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Abstract: Norway Spruce (Picea abies (L.) H. Karst.), a timber species of significant economic and
ecological importance in the Northern Hemisphere, faces increasing threats imposed by drought and
bark beetle infestation intensified by ongoing climate change. Despite the extensive mortality within
stands, a small proportion of mature trees remarkably survive during severe bark beetle outbreaks.
Hypothesizing that bark beetle resilience is genetically determined and thus is under natural selection,
we anticipated that there is a genetic variation in genome regions linked to the respective resistance in
surviving trees. In the Bohemian Forest, restricted to the area of the Czech–Austrian–German border,
we identified those resistant individuals, referred to as the “Last Trees Standing” (LTS). Concurrently,
we collected reference samples from randomly selected individuals from natural regeneration within
concerned sites (seedlings, young trees) and in adjacent unaffected stands (mature trees). Genomic
data were generated on a 50K SNPs genotyping array. We conducted a population genetic study
based on the Discriminant Analysis of Principal Components (DAPC) method as well as the Genome-
Wide Association Study (GWAS). We identified 12 markers (SNPs) significantly associated with tree
survival using this approach. Three of those SNPs are located within the genes with the known
function in Arabidopsis thaliana orthologs. After further confirmation, we argue that the identified
SNPs can be instrumental in identifying trees of higher resistance to bark beetle infestation.

Keywords: Picea abies; 50K SNPs genotyping array; Ips typographus; population-genetic structure; GWAS

1. Introduction

The European spruce bark beetle (Ips typographus (L.)) is an adverse species native
to Europe [1] that attacks coniferous trees, primarily Norway spruce (Picea abies (L.) H.
Karst.) [2,3]. It is co-evolutionarily associated with spruce, accompanying the species since
the era of glacial refugia [4]. If the abundance of the bark beetle population is at average
density, the resilience to pest infestations is dependent on elevation, slope, soil moisture
availability, and other soil parameters [5]. In the past, interactions between topographical,
climatic, and edaphic conditions led to rare beetle attacks at certain locations [6]. However,
the accelerated climate change has intensified prolonged droughts and severe windstorms,
resulting in frequent and large-scale bark beetle outbreaks, which have occured repeat-
edly since the 1990s [7]. In Sweden and Finland, extensive bark beetle attacks ensued
after the devastating windstorms of 2005 and 2007 [8,9]. In Central Europe, a notable
outbreak started in 2015 and caused unprecedented damage to the spruce-oriented and
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non-resilient monoculture forest ecosystems [10]. Hence, coniferous forests throughout the
Northern Hemisphere have been subjected to unparalleled tree mortality rates, causing
detrimental ecological, economic, and social consequences [11,12]. In addition to the envi-
ronmental factors mentioned above, intraspecific variation in individual resistance is also
observed [11,13,14]. Intraspecific variations in cell structures, such as tissue thickness or
production of various substances involved in chemical defenses, especially terpenes and
phenolics, might form a variance in tree resistance [15]. For example, phenolic compounds
were posited to act as chemical markers of mature Norway spruce resistance to I. typogra-
phus [16–18]. Following inoculation with Endoconidiophora polonica, a fungus vectored by
I. typographus, resistant spruce clones exhibited an increased catechin content. Conversely,
more susceptible trees displayed elevated isorhapontin content prior to inoculation [17].
Catechin production in response to wounding was shown to be non-linearly and positively
associated with spruce survival during bark beetle I. typographus outbreak [19]. Bioassay
experiments revealed that catechin and taxifolin modify host acceptance by bark beetles,
dampening the tunneling of male and female I. typographus [20]. Trees’ adaptations employ
tactics to fortify tissues with polymers like lignin and suberin to bolster their resistance to
bark beetles’ drilling attempts and digestion of phloem. Plants utilize chemical defense
mechanisms by producing toxic or inhibitory compounds, including various specialized
plant metabolites [21]. Although trees can effectively defend themselves against a finite
number of simultaneous insect invasions, once this threshold is exceeded, a tree’s site-
specific defenses may become insufficient, leading to successful host colonization by the
insect invaders [22]. To our knowledge, there are no records for spruce species, but in
pines, after an intensive bark beetle infestation, a small fraction of trees, constituting ap-
proximately 1%–2% of the total population size, managed to survive [23,24]. We have
termed these trees as the “Last Trees Standing” (LTS) [25], and they generally consist of
robust, mature trees with larger diameters, typically falling into the classification of trees
prone to infestations by bark beetles. [24,26,27]. Understanding the genetic link to bark
beetle resistance is critical for devising effective strategies to identify resistant trees and
enabling forest management actions that alleviate the impact of bark beetle infestations on
forest ecosystems.

Currently, the advent of genomic-based genotyping platforms [28–30] anchored on
the sequenced Norway spruce genome [31], provides ample prospects to delve into various
research questions, such as the genetic determination of drought sensitivity [32,33], wood
formation [34,35], ecotypic determination of the species [36], and various phenology-
related traits [37]. Although several studies addressing resistance to the insect pest have
been conducted [24,38,39], none have focused their research on bark beetles (Scolytinae)
colonizing mature Norway spruce. Utilizing genomic data acquired through a 50K SNP
chip array [30], our study set out to address three fundamental questions: (1) What is the
geographic pattern of genetic structure on a population level? (2) Are there any significant
SNP associations between reference and LTS trees and if positive, (3) is it possible to
annotate significant SNPs to particular genes?

2. Materials and Methods
2.1. Study Sites and Plant Samples

The study was conducted in the Bohemian Forest region, specifically within the moun-
tainous territories bordering the Czech Republic, Austria, and Germany (Figure 1). The
forest ecosystem in this region is characterized by the dominance of Norway spruce, a
species that significantly influences the local forest structure. Many local disturbances
further shape the structural dynamics of these forests [40] and diverse, historically chang-
ing management practices [41], contributing to their ecological complexity. Currently, a
significant portion of the region’s ecosystems belongs to the jurisdictions of two reserves:
the Bavarian Forest National Park in Germany and the Šumava National Park in the
Czech Republic.
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Dreisessel, Germany (48°47′ N 13°48′ E). I. typographus is dominated bark beetle species, 
accompanied by Pityogenes chalcographus (L.) [42]. Out of the initially sampled 400 trees in 
total, the samples of 383 individuals yielded DNA genotyping of sufficient quality and 
were used in the analysis. Resistant trees (LTS) are mature, lone-standing living trees of 
the main canopy layer with a diameter at breast height (DBH) exceeding 35 cm parameters 
and thus belonging to the potential bark beetles� host trees, surrounded by standing dead 
beetle-killed individuals or decaying wood laying on the ground. We have not found any 
signs of bark beetle attack on sampled resistant trees. All standing or windblown neigh-
boring trees with a diameter larger than 35 cm were attacked by bark beetles. Reference 
trees are either mature trees from adjacent unaffected stands or juvenile trees (seedlings) 
from the natural regeneration growing near the identified LTS but not closer than 30 m to 
the latter to avoid sampling highly related individuals (Table 1). If a reference mature tree 
grew at the edge of the intact stand, we ensured that at least one mature living spruce was 
present between the reference tree and the corresponding forest gap, forest edge, wind-
fallen, or bark beetle-attacked tree(s). See [25] for a comprehensive study area description.  

  

Figure 1. The geographical location of targeted Norway spruce individuals. Red: Modrava, blue:
Dreisessel, green: Hraničník, purple: Smrčina. Color shades of the cross signs indicate LTS and
reference trees, respectively.

We sampled LTS and reference trees growing in four localities severely disturbed
by a prolonged ongoing I. typographus outbreak: Modrava, Czechia (48◦59′ N 13◦26′ E),
Smrčina, Czechia (48◦44′ N 13◦56′ E), Hraničník, Czechia (48◦45′ N 13◦55′ E), and Dreisessel,
Germany (48◦47′ N 13◦48′ E). I. typographus is dominated bark beetle species, accompanied
by Pityogenes chalcographus (L.) [42]. Out of the initially sampled 400 trees in total, the
samples of 383 individuals yielded DNA genotyping of sufficient quality and were used
in the analysis. Resistant trees (LTS) are mature, lone-standing living trees of the main
canopy layer with a diameter at breast height (DBH) exceeding 35 cm parameters and thus
belonging to the potential bark beetles’ host trees, surrounded by standing dead beetle-
killed individuals or decaying wood laying on the ground. We have not found any signs
of bark beetle attack on sampled resistant trees. All standing or windblown neighboring
trees with a diameter larger than 35 cm were attacked by bark beetles. Reference trees are
either mature trees from adjacent unaffected stands or juvenile trees (seedlings) from the
natural regeneration growing near the identified LTS but not closer than 30 m to the latter
to avoid sampling highly related individuals (Table 1). If a reference mature tree grew at
the edge of the intact stand, we ensured that at least one mature living spruce was present
between the reference tree and the corresponding forest gap, forest edge, wind-fallen, or
bark beetle-attacked tree(s). See [25] for a comprehensive study area description.

For visualizing the geographical distribution and elevation, we employed the rnat-
uralearth R package (version 0.3.3) [43]. Subsequently, we used the ggplot2 R package
(version 3.4.2) [44] to plot the elevation map with the sampled trees’ coordinates (Figure 1)
using the World Geodetic System 1984 (WGS84).
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Table 1. Individual counts within categories for each study site; centered GPS coordinates of study sites.

Study Site GPS Coordinates Total Number
of Trees LTS Trees Reference Trees

Mature Juvenile

Dreisessel 48◦47′ N 13◦48′ E 92 20 18 54
Hraničník 48◦45′ N 13◦55′ E 56 15 0 41
Modrava 48◦59′ N 13◦26′ E 168 48 33 87
Smrčina 48◦44′ N 13◦56′ E 67 19 48 0

For mature trees, which include all LTS trees and circa 35% of the reference trees,
samples were extracted using a 15 mm diameter hole punch on the trunk. Cutouts were
preserved using silica gel within airtight plastic bags and subsequently stored at a tem-
perature of −80 ◦C until further processed. Conversely, 65% of the individuals from the
reference population were young trees with needles that could be easily reached from the
ground. In these instances, needle samples were collected.

2.2. DNA Extraction and Genotyping

For each sample, roughly 50 mg of tissue from the cambial layer and adjacent wood
layers or 80 mg of needles were cut into small pieces with a scalpel and immediately
frozen in liquid nitrogen. This material was subsequently homogenized for 3 min at
30 Hz using a MM400 mixer mill (Retsch, Haan, Germany). The total genomic DNA was
extracted with the NucleoSpin Plant II (Macherey-Nagel, Düren, Germany) according to the
manufacturer’s instructions. The DNA parameters were quantified employing a NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific, Madison, WI, USA), with a subset of
these measurements further validated through a Qubit assay (Thermo Fisher Scientific,
Madison, WI, USA). The DNA integrity was checked on 0.8% agarose gel. Undiluted
aliquots of 45 µL DNA (mean concentration 127 ng/µL, 260/280 ratio between 1.47 and
1.91) were placed into 96-well PCR plates and shipped under dry ice for analysis to the
Thermo Fisher genomics facility. Data generation and genotype calling was performed on
the 50K SNPchip Axiom array as described by [30]. The raw data were delivered in a CEL
file format.

2.3. Data Analysis

In total, 47,445 SNPs were generated, further filtration was carried out in Axiom
Analysis Suite (Thermo Fisher Scientific, Madison, WI, USA), and 73.3% (34,792 SNPs)
were finally selected to enter the subsequent analysis (filtration parameters: only Poly-
HighResolution, NoMinorHom, MonoHighResolution categories of markers were kept,
DQC: ≥0.82, QC call rate: ≥90, other threshold QC parameters kept by default setting).
Statistical analyses were performed using the R software (version 4.3.0; R Core Team,
2019). The Genome-Wide Association Study (GWAS) was performed using ASReml-R
(version 4.1.0.176). Firstly, we ran the preprocessing step using the function, pre.gwas, the
kinship matrix was calculated via VanRaden method [45]; the minor allele frequency (MAF)
was set >0.005. We targeted the tree status (resistant and reference trees) as the response
variable in our GWAS model. The genotype (individual ID) was considered a random effect,
and the study site was a fixed effect. The function, gwas.asreml, was used to fit the model
using a binomial distribution. Our kinship matrix was given by GWAS_pre$Kinv, and our
population structure matrix by GWAS pre$Q with the first five principal components used.
The significance threshold for the p-value was set at 5 × 10−4. SNPs were divided into
12 linkage groups according to [30]; unassigned SNPs were grouped into category 0.

2.4. The Population–Genetic Structure

The population genetic analysis was performed via Discriminant Analysis of Principal
Components (DAPC). We utilized the functions implemented in the R package adegenet
(version 2.1.10). [46]. We used the optim.a.score()$best function to control the trade-off
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between the power of discrimination and overfitting and to estimate the optimal number
of Principal Components (PCs) retained (n.pca = 47). We utilized Jost’s D as a measure of
genetic differentiation among populations. To quantify Jost’s D, we created genind objects
for each pairwise comparison using the R package adegenet and performed 1000 boot-
strap samples. Each population was resampled according to its size using the function
chao_bootstrap of the MMOD R package (version 1.3.3) [47]. Then, we obtained the ob-
served genetic distance value and its normalized 95% confidence intervals (CI) for each
set of the permuted datasets. CIs were centered on the observed value and corrected with
a standard deviation across the replicates using the function, summarise_bootstrap, in
the MMOD package. We considered the genetic differentiation index to be statistically
significant if the lower bound of the CI was greater than zero.

2.5. Candidate Gene Mining

SNPs that displayed a significant association with survival (p-value < 5 × 10−4) under-
went a further investigation using PlantGenIE web-based platform [48] (accessed on 5 May
2023) and PLAZA 5.0 [49], web-based tools capitalizing on the accessibility of the Norway
spruce genome assembly [31] (accessed on 5 May 2023), and function of orthologous Ara-
bidopsis genes were identified (TAIR, https://www.arabidopsis.org/index.jsp (accessed on
5 May 2023)) when available. Arabidopsis thaliana is an excellent model organism for plant
research due to its small, easily manipulable genome, rapid life cycle, and extensive genetic
resources, making it invaluable for understanding fundamental plant biology. While it
differs from conifers in certain aspects, the insights gained from Arabidopsis research can be
applied to broader plant studies, including conifer species [50].

3. Results
3.1. Population Structure

We inspected the population–genetic structure of all individuals subject to study via
DAPC analysis (Figure 2). Subtle, yet significant differences in genetic composition were
observed among all the study sites compared via Jost’s D (with a lower confidence inter-
val value greater than zero). We did not observe any obvious pattern of geographically
based differentiation among groups of reference trees, except for Smrčina (Table 2c, Sup-
plementary Figure S1). The pattern is also visible on the DAPC chart where discriminant
function 1 (dark purple) has a differentiation power to distinguish Smrčina reference trees
from other groups (Figure 2). There is a noticeable differentiation between sites when com-
paring groups of LTS trees (Table 2b, Supplementary Figure S2), varying from 6.31 × 10−4

(Hraničník versus Dreisessel) to 3.25 × 10−4 (Modrava versus Dreisessel). The variation
between LTS and reference trees on respective plots is low (Jost’s D varying between
6.4 × 10−5 and 2.8 × 10−4), indicating the genetic similarity of individuals sampled within
the same area (Table 2a, Supplementary Figure S3).

Table 2. Jost’s D and its normalized 95% confidence intervals (CI). The shade undercoloring red–
yellow–green indicates increasing Jost’s D coefficient values.

Comparison Site Jost’s D Confidence Interval
Lower Upper

(a) LTS and reference
trees Dreisessel 1.42 × 10−4 0.25 × 10−4 2.58 × 10−4

Hraničník 2.72 × 10−4 1.09 × 10−4 4.35 × 10−4

Modrava 0.64 × 10−4 0.03 × 10−4 1.24 × 10−4

Smrčina 2.80 × 10−4 1.36 × 10−4 4.24 × 10−4

(b) LTS between sites Smrčina ×Modrava 3.37 × 10−4 1.80 × 10−4 4.94 × 10−4

Smrčina × Hraničník 5.10 × 10−4 2.43 × 10−4 7.77 × 10−4

Smrčina × Dreisessel 4.32 × 10−4 2.41 × 10−4 6.24 × 10−4

Modrava × Hraničník 6.62 × 10−4 4.62 × 10−4 8.63 × 10−4

https://www.arabidopsis.org/index.jsp
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Table 2. Cont.

Comparison Site Jost’s D Confidence Interval
Lower Upper

Modrava × Dreisessel 3.25 × 10−4 1.63 × 10−4 4.87 × 10−4

Hraničník × Dreisessel 6.34 × 10−4 3.70 × 10−4 8.99 × 10−4

(c) Reference trees
between sites Smrčina ×Modrava 6.47 × 10−4 5.80 × 10−4 7.14 × 10−4

Smrčina × Hraničník 4.06 × 10−4 3.01 × 10−4 5.11 × 10−4

Smrčina × Dreisessel 5.48 × 10−4 4.72 × 10−4 6.25 × 10−4

Modrava × Hraničník 2.01 × 10−4 1.35 × 10−4 2.67 × 10−4

Modrava × Dreisessel 1.38 × 10−4 0.87 × 10−4 1.89 × 10−4

Hraničník × Dreisessel 1.35 × 10−4 0.42 × 10−4 2.28 × 10−4
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The more structured differentiation of tree categories, after splitting reference trees
based on their age (regeneration versus mature trees, Figure 3), elucidated that the lower
level of Jost’s differentiation is identified mainly among the young grown stage (regenera-
tion). Namely, between Dreissesel and Hraničník (1.7 × 10−4), Dreissesel and Modrava
(1.39 × 10−4), and Hraničník and Modrava (1.96 × 10−4). In contrast, differentiation
between groups of mature trees became more apparent.
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3.2. GWAS Analysis and Gene Identification

Based on GWAS analysis, we identified SNPs significantly associated with the targeted
traits (Figure 4, Table 3), i.e., individual tree survival after terminated bark beetle outbreak
on the stand.
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Unassigned SNPs fall in group 0. The Y-axis shows the negative logarithm of the p-values with the
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Table 3. Categorized information of gene identification such as contig and marker IDs, identified
genes, linkage group (LG), and p-value of SNP marker.

Contig ID Marker ID Gene (Plantgenie.org) Gene (PLAZA) LG p-Value

MA_139355 AX-302167819 --- --- NA 4.15 × 10−4

MA_17088 AX-305072589 MA_17088g0010 PAB00027290 7 2.85 × 10−4

MA_35335 AX-305188807 MA_35335g0010 PAB00038352 5 4.90 × 10−4

MA_466244 AX-306784220 MA_466244g0010 PAB00043107 1 1.72 × 10−5

MA_496531 AX-305623507 MA_496531g0010 PAB00044508 6 4.34 × 10−4

MA_51088 AX-308536830 MA_51088g0010 PAB00045124 7 1.13 × 10−4

MA_538811 AX-306985564 --- --- NA 4.62 × 10−4

MA_539 AX-309072172 --- --- NA 1.29 × 10−4

MA_77097 AX-308569646 MA_77097g0010 PAB00054584 NA 1.16 × 10−4

MA_818649 AX-308742628 MA_818649g0010 PAB00056594 8 2.93 × 10−4

MA_8764366 AX-303041489 --- --- NA 1.38 × 10−4

MA_914090 AX-304622666 --- --- NA 5.76 × 10−5

Out of twelve significant SNPs (p-value < 5× 10−4), we identified three with known func-
tions of their gene orthologs in Arabidopsis thaliana, namely MA_35335g0010 (PAB00038352),
MA_51088g0010 (PAB00045124), and MA_77097g0010 (PAB00054584). The best ortholog
for the gene, MA_35335g0010, is the transcription regulation gene, AT5G13240 (Arabidopsis
thaliana), influencing biological transcription regulation processes from RNA polymerase
III promoter [51]. For the gene, MA_51088g0010 (PAB00045124), the best ortholog has
not been identified, but there exists an orthologous gene family consisting of 84 genes
found in 38 species belonging to Embryophyta [49]. The gene is involved in macromolecule
biosynthetic processes and enables S-adenosylmethionine-dependent methyltransferase
activity [52]. MA_77097g0010 (PAB00054584) and its best ortholog, AT3G06010 (A. thaliana),
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play a vital role in mediating the temporary growth interruption induced by stress percep-
tion [53]. We found no functional information reported in the literature on MA_17088g0010
(PAB00027290), an orphan gene specific to the Spermatophyta family.

4. Discussion
4.1. Population Genetic Structure

Analysis of the population genetic structure based both on DAPC and Jost’s D genetic
distance methods showed a low yet significant level of differentiation among all compared
subgroups (Table 2). The finding is consistent with numerous studies that reported low lev-
els of genetic differentiation among Norway spruce subpopulations, including those based
on microsatellite markers [54–58] and those taking advantage of SNP markers [36,59,60].
Generally, these trends in low levels of genetic differentiation are attributed to a species
characteristic, such as intense gene flow [61,62]. The influence of human-facilitated re-
generation [63] and an artificial species spreading outside the naturally grown area can
also contribute to a substantial genetic similarity across subpopulations [64]. Over the
past centuries, the Bohemian Forest region was subject to deforestation due to human
activities, mainly between the second half of the 19th century and the beginning of the
1950s [41]. In the 20th century, historical logging rates were constrained and subsequently
controlled through conservation efforts [65,66]. According to historical records [67], the
area of Smrčina was identified as autochthonous spruce forest stands. This fact could
explain the most distinct genetic differentiation of mature reference trees from the Smrčina
area compared to other stands that might be affected by some level of human-facilitated
regeneration. Subpopulations formed by juvenile individuals (Figure 3, REF regeneration
groups) showed a lower degree of genetic differentiation among themselves (between
1.39 × 10−4 and 1.96 × 10−4). We presume that the diminished genetic differentiation
is likely a result of a current elevated gene flow between subpopulations due to natural
barrier removal (absence of dense tree canopies) following extensive deforestation after the
bark beetle outbreak. Surprisingly, a low level of genetic similarity between LTS subgroups
across the study sites has been detected. We hypothesized that the effect of significant SNPs
is probably not strong enough to be manifested in the overall genetic makeup represented
by Jost’s D coefficients and DAPC analysis.

4.2. GWAS Analysis and Gene Identification

In our genome-wide association analysis, we deliberately chose not to employ multiple
comparison corrections, such as Bonferroni or False Discovery Rate Control. While these
corrections are commonly applied, their indiscriminate use warrants consideration [68].
It is mainly due to the inherent trade-off between decreasing the probability of Type I
errors and increasing that of Type II errors, potentially leading to the oversight of genuine
differences [69,70]. Applying multiple-comparison correction lowers the threshold for
claiming statistical significance, potentially overlooking subtle yet biologically significant
connections. Moreover, Bonferroni correction treats each test as independent, which can
further exacerbate the bias. However, we consider gene identification an initial selection,
and we assert that the identified positive SNP signals should be further investigated and
validated in subsequent studies.

The gene identified as MA_35335g0010 (PAB00038352) in Norway spruce has been
found to be orthologous to the gene, AT5G13240 (Maf1), in Arabidopsis thaliana. Maf1 is a
highly conserved transcription factor in yeasts, animals, and plants. Specifically, it influ-
ences the regulation of transcription initiated from RNA polymerase III promoters [51].
Thus, via orthology, it is inferred that the gene MA_35335g0010 in Norway spruce might
have a similar regulatory role in transcription processes. Maf1 repressor activity is critical
for plant survival during environmental stresses and is regulated by its phosphoryla-
tion/dephosphorylation through the activity of TOR and PP4/PP2A phosphatases [71].
Plants relieved of Maf1 might be more vulnerable to environmental challenges [72]. Al-
though a significant increase in susceptibility to attacks by bacterial pathogens in sweet
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orange plants was found [73], enhanced vulnerability to biotic (Botrytis cinerea infection)
and abiotic (drought and salinity) factors was not confirmed in A. thaliana.

We have identified the gene MA_51088g0010 as part of an orthologous gene family that
significantly modulates methyltransferase activity. Despite the limited scope of the scientific
literature specifically addressing trees, DNA methylation’s role has been recognized as
crucial in plant stress responses, potentially impacting plant stress resilience [74,75]. Plants
exhibit differential genome-wide or loci-specific DNA methylation patterns in response
to adverse biotic [76–79] and abiotic conditions [80–83]. Methylation is involved in the
selective activation of genes associated with defense reactions. In Arabidopsis, stress-induced
epigenetic responses were shown to be heritable but disappearing in progeny during several
generations without persisting external pressures [76–78].

In Arabidopsis thaliana, we identified AT3G06010 as the best ortholog of the Norway
spruce gene, MA_77097g0010 (PAB00054584). There is strong evidence [53] that the action
of this gene plays a vital role in mediating the growth response of plants in unfavorable
environmental conditions, allowing flexible growth modulation in resource-limited en-
vironments. During drought or heat waves, the expression of this gene leads to growth
interruption of normally active primary buds and suppression of stem growth. Growth
inhibition facilitates survival, enabling plants to mobilize accumulated energy pools and
reallocate scarce incoming resources from primary to secondary physiological processes to
counteract stress [79].

Previous studies have shown that pine and spruce tree resistance to bark beetles is
related to the periodic fluctuations in radial growth rates [22]. The existing evidence on
growth rates preceding bark-beetle-induced tree mortality is controversial, with studies
reporting faster [80,81], slower [6,38,39], or both faster and slower [82–84] growth rates in
surviving coniferous trees. We argue that the divergence in the results found in the literature
is attributable to the variation in climatic and local stand and environmental conditions,
as well as to tree-level parameters, e.g., the age and size, of the studied individuals. The
differentiation in growth rates before bark beetle disturbance agrees with the plant vigor
hypothesis [85–87] in the bark beetle preference for slower-growing trees. The plant
vigor/plant stress hypothesis contends that physiologically stressed, slower-growing plants
are more susceptible to pathogens and pest insects. Concurrently, the evidence for the
survival of slower-growing trees is supported by the life history trade-offs hypothesis [88],
postulating that plants can reallocate available limited resources from primary to secondary
metabolic functions during their lifespans to tolerate the effects of various biotic and abiotic
stress agents. Quick development to reach the upper canopy is crucial during vulnerable
early stages, reducing exposure to risks and aiding in monopolizing limited resources [89].
However, rapid growth might compromise defense against herbivores [88], potentially
altering selection trends over time [90]. Despite the controversies in the evidence and the
respective theoretical underpinnings, the association between tree growth rates, defense
capacity, and bark beetle host selection choices seems to exist. Further investigation is
required to provide insights into the genetic factors influencing the mechanisms of spruce
resistance to bark beetles.

4.3. Tree Survival—Last Trees Standing

The presence of surviving trees, classified as Last Trees Standing (LTS) can be attributed
to various factors, encompassing both chance occurrences and distinct influences of local
environments. Random persistence through stochastic processes, such as evading insect
attacks based on fluctuating beetle population levels, may account for some survival
instances [39]. However, for Norway spruce in identical areas to that of our study, it has
been shown that tree survival is a non-random process governed by multiple internal and
external factors and their complex interactions [25]. External factors, such as environmental
conditions (temperature, water availability, sun exposure, etc.) and stand characteristics
(stand density and structure, proximity to a previous bark beetle attack, etc.), were reported
to be associated with tree survival [26,91,92]. The effects of external premises can be
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modified through their interactions with internal factors playing a crucial role in tree
survival. Trees possess induced chemical defenses, such as enhanced synthesis of phenolic
and terpene compounds in response to bark beetle boring attempts, wounding, Methyl
jasmonate or fungal inoculations [17,19,27,93,94], that may be under genetic control [15,19].
Several studies have claimed that conifer resistance to bark beetles is genetically determined,
as certain trees exhibit enhanced survivorship due to their unique genetic makeup [24,38,39].
Apart from the influence of the factors mentioned above, identifying SNPs with a lower
degree of ambiguity may be a consequence of the genetic architecture of the trait of interest,
particularly its polymorphic nature, where only a few genes with an effect on tree survival
were identified.

5. Conclusions

Our research utilizing Genome-Wide Association Studies (GWAS) has identified sev-
eral SNPs potentially related to the Norway spruce resistance to bark beetle infestation.
These SNPs should remain at the forefront of interest, and if verified in other LTS stud-
ies in different geographical areas, they can potentially serve as markers for bark beetle
resistance. Their assessment can be applied in breeding programs (selective breeding of
individuals of a higher resistance), forest management (identifying areas with a higher
likelihood of bark beetle infestations), and monitoring (screening of individual trees for
bark beetle susceptibility). Additionally, these genetic markers may have implications
for conserving genetic diversity in Norway spruce populations and their adaptation to
changing environmental conditions.

Identifying these SNPs in orthologous genes between Norway spruce and Arabidopsis
suggests a potential similarity in their regulatory roles in transcription processes. Overall,
these findings have pointed out the intricate regulatory mechanisms that might be con-
nected to self-defense against bark beetle attacks. Namely, the Arabidopsis ortholog of the
gene, MA_77097g0010, plays a vital role in mediating the growth response of plants in
unfavorable environmental conditions and thus implies its biological importance in bark
beetle resistance. Nevertheless, the research question remains complex and warrants fur-
ther exploration. It is plausible that specific volatile organic compounds (VOCs), including
terpenes and phenolics, serve as important determinants of individual resistance. Factors
such as tree stand composition, sunlight exposure, climatic conditions, topography, and
intricate interactions within the forest ecosystem influence this dynamic. It is essential to
emphasize that the applied genotyping platform does not allow the detection of epigenetic
variance that may significantly impact the identified markers. Future advancements in
genome sequencing will promote assessments of DNA methylation status, and epigenotyp-
ing will become an effective decision-making tool in forest breeding programs. Thus, while
our current research has contributed to revealing the genetic basis of bark beetle resistance
and elucidated the population-genetic structure of targeted forest stands, it represents just
a fragment of the complex and intricate puzzle.
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66. Čada, V.; Morrissey, R.C.; Michalová, Z.; Bače, R.; Janda, P.; Svoboda, M. Frequent Severe Natural Disturbances and Non-
Equilibrium Landscape Dynamics Shaped the Mountain Spruce Forest in Central Europe. For. Ecol. Manag. 2016, 363, 169–178.
[CrossRef]
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