the
highest relative contribution to forest biomass estimation. Similarly, in a study conducted
by Yang et al. [50] which focused on developing a new methodology for estimating forest
biomass in various forest types via allometric relationships, MCH was identified as the
most effective height metric for estimating forest biomass in coniferous forests at plot scale.
This was followed by sub-tropical broadleaf forests, coniferous and broadleaf-leaved mixed
forests, and tropical broadleaf forests, in decreasing order of effectiveness. In addition,
Lefsky [25] noted that MCH metrics obtained from airborne LIDAR with small footprints
could provide adequate knowledge on tree heights within the same field plot with spatial
extent of tree canopies. He further explained that MCH in theory includes the mean of
crown areas or tree heights within a specific region. Therefore, it demonstrates a good link
between the basal area of the plant and aboveground biomass (AGB). The average tree
heights are different from the ground measurement of MCH. Also known as Lorey’s Height
of forest plot, MCH refers to the weighted basal area of the trees inside the specified plot.

The quadratic mean height (QMH) of forest canopy return is another metric reported
by Chen et al. [51] as a strong explanatory variable for forest biomass estimation. It is
estimated as

QMH =

√
1
n
× ∑n

i=1 h2
i (1)

where hi is the aboveground height for point i and n is the total number of laser points.
The above equation gives more weight to a higher number of points suggesting that plant
biomass becomes more prevalent in stands or plots with tall trees. Brown et al. [52] further
explained that, since a power relationship exists between most allometric models and
DBH which is strongly related to height, it is anticipated that the relationship between
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tree height and biomass is nonlinear such that the biomass content in taller trees become
disproportionally higher. Moreover, Lu et al. [53] argued that QMH had been rated among
the best predictors of biomass in most studies because of its ability to incorporate nonlinear
relationships. In coniferous forests on the Pacific coasts, Means et al. [54] discovered that
their best model included QMH where QMH could be negatively related to biomass at
plot scale. However, in a mixed-conifer plots in California, Li et al. [55] found compelling
evidence that suggests QMH as the best predictor of forest biomass in the study area while
QMH was positively correlated to the forest biomass at the same scale.

Discrete-return sensors mounted on LIDAR systems can acquire enough point cloud
data to precisely determine individual tree height under open-space canopies, like those
found in savanna forest [39]. Through a data segmentation process, individual tree heights
can be separated from the point density [31] for forest biomass studies. Several novel
methods have been utilized to delineate individual trees for biomass estimation. One study
utilized a method of multiscale smoothing on a model of canopy height and applied a
parabolic surface on an individual scale to estimate the ideal scale for determining canopy
crowns. The resulting segmented crowns allowed for the effective separation of spruce and
pine using information about their shapes [56]. In another study conducted by Reitberger
et al. [57], individual tree crowns in LIDAR data were extracted via the normalized cut
methodology for individual tree delineation.

Canopy density is the measure of the amount of vegetation observed from the air or
space in relation to the ground surface. Canopy density models are distinctive in that they
evaluate degradation and deforestation by recording changes in forest regions, allowing
assessment of forest patterns and direct impacts on carbon contents [58]. It is among the
most crucial factors to take into account while conducting and developing a rehabilitation
program [59]. LIDAR ability to measure 3D features makes it a more dependable method of
modeling forest canopy density. Canopy density models have a variety of uses in forestry,
including the quantification of the crown fuel layer [60], predicting vegetation biomass,
and mapping different species of plant [61].

Apart from the aforementioned height metrics, prior research has shown a connection
between forest biomass and explanatory variables like wood density (WD) and diameter
at breast height (DBH) [62]. The explanatory variables used for the vegetation biomass
estimation are strongly related to how well allometric models fit the data. The most
frequently used explanatory variables are tree height, DBH, and WD. Allometric models
developed with these three explanatory variables may have good prediction performance
in both the areas where models were developed and in other locations as well [32].

DBH is a well-known parameter for forest biomass estimation. The application of
DBH in forest biomass estimation extends to various environments (viz., agroforestry or
forestry), growth stages (viz., lianas, shrubs, or trees). Compared with other variables,
DBH has a strong correlation with forest biomass and can easily be measured. However,
DBH may be inadequate for forest biomass estimation where the geometry of trees keeps
changing. Therefore, it is imperative to combine DBH with other parameters or variables
for forest biomass estimation especially when the tree geometry differs because of species
diversification and site quality [63].

Wood density is widely utilized as an explanatory variable in conjunction with DBH
for estimating vegetation biomass [64], and it is estimated as oven-dry weight per green
volume or the amount of carbon stored per unit volume of the stem [65]. Although there
are uncertainties associated with WD values, it is generally assumed that the concentration
of carbon in wood is around 50%. The quantity of carbon stored in wood is influenced
by both species and location, as species that contain a greater amount of lignin tend to
have higher carbon content [66]. As a result, the carbon content may vary depending
on the species successional condition [66]. Wood density cannot be measured directly in
the field. However, its values can be obtained from the literature. The values are usually
derived from published or reported data with significant uncertainty because of variations
in measurement procedures, sample geographical location, and sample size [67].
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3.1. LIDAR Metrics for Closed-Canopy and Open-Canopy Conditions

Existing research recognizes the critical role played by LIDAR metrics for AGB estima-
tion in both closed-canopy and open-canopy forest conditions. For instance, Ediriweera
et al. [68] utilized LIDAR measurements to estimate the structural characteristics of subtrop-
ical rainforest and eucalypt-dominated open-canopy forest landscapes in the northeastern
region of Australia. In their research, they analyzed a total of 31 LIDAR metrics to assess
parameters related to forest structure. The regression models developed in their study were
able to account for 62% of the variabilities in basal area, 66% in mean diameter at breast
height, 61% in dominant height, and 60% in foliage projective cover for the subtropical
rainforest. In contrast, the open-canopy forest dominated by eucalypt trees yielded the
most precise predictions for both mean height and dominant height. As a result, this group
of authors concluded that the accuracy of predicting structural parameters using LIDAR
metrics was lower in closed-canopy subtropical rainforests characterized by high species
diversity compared to less dense canopies with low species diversity.

In their investigation to explore the general relationships between LIDAR metrics
and forest structural attributes, such as aboveground biomass in closed-canopy tropical
forests, Drake et al. [69] conducted a study. They extracted canopy metrics (viz., canopy
heights), from airborne LIDAR data, along with basal area and mean stem diameter, for
their analysis. The team discovered significant correlations between LIDAR metrics and
mean stem diameter, basal area, and aboveground biomass in the study area. This led to
the conclusion that crucial forest structural characteristics, such as aboveground biomass,
can be accurately estimated in closed-canopy tropical forests by utilizing metrics such as
canopy height, mean stem diameter, and basal area.

As demonstrated by Asner and Mascaro [70], the use of LIDAR metrics in closed-
canopy conditions has another significant application. The authors conducted a study
utilizing a network of 804 field inventory plots that covered a wide range of tropical
vegetation types. In their study, they employed a network of 804 field inventory plots
spanning various tropical vegetation types to establish a connection between LIDAR top-
of-canopy height (TCH) and AGB in tropical forests. They incorporated regional-scale
inputs of basal area and wood density for this purpose. The study revealed that LIDAR
measurements of TCH alone could account for a portion of the variation in AGB across
different tropical regions and conditions. However, by including plot-aggregate estimates
of basal area and basal-area weighted wood density, the remaining variation in AGB
could be almost entirely explained. As a result, the authors argued that, in closed-canopy
conditions, the application of a generalized plot-aggregate allometry can be achieved via a
quick survey of the basal area and by gathering information about the dominant species to
estimate wood density within the surveyed LIDAR area.

3.2. Metrics Selection for LIDAR Biomass Model

Numerous techniques for choosing appropriate metrics for vegetation biomass mod-
eling has been communicated by Lu et al. [11] and these techniques include but are not
limited to variable selection due to expert experience and knowledge, stepwise regression
analysis, feature extraction method, correlation analysis, neural network, and random forest
algorithm. In general, metrics that show a strong correlation with vegetation biomass and
a weak correlation with other predictor variables are recommended. In addition, Wang and
Weng [9] explained that model generalizability should be considered during the metrics
selection stage of the biomass estimation process. Finally, metrics selected should usually
relate to biomass across a broader range of vegetation conditions. Table 6 outlines various
metrics and other vital information identified in this literature review.
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Table 6. Metrics and other essential information identified in this literature review.

Metrics 1 Scale Study Area Modeling Method Analysis
Level Accuracies Error Data

Period
LIDAR
Platform Ref.

Canopy Base Height, Canopy
Fuel Weight, Canopy Height Local 5.2 km2, Capitol State Forest,

Washington State, USA
Regression Plot

R2 = 0.770
R2 = 0.860
R2 = 0.980

N/A 1999 Airborne [71]

Canopy Volume, Height Metrics,
LAI, Crown Local 1700 ha, Heiberg Memorial

Forest, Tully, USA Support Vector Machine Plot N/A RMSE = 0.13 2010 Airborne [72]

Crown Volume, Crown Bulk
Density, Foliage Biomass Local Sierra de Guadarrama, 50 km to

Madrid North, Spain
K-Mean
Clustering Plot

R2 = 0.800
R2 = 0.920
R2 = 0.840

N/A 2002 Airborne [73]

CHM Median Height Local French Guiana in South America
and Gabon Regression (Ordinary Least Square) Plot R2 = 0.790 RMSE = 14.3 2009–2016 Airborne [74]

Wood Density, Large Canopy
Area Local America Regression (Jackknife) Plot R2 = 0.790 RMSE = 14.3 2009–2016 Airborne [74]

Dominant Height, Mean Height,
Basal Area, Mean Diameter Local 1000 ha, Valer municipality,

Southeast Norway Regression Plot

R2 = 0.74–0.93
R2 = 0.50–0.68
R2 = 0.82–0.95
R2 = 0.39–0.78

SD = 0.61–1.17 m
SD = 0.70–1.33 m
SD = 2.33–2.54 m2/ha
SD =1.37–1.61 cm

1996 Airborne [75]

Basal Area, Wood Density,
Height Metrics N/A Hawaii, Colombia, Madagascar,

Peru, Panama Power Law Model Plot R2 = 0.920 RMSE = 17.1 t/ha N/A Airborne [70]

Crown Base, Height, Crown
Height, Crown Diameter N/A 6 km2, Oslo, Southeastern

Norway
Linear Regression Tree N/A

RMSE = 2.7–3.7 m
RMSE = 0.8–3.3 m
RMSE = 1.1–2.1 m

2003 Airborne [76]

Height Metrics, Gap Fraction Local 670 ha, East coast of Sabah,
Malaysia Power Law Model Plot N/A RMSE = 0.13 2014 Airborne [77]

Volume, Basal Area, Dominant
Height Local Bio Bio Region, Chile

Adaptive Least Absolute Shrinkage
and Selection Operator, Least Square
Regression, Random Forest,
Generalized Additive Modeling
Selection

Plot
R2 = 0.880
R2 = 0.870
R2 = 0.830

N/A 2021 Airborne [45]

Quadratic Mean Height Local
3925 ha, US Forest Service
Sagehen Creek Experimental
Forest, USA

Stepwise Regression Plot R2 = 0.77–0.83 RMSE = 80.8–72.2 t/ha 2005 Airborne [51]

Crown Based Height Local Remningstorp area, Sweden N/A Tree R = 0.840 N/A 2000 Airborne [56]

Centroid Height, Quadratic
Mean Canopy Profile Height Local 33,178 ha, Central Kalimantan,

Indonesia Regression Plot R2 = 0.880 N/A 2007 Airborne [34]
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Table 6. Cont.

Metrics 1 Scale Study Area Modeling Method Analysis
Level Accuracies Error Data

Period
LIDAR
Platform Ref.

Canopy Height Local South America, North America Regression Plot R2 = 0.670 RMSE = 5.9 m 2003–2007 Spaceborne [25]

Canopy Height Local 2777.55 hm2, Zengcheng Forestry
Field, China

Linear Regression, Random Forest Tree R2 = 0.935
R2 = 0.867

RMSE = 8.840
RMSE = 15.04 2019 Airborne [48]

Canopy Cover, Stand Height,
Basal Area Local Canada Random Forest Plot R2 = 0.49–0.61 N/A 2010 Airborne [46]

Mean Canopy Height Local 1500 ha, Barro Colorado Island,
Panama Regression Plot R2 = 0.700 RMSE = 27.6 t/ha 1998–2009 Airborne [27]

Tree Height, Crown Diameter Local Switzerland Robust Regression Tree R2 = 0.200 N/A 2002 Airborne [78]

Canopy Height Local 127 ha, Western Slope of Fuenfria
Valley, Spain Forward Stepwise Regression Plot R2 = 0.65–0.70 N/A N/A Airborne [36]

Canopy Height, Crown Diameter Local USA Linear Regression, Cross-Validation Tree R2 = 0.62–0.63 RMSE = 1.36–1.41 m 1999 Airborne [38]

Individual Tree Height, Stem
Volume, Basal Area Local 11,700 ha, Ichauway,

southwestern Georgia, USA Random Forest, K-Nearest Neighbor Tree N/A
RMSE = 02.96
RMSE = 58.62
RMSE = 08.19

2008 Airborne [43]

Canopy Cover,
Hmax, Hmean, HSD, HCV

Local 10.247 km2, Tianlaochi
Catchment, China

Random Forest, Support Vector
Machine, K-Nearest Neighbor, Back
Propagation, Neural Networks,
Generalized Linear Mixed Model

Plot
R2 = 0.899
R2 = 0.835
R2 = 0.913

RMSE = 14.00 t/ha
RMSE = 22.72 t/ha
RMSE = 13.35 t/ha

2012 Airborne [37]

Tree Diameter, Tree Height,
Crown Diameter Local East Berbice-Corentyne Region,

Guyana
Least-Squares Linear Regression,
Backwards Stepwise Regression Plot R2 = 0.92–0.93

R2 = 0.85–0.89
RMSE = 0.33
RMSE = 0.37–0.44 2017 Terrestrial [30]

Lorey’s Height, Basal Area, Stem
Density, Quadratic Mean
Diameter at Breast Height

Local 630,000 ha, Canada Random Forest Plot N/A

RMSE = 08.50
RMSE = 19.76
RMSE = 13.97
RMSE = 30.82
RMSE = 21.53

2018 Airborne [79]

Canopy Height Metrics,
Canopy Cover Local N/A Multiple Regression (Stepwise) Plot R2 = 0.910 N/A 1995–1996 Spaceborne [15]

N/A Local India Artificial Neural Network (ANN) Plot R2 = 0.980
AIC = 32.00
BIC = 54.90
RSE = 0.007

N/A N/A [80]

1 LIDAR height maximum value (Hmax), LIDAR height mean value (Hmean), LIDAR height standard deviation (HSD), LIDAR height coefficient of variation (HCV), leaf area index (LAI),
Akaike information criterion (AIC), Bayesian information criterion (BIC), residual standard error (RSE).



Forests 2023, 14, 2095 13 of 22

4. Biomass Estimation Methods

Vegetation biomass is usually estimated via destructive and non-destructive methods.
The destructive method is the most direct and accurate way of estimating tree biomass. It
mostly involves harvesting trees in an area, and measuring the weight of various parts [81]
and weighing these components (viz., branches, tree trunk, and leaves) after they have
been oven-dried [82]. Although useful, this approach is costly, labor-intensive, and almost
impossible to apply at the regional or global level.

The non-destructive approaches evaluate forest biomass without tree harvesting. Allo-
metric equations are used to convert the LIDAR measurements of forest height with other
variables into AGB [26]. Since the size of a structure in a particular organism relates to the
amount or size of another structure in the same organism through the concept of allometry,
forest biomass estimated from tree height, age, and diameter could be extended to a broader
area with the same characteristics [83]. Allometric models have been developed for several
forest types around the world to convert LIDAR measurements of forest structures into
forest biomass [70].

4.1. Model Development

The growing interest in the estimation of vegetation biomass and its variation with
respect to time has necessitated the development of LIDAR biomass models. Parametric
and nonparametric approaches for LIDAR biomass model development will be discussed.

4.1.1. Parametric-Based Model

Conventional regression models are employed to estimate AGB by utilizing metrics
derived from LIDAR data with other variables. Since most of the allometric equations used
to determine forest biomass are power models [84], LIDAR metrics and biomass usually
undergo a logarithmic transformation during regression model fitting [85]. For this reason,
the simple power model relates to a simple linear regression whereas the multiplicative
power model relates to a multiple regression model [11] as shown in Table 7. According to
Lu [86], the accuracy of conventional regression models may be low if the number of sample
plots is inadequate or if the linear correlation between variables and biomass is weak.

Table 7. Regression-based model.

Regression Model Description Sample 1 Ref.

Simple Linear Regression Y = a + bX + ε [87]
In(Y) = a0 + bIn(D2H) +ε

Multiple Regression Y = ao + a1 × 1 + a2X2 +. . .. . . + apXp + ε [87]
In(Y) = a0 + a1In(D2H) + a2In(σ) + ε

1 Dependent variable (Y), independent variables (X, X1, Xp), residual error (ε), height (H), diameter at breast
height (D), wood density (σ), regression coefficients to be estimated (a, b, a0, ap).

4.1.2. Nonparametric-Based Model

Nonparametric algorithms construct the model structure based on the input data rather
than predefining it explicitly. Due to their flexibility, nonparametric methods are more
likely to generate intricate, nonlinear biomass models [53]. There are several nonparametric
algorithms; however, this review paper specifically focuses on three of these models, which
are outlined in Table 8 provided below.

We noted in this review that parametric-based models were considered in most re-
search conducted as compared to nonparametric-based models. Among the articles that
provided relevant model details, approximately 67% employed parametric-based mod-
els, while 20% utilized nonparametric-based models. Additionally, 13% of the papers
considered both parametric and nonparametric models. RF emerged as the most used
nonparametric model for forest biomass estimation followed by SVM and K-nearest neigh-
bor (KNN).
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Table 8. Merits and demerits of three nonparametric-based models.

Model Description Merit Demerit Ref.

Artificial neural
networks (ANNs)

ANN imitates the methods used by
the human nervous system to
acquire knowledge and process
information in similar ways. It has
proven to be effective for ecological
applications and data modeling.

The issue of collinearity
does not affect ANN
results. This sets ANN
apart from conventional
statistical methods and is a
significant reason why
ANN is preferable.

In addition, the lack of
transparency about the
internal operations of the
system can make it
challenging to identify and
address potential
overfitting issues.

[88,89]

Random forest (RF)

RF is a set of binary decisions based
on rules that determine the
relationship between an input and
its explanatory variable.

Complicated associations
existing between variables
at different magnitudes can
be depicted accurately by
regression trees.

Overfitting of large noise
data samples is often
encountered.

[11,90]

Support vector
machine (SVM)

In order for SVM to be effective, it
assumes that each group of input
parameters has a unique
relationship with its corresponding
dependent variable and that relating
these predictors to each other is
adequate to find rules that can be
applied to forecast biomass from a
set of inputs.

SVM has demonstrated the
ability to reduce
overfitting, which hinders
a model’s capacity to
effectively characterize
new, unobserved data.

Creating a good model is
challenging when there are
lots of training samples.

[11,91]

5. Biomass Model Assessment

Multiple studies identified in this review paper have demonstrated the use of the
model assessment criteria for the selection of allometric equations as presented in Table 6.
This can be seen in the case of Cao et al. [37] where model assessment criteria were utilized
for the selection of allometric equations for AGB estimation in the northwest part of China.
In their research, various machine learning algorithms were used for the development
of five different models. To select the best model for biomass estimation, coefficient of
determination (R2) and root mean square error (RMSE) assessment criteria were adopted.
Based on the assessment, the random forest algorithm with R2 of 0.899 and RMSE of 14 t/ha
was selected as the best model compared with the others.

To determine the optimal method for computing field biomass in some forested areas
of India, Deb et al. [80] conducted a pilot study that employed SAR data and the Normalized
Difference Vegetation Index (NDVI) to compare conventional linear and nonlinear models
with that of an ANN nonparametric-based model. The study further evaluated the models
using a few reliability measures, including the Bayesian information criterion (BIC), Akaike
information criterion (AIC), residual standard error (RSE), and coefficient of determination
(R2). Based on their results, it was concluded that a power model with BIC of 392.1, AIC
of 280.4, R2 of 0.94, and RSE of 20.9 fitted better than the exponential model with AIC of
294.4, BIC of 398.9, RSE of 26.2, and R2 of 0.90. However, upon comparison with previously
assessed nonlinear models, the ANN model proved to be a much better option for fitting
NDVI data for field-estimated biomass. This was due to substantially lower BIC of 54.9,
AIC of 32.0, and RSE value of 0.007, and a significantly higher R2 value of 0.98.

In describing the use of various models for forest biomass estimation, Sileshi [92]
noted that the choice of a biomass estimation model among a range of possible model
forms may have an impact on regional, national, and global biomass estimations. In this
regard, Dong and Chen [32] argued that the selection of an appropriate allometric model
for the estimation of field-based biomass is critical in the biomass estimation process.
Therefore, this section of the review paper seeks to communicate the various applications
and weaknesses of some selected biomass estimation criteria which are worth knowing.
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5.1. Coefficient of Determination

R2, also known as the multiple correlation coefficient in multiple regression analysis,
is defined as a measure of the variation quantity in the dependent variable explained by
the independent variables added to the biomass model [93]. It is a statistical evaluation of
the closeness of the data distribution to the fitted regression line. As shown in Table 6, R2

appears to be the most widely used model assessment criteria in this literature review with
about 21% of the authors found using R2. For instance, a study carried out by Lau et al. [30]
demonstrated the use of R2 as a model assessment criterion. In their study, allometric
models were developed from several tree attributes obtained from a terrestrial LIDAR
system for the estimation of forest biomass in Guyana. These authors argued that their best
models estimated aboveground biomass accurately with R2 values ranging from 0.92 to
0.93 as compared with traditional pantropical models with R2 values ranging from 0.85
to 0.89.

Even though R2 appears to be the most widely used model assessment criterion, its
weaknesses as outlined in Table 9 cannot be overlooked. By using an untransformed dataset
from analysis undertaken by Henry et al. [94], Sileshi [92] demonstrated the weakness of R2

by sequentially adding polynomial terms of “d” to the fitted models shown below. Notice
how the value of R2 keeps rising after including a polynomial term.

M = −4.93 + 0.20(d) R2 = 0.6070 (2)

M = 0.73 − 0.06(d) + 0.002(d2) R2 = 0.7450 (3)

M = −2.21 + 0.20(d) − 0.002(d2) + 1.47 ×10−5(d3) R2 = 0.7530 (4)

Table 9. Limitations of selected biomass model assessment criteria found in this review.

Criterion Application Weaknesses Ref.

Coefficient of determination
R2 = 1 implies that the variability in the
dependent variable can be explained by
variation in the independent variable.

In comparing the quality of one model to
another, R2 increases automatically when a
polynomial term is added to the model.

[92]

R2 = 0 implies that none of the
variations in the dependent variable
can be explained by variation in the
independent variable.

R2 automatically increases when new
independent variables are added to the model.

[87]

Root mean square error A model with the smallest RMSE value
is mostly preferred.

In comparing the quality of one model to
another, RMSE decreases automatically with
an increase in R2.

[92]

Small values of RMSE are mostly observed in
over-fit models. RMSE is observed to be
ineffective for comparing models with
collinear variables.

Akaike information criterion A model with the smallest AIC is
mostly preferred.

The basic assumption of AIC suggests that all
candidate models are good reflections of reality.
The AIC method does not presume that the
correct model is among the models being
assessed. Therefore, a model can always be
selected out of outrageous ones.

[92]

Cross-validation

Used to estimate the performance of
biomass estimation models via the use
of an independent dataset. It is often
used to curtail overfitting problems.

The greater the number of folds used, the
higher the variance. [92]
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Similarly, Sileshi [92] demonstrated the weakness of R2 by adding a new independent
variable q to the following fitted models. Notice how the value of R2 increased with the
addition of a new independent variable q.

M = −2.04 + 0.28(d) − 0.24(h) R2 = 0.6220 (5)

M = −9.60 + 0.31(d) − 0.32(h) + 14.45(q) R2 = 0.6440 (6)

where “d”, “h”, and “q” are independent variables and “M” is the dependent variable.
The above illustration strongly suggests that the quality of the LIDAR biomass model
assessment may be compromised via the use of R2 alone.

5.2. Root Mean Square Error

This is also known as the residual standard error (RSE) in other literature. RMSE
represent the distance or the gap between the actual result and the target estimate, and is a
preferred performance evaluation measure when conducting regression analysis [48]. We
noted in the review that about 16% of the authors adopted RMSE as a model assessment
criterion. However, the weaknesses of RMSE as stated in Table 9 also suggest that the utility
of RMSE alone as a model selection criterion could compromise the model selection process.

5.3. Information Criterion

The most used biomass model assessment information criteria are the BIC and the
AIC. During biomass model fitting, BIC is seldom used as compared to AIC in most
literature [87]. AIC is a criterion used to evaluate the relative quality of statistical models
that fit a specific dataset. For a given set of models, AIC evaluates each model’s quality in
relation to the other models. Therefore, AIC offers a unique approach to model selection.
This criterion is useful because all superfluous parameters in the model are penalized
explicitly with the addition of 2(p + 1) to the deviance [95]. However, this method does not
presume that the correct model is among the models being assessed. Therefore, a model
can always be selected out of outrageous ones [92].

5.4. Cross-Validation

Flores-Anderson et al. [26] defined cross-validation as a method employed to assess
the consistency of statistical learning by using a separate dataset from the training sample.
There are many ways of using cross-validation methods to assess model performance.
These consist of the Monte Carlo approach, twofold cross-validation technique, leave one
out approach, and k-fold cross-validation technique. In his research, Sileshi [92] described
the K-fold technique as a commonly used approach which can be performed by partitioning
the initial dataset into several folds of equal sample size usually called the K subset while
the model is fitted to the rest of the K-1 subset. In addition, Lu et al. [11] noted that cross-
validation has the advantage of enhancing the accuracy assessment reliability. However,
this approach disregards the independence requirement of the accuracy assessment.

6. Uncertainty Analysis

Uncertainty analysis is a more rigorous method of assessing LIDAR biomass mod-
els. In line with IPCC’s recommendations for national greenhouse gas inventories, all
uncertainty surrounding biomass estimation must be considered in all AGB and carbon
assessments at the national and project levels. The guidelines further stipulate that, in
addressing the issue of uncertainty relating to biomass estimation, the following factors
should be considered: (1) determine and assess the sources of the uncertainty; (2) when-
ever possible, reduce uncertainty using cost-effective techniques; and (3) quantify residual
uncertainties [96].

Several sources of uncertainties can be found in the estimation of AGB. In examining
the available literature on the utilization of allometric equations for AGB estimation, Chave
et al. [97] recognized four categories of uncertainty that could impact forest biomass esti-
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mation. These are errors due to allometric equations selection, errors due to tree parameter
estimation, sampling errors related to sample plot dimensions, and how accurately the
research plots represented the whole environment. It was finally concluded that the main
cause of uncertainty corresponds to the use of allometric equations. Lu et al. [53] also argue
that the identification of the uncertainty sources, uncertainty propagation, and accumula-
tion modeling as well as the quantification of the amount of uncertainty are the key factors
required to minimize the levels of uncertainties in forest biomass estimation.

Multiple studies have found pixel-based uncertainty analysis to be a reliable technique
for assessing the spatial variation of uncertainties. For instance, Chen et al. [98] devised a
technique for assessing the uncertainties of the plot-level forest biomass. The technique
propagates errors from individual trees to plot level by taking into consideration the errors
in the entire biomass estimation process consisting of the tree parameter measurements
on the field, development of allometric models, plot-level biomass estimation, plot level
biomass development, tree-level biomass prediction based on remotely sensed data, feature
extraction from remotely sensed data, and pixel-level forest biomass prediction. When this
approach was applied to analyze tree AGB data obtained from airborne LIDAR imaging of
tropical woods in Ghana, it was discovered that the predicted AGB error rate surpassed
20% at a spatial resolution of 1 hectare, which was higher than that reported in other studies
covering different tropical forests.

In 2016, the uncertainty analysis framework methodology was extended from pixel
level to various areas made up of multiple pixels. This pixel-based uncertainty analysis
methodology was piloted over a forest area of about 69,508 km2 in northern Minnesota for
forest biomass mapping and prediction by combining several data from airborne LIDAR,
in situ measurements, and the national forest inventory (NFI) plots. It was observed that
the predicted AGB error at pixel level was predominately made up of residual error from
the LIDAR-based biomass model at a time when the spatial resolution was close to 380 m
compared to estimate errors for model parameters at a period where the spatial resolution
was rough. It was also discovered that at a spatial resolution of 100 m the relative error
of forest biomass prediction from LIDAR data decreased to about 11% at a hectare scale
across the pilot area that was studied [99].

7. LIDAR Technology for Biomass Studies: Emerging Trends

Different studies found in this review outline emerging trends of LIDAR technology in
biomass studies. In their research, Queinnec et al. [79] analyzed data obtained from boreal
forests in Canada with single photon light detection and ranging (SPL) technology for
the implementation of forest inventory. Structurally guided sampling (SGS) methodology,
random forest machine learning approach, and principal component analysis were used for
the analysis. Their research demonstrated strong evidence that forest inventory could be
developed over a wide forested area for biomass quantification analysis via the application
of SPL technology.

Brown [100] also emphasized the use of a sophisticated airborne LIDAR system
coupled with differential GPS systems, laser pulse finder, and dual-camera digital video
compartment capable of zooming at different angles and distances. This system used for
collecting 3D features on the Earth’s surface in the United States demonstrated capabilities
of capturing tree height, tree crown area, and crown density at an unprecedented rate for
forest biomass studies.

8. Conclusions

Our findings revealed that LIDAR technology has emerged as a leading data collection
tool for aboveground biomass estimation. With various LIDAR platforms and systems
available, the technology can effectively measure vertical forest structures to assist with
aboveground biomass mapping. Most studies found in this review utilized airborne LIDAR
data for plot-level analysis on a local scale and employed parametric-based models over
nonparametric-based ones for forest biomass estimation. The horizontal accuracies of
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the airborne LIDAR data ranging from ±0.1 m to ±0.5 m was generally consistent with
standards set by NGS-58 (NOAA 1997) and FGDC-STD-007. In contrast, most of the
reported vertical accuracies did not meet these same standards. Evidence from this review
also suggests that the mean top canopy height and quadratic mean height are strong
predictors for AGB estimation. R2 and RMSE were the most used model assessment criteria.
However, limitations such as R2 increasing with the addition of polynomial terms or new
independent variables, and RMSE decreasing with rising R2 values were observed. Future
studies should investigate the impact of these limitations on forest biomass estimation. To
enhance LIDAR biomass estimation accuracy, pixel-based uncertainty analysis proved to
be a reliable method for assessing the spatial uncertainties in biomass models for each pixel
in the study area.
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