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Abstract: Castanea mollissima is an important monoecious fruit crop with high economic and ecological
value in China. However, its yield is restricted by an imbalanced ratio of male and female flowers for
chestnut production. To address this issue, we examined the morphology of bisexual flower organs,
measured the levels of endogenous hormones in the flowers, profiled gene expression related to plant
hormone biosynthesis and signaling pathways and transcription factors, and investigated the effects
of exogenous jasmonic acid (JA) and zeatin (ZT) hormone application on flower development in
C. mollissima ‘Tanqiao’. Morphological studies indicated that the development of male and female
flowers can be divided into nine and eight stages, respectively. Male flowers contained higher levels
of gibberellic acid (GA3) and abscisic acid (ABA) than female flowers, whereas female flowers had
higher levels of JA and ZT. The analysis of the Kyoto encyclopedia of genes and genomes (KEGG)
pathways revealed that the major significant enrichment pathways of differentially expressed genes
(DEGs) consisted of plant hormone signal transduction and zeatin biosynthesis. Through time-series
analyses, we screened 3 genes related to jasmonic acid biosynthesis and signal transduction and
21 genes related to zeatin biosynthesis and transduction. Among these genes, only the gene family
LOG, related to zeatin biosynthesis, was highly expressed in female flowers. This result indicated
that LOG may be the core gene hormone family involved in regulating female flower development.
However, a weighted gene co-expression network analysis (WGCNA) suggested that IDD7 was the
core gene involved in regulating female flower development. The results of exogenous hormone
application indicated that zeatin could greatly increase the quantity of fertile female flowers, but JA
was not significant. These findings demonstrated that zeatin and transcription factors were crucial
regulators in the formation of female flowers in C. mollissima.

Keywords: Castanea mollissima; floral morphology; phytohormone; RAN-seq; flower differentiation

1. Introduction

Flower differentiation is an essential period that directly impacts the number and
quality of flowers, even influencing yield [1]. Hormones have a key function in flow-
ering regulation [2]. The contents of abscisic acid (ABA), gibberellic acid (GA3), and
trans-Zeatin-riboside (ZR) in the buds of Lycium ruthenicum Murr. increased considerably
during flower differentiation [3]. The levels of auxin (IAA) and ZR in female flowers are
consistently higher than those in male flowers during flower differentiation in Eucommia
ulmoides Oliv. [4]. Synergistic and antagonistic interactions have been observed among
many hormones. Also, the induction of the flower differentiation in apple was connected
to intricate hormone regulatory networks implicated in the cytokinin (CK), ABA, and
GA3 pathways [2]. Studies have shown that flower-differentiation signals may be medi-
ated by hormone regulation [5–10]. For instance, the JMSAUR gene related to salicylic
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acid was the core gene in regulating the sexual differentiation of flower buds in Juglans
mandshurica [6]. In loquat, TFL1, AP1, and FT could respond to GA3 signals to regulate
flower differentiation [7]. In addition, exogenous phytohormones could affect flower
differentiation. MdGA20ox was significantly inhibited by high levels of GA3 in apple buds,
reducing the flowering rate of apples [8]. The injection of the plant growth regulator Ethrel
into a male sterile tree of Diospyros kaki Thunb. resulted in a feminizing effect [9]. If the
level of the exogenous phytohormone reached a relatively high level, such as 640 mg/L of
6-Benzylaminopurine (6-BA), the phytohormone transformed the male inflorescences of
Vernicia fordii into female inflorescences [10].

In addition, transcription factors (TFs) are also essential regulators associated with
flower differentiation. In Rafflesia cantleyi, the expression of MYB, WRKY, EriF, and bHLH
was expressed differentially and significantly during three different floral bud stages, at
a higher level than flower differentiation [11]. Citrus flower differentiation was negatively
regulated by HD-ZIP I Transcription Factor PtHB13 when it was binding to the promoter of
the flowering locus [12]. Recently, research has shown that TFs did not directly determine
the beginning of flower differentiation in woody plants, instead determining the dynamic
balance of various factors that regulated flower differentiation. A study showed that MYC,
FT, SOC1, and LFY co-regulated flowering differentiation with endogenous hormones
in Camellia sinensis [13]. Plant-hormone-related genes and some TFs co-expressed with
PpTFL1 in Pyrus pyrifolia Nakai were perhaps implicated in the PpTFL1-mediated floral
induction [14]. GA3 and ABA signals could inhibit flower differentiation by inversely regu-
lating the expression of MADS-box gene in gloxinia [15]. In addition, the overexpression of
GHMYB24 in Arabidopsis thaliana could result in male sterility. The yeast two-hybrid showed
that GHMYB24 could interact with GHJAZ1/2 to affect the jasmonic acid pathway and
affect stamen development [16]. TFs and hormones may co-regulate flower-differentiation
processes in plants.

Castanea is widely cultivated in the northern hemisphere in Asia, Europe, and
Africa. Castanea is mainly planted in Hebei, Shandong, and Hubei provinces in China,
which is one of the major producing countries, with a total planting area of over one
million acres [17]. Castanea is rich in nutrients with edible nuts and timber value [18,19].
As a monoecious tree, the yield is not stable due to an imbalance in the ratio of male
and female flowers. Thus, understanding the mechanism of flower differentiation
was critical for enhancing the number of female flowers. Recently, Zhang et al. [20]
identified five FT/TFL1-like genes in the chestnut genome and speculated that FT was
the major gene involved in the morphogenesis of male and female flowers. This finding
was verified by Cheng et al. [21], who observed that the overexpression of CmFT can
promote flowering in Arabidopsis. In addition, phytohormones are also involved in
C. mollissima flower differentiation. Cheng et al. [22] found that JAZ1–3 in combination
with MYC2–1 suppressed the transcription of CmFT, whereas MYC2–1 alone could
enhance the expression of FT. Although some scholars have reported the mechanisms
involved in the development of catkins in chestnut, this mechanism is still not clear.
Therefore, to better understand the flowering mechanism in Castanea, we observed the
morphological changes and measured the levels of six hormones in male and female
flowers at various development stages. We quantified the effects of exogenous ZT and
JA applications on flower differentiation. We also analyzed key phytohormone genes
using RNA-Seq and RT-qPCR.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

Catkins of C. mollissima ‘Tanqiao’ were collected from the second and higher bear-
ing branches from April to late May between 2019 and 2021 at the Changsha chestnut
germplasm resources garden (29◦2′5′′ N, 110◦14′18′′ E) in Changsha City, Hunan Province,
China [23]. The mixed catkins were harvested from eight-year-old C. mollissima ‘Tanqiao’.
We selected six stages with differences in appearance of the mixed catkins collected, with
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the first two stages named B0 and B1. For the last four stages, the male and female flowers
had differentiated on the mixed catkins, so we separated the male flowers from the upper
end of the mixed catkins and named them M1, M2, M3, and M4. The female flowers
were separated from the lower end of the mixed catkins and were named F1, F2, F3, and
F4 (Figure 1). Parts of the collected catkin samples were used for cytological observa-
tions. The other samples were placed in liquid nitrogen and then kept at −80 °C for the
determination of endogenous hormone content and RNA extraction.
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Figure 1. Morphological characteristics of the mixed catkins we selected in six different stages.
The male flowers differentiate at the upper end of the white straight line, and the female flowers
differentiate at the lower end.

2.2. Preparation for Paraffin Section

Different phases of male and female flowers were kept in Carnoy’s fixative (95% ethanol:
acetic acid, 3:1) for approximately 24 h. Samples were dehydrated via successive con-
centrations of ethanol and xylene and embedded in paraffin (melting point 58~60 °C).
Tissues were cut into 6~8 µm slices using a microtome (Leica RM2265., Wetzlar, Germany).
Finally, the slices were stained using hematoxylin–eosin or safranine O-fast green. These
specimens were observed and photographed under an Olympus microscope [24] (Leica
DMi8., Wetzlar, Germany).

2.3. Detection of Endogenous Hormones

The mixed catkins from stage B0–B1, the female flowers from F1–F4, and the male
flowers from M1–M4 were preserved at −80 ◦C inliquid nitrogen. These frozen sam-
ples were ground to a fine powder. The levels of endogenous hormones ABA, IAA,
GA3, jasmonic acid (JA), zeatin (ZT), and brassinosteroid (BR) were extracted with
80% (v/v) methanol and detected using high-performance liquid chromatography [25].
Eluted fractions were evaporated, reconstituted with 1 mL 20% (v/v) methanol, and
injected into a liquid chromatography–electrospray ionization–tandem mass spectrome-
try apparatus (6410; Agilent, Santa Clara, CA, USA). The standard liquor was diluted
to 0.1, 10, 25, 50 and 100 ng/mL standard solution and passed through a 0.45 µm or-
ganic filter membrane to draw a standard curve. All measurements were conducted in
three biological replicates.
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2.4. Spray Verification in the Field

The effects of ZT and JA on the flowering of C. mollissima were verified using a completely
randomized design. Specific amounts of ZT (5 mg·L−1, 20 mg·L−1) and JA (10 mg·L−1,
50 mg·L−1) (Solarbio, Beijing, China) were dissolved in 5 mL glacial acetic acid and 5 mL
methanol, respectively, for hormone stock. Sixty trees were sprayed three times starting
in late March at one-week intervals between sprays. The number of female flowers, male
flowers, and mixed catkins; the length of mixed catkins and fruiting branches; and the
diameter of fruiting branches were measured at the flowering stage.

2.5. RNA Extraction, Sequencing, Quality Control and Functional Annotations

Total RNA was extracted from ten samples with three biological replicates. The mRNA
was extracted through oligo (dT) beads, fragmented, and reverse-transcribed to the first-
strand cDNA using random hexamers. The Illumina HiSeq 6000 sequencing platform
(Illumina, San Diego, CA, USA) by Majorbio (Shanghai, China) was used to sequence the
cDNA library. Reads were assembled using Trinity, and assembly integrity was further
assessed using BUSCO4.1.4. HISAT2.2.1 was used to align clean reads to the chestnut
reference genome [26]. All unigenes were aligned to four protein databases, namely Swiss
Prot (UniprotKB) [27], Nr (NCBI Non-Redundant Protein Sequences) [28], KEGG (KEGG
Ortho Database) [29], and COG (Clusters of Orthologous Groups) [30].

2.6. Analysis of Transcriptomic Data

For each sample, expression levels were estimated as fragments per kilobase of transcripts
per million mapped reads (FPKM). DESeq was used to identify DEGs among two samples via
FDR < 0.05 and absolute log2 (fold-change) ≥ 1 as the limit [31]. The newly acquired DEGs
were further annotated with KEGG pathway analysis. Gene co-expression from network
analysis was constructed using the WGCNA algorithm [32] by clustering the differential
expression of the same or similar genes, and time-series analysis was based on STEM [33]. The
significant trend p-value was set to 0.05, and the number of time-series patterns was set to 24.

2.7. Verification of Transcriptome Data Using RT-qPCR

In order to validate that the RNA-sequencing data were reliable, 6 candidate genes
were randomly chosen, and the expression of the DEGs in ten samples was confirmed using
RT-qPCR with three biological replicates. Gene expression was calculated using the 2−∆∆Ct

method [34], and ACTIN was used as the reference gene [22]. The primers for selected
genes were designed by Primer (version 5.0) software. Table 1 presents a list of each gene’s
primer sequence.

Table 1. List of primers sequence of selected genes.

Gene Name Forward Primer (5′–3′) Reverse Primer (5′–3′)

AGL2 GTCTGAAGCGCATACGAACA GTGTGCTTGCTCAGGAATGT
DPOD4 TGCGGAAATTCGACATGAAC GATTTCTTCAGGCGGGTTCA
RNS3 AAGAGGCCGTTAGTTTCACCC AAGCACATCTGCCCTTTGGA
SOC1 CCGTCGGCATACAAAAGACAC CTCCCAGGAGTCTCCGTTTT
TM6 TAGCCCCTCCATCATAACGACAA CAGACCGTTCAGATCCTCAC

MADS9 GGTAAGAGGTTGTGGGATGC TCGGATACTTGAGAGCCCAT
ACTIN ATTCACGAGACCACCTACA TGCCACAACCTTAATCTTCAT

2.8. Statistical Analysis

Microsoft Excel 2022 was used to calculate the raw data of hormones and RT-qPCR.
SPSS 24.0 was performed for one-way ANOVA, including a post hoc test (Duncan test,
p < 0.05). Origin 2019 was used for plotting, and the heatmap of expression analysis was
processed using TB-tools 1.109.
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3. Results
3.1. Morphological Changes during the Differentiation of Female and Male Flowers in Castanea
mollissima ‘Tanqiao’

The differentiation of mixed catkins started in mid-April and ended in late May,
which lasted about 45 days. We divided female flower differentiation into eight stages
for C. mollissima ‘Tanqiao’ (Figure 2). The bract primordium formed at the base of the
mixed catkin (Figure 2A). As the mixed catkin elongated, the lowest 1–2 bracts differ-
entiated into a female flower cluster primordium during B0 (Figure 2B). Two semilunar
protuberances, called sepal primordia, were formed at both ends of the apex of the flower
cluster (Figure 2C) and gradually surrounded the top of the flower cluster and formed
a hemispherical protuberance on its inner side during B1, called the stamen primordium
(Figure 2D); this part continued to differentiate into a new round of conical protuberances,
and the pistil primordium formed during F1 (Figure 2E). The pistil primordium rapidly
elongated and widened, and the style and stigma appeared during F2 (Figure 2F,G). At
flowering stage F3, the angle between style and stigma was 45◦ (Figure 2H), while three
ovary cavities formed at the base in F4 (Figure 2I).
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Figure 2. Morphological and cytological observation of the differentiation process of female flowers
in Castanea mollissima. (A) Flower-cluster-bract-primordium-differentiation stage; (B) flowe-cluster-
primordium-differentiation stage (B0); (C) sepal-primordium-differentiation stage; (D) stamen-
primordium-differentiation stage (B1); (E) pistil-primordium-differentiation stage (F1); (F,G) pistil-
development stage (F2); (H) flowering stage (F3); (I) ovary-formation stage (F4). An: anther; Fb:
flower cluster bract primordium; Fc: flower cluster primordium; SE: sepal primordium; SP: stamen
primordium; PP: pistil primordium; St: stigma. (C,D) are stained with Safranine O-fast green, and
others are stained with hematoxylin-eosin.



Forests 2023, 14, 2057 6 of 20

Compared to the eight stages for a female flower, the male flower was divided into
nine stages (Figure 3). Unlike female flowers, after a stamen primordium differentiated
into a pistil primordium in M1 (Figure 3E), the pistil primordium developed slowly and
gradually degenerated or even disappeared after the formation of the pistil and stamen
primordia (Figure 3F). The base of the stamen primordium elongated to form filaments;
the top expanded into meristems and then scattered young anthers during M2 (Figure 3G).
The anthers gradually matured with two pollen sacs inside during M3 (Figure 3H). Finally,
the male flower opened and the pollen was released in M4 (Figure 3I).
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Figure 3. Morphological and cytological characterization of the differentiation process of male
flowers in Castanea mollissima. (A) Flower-cluster-bract-primordium-differentiation stage; (B) flower-
cluster-primordium-differentiation stage (B0); (C) sepal-primordium-differentiation stage; (D) stamen-
primordium-differentiation stage; (E) pistil-primordium-differentiation stage (M1); (F) stamen-elongation
stage; (G) anther-formation stage (M2); (H) anther-development stage (M3); (I) flowering stage (M4).
Figure 3I is stained with Safranine O-fast green, and the others are stained with hematoxylin-eosin.

3.2. Dynamics of Endogenous Hormones during Female and Male Flower Differentiation in
Castanea mollissima ‘Tanqiao’

Of the six endogenous hormones examined, GA3 levels were highest at four stages in
male flowers, exhibiting a trend of a sharp increase starting at M1 and reaching the highest
level at M4 (Figure 4A). As the male flowers developed, ABA was notably higher than
those in female flowers and reached a peak of 1216.56 ng/g in the M3 stage (Figure 4B).

In contrast, the levels of JA and ZT in female flowers were higher than those in male
flowers during F1 to F4. Both ZT and JA showed a decreasing trend from B0 to B1 and in
F1, but an increasing trend in F3 (Figure 4D,E). The level of IAA showed an M-type trend in
both male and female flowers (Figure 4C); however, the level of BR showed no significant
differences (Figure 4F).
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Figure 4. Dynamic changes in eight endogenous hormones during the Castanea mollissima ‘Tanqiao’
flower-differentiation process. (A) The levels of gibberellic acid (GA3) during the flower-differentiation
process of C. mollissima; (B) the levels of abscisic acid (ABA) during the flower-differentiation process
of C. mollissima; (C) the levels of auxin (IAA) during the flower-differentiation process of C. mollissima;
(D) the levels of zeatin (ZT) during the flower-differentiation process of C. mollissima; (E) the levels of
Jasmonate (JA) during the flower-differentiation process of C. mollissima; (F) the levels of brassinosteroid
(BR) during the flower-differentiation process of C. mollissima; F: Female flower; M: Male flower. Standard
deviation is symbolized by the error bars. Different letters represent significant difference at p < 0.05, n = 3.

3.3. Spray Verification in the Field

Compared with the control, ZT treatments greatly increased the quantity of mixed
catkins and female flowers, but the effect on the fruiting branches was not significant
(Figure 5). The best treatment in ZT was 20 mg/L, which significantly increased the
quantity of female flowers by 2.53 per single fruit branch compared with the control.
However, JA had no significant effect on either sex differentiation or the growth of fruit-
bearing shoots (Table 2). This result suggests that ZT exhibited an important regulatory
function during the differentiation of female flowers in C. mollissima.

Table 2. Effects of JA and ZT on flower sex differentiation and the growth of fruit-bearing shoots of
Castanea mollissima.

Hormone Type Fruit Branch

Type Concentration
(mg/L)

The Number of
Female Flowers

on Each Fruit
Branch/per

Male
Catkin/Strip

Mixed
Catkin/Strip

The Length of
Mixed Catkin
on Each Fruit

Branch/cm

The Length
of Fruit

Branch/cm

The
Diameter
of Fruit

Branch/cm

JA
CK 8.65 ± 2.12 a 8.90 ± 3.18 a 4.46 ± 0.99 a 5.14 ± 1.38 a 21.77 ± 5.82 a 4.15 ± 0.66 a

10 7.88 ± 2.40 a 8.53 ± 2.58 a 4.00 ± 1.18 ab 4.45 ± 1.33 b 20.79 ± 4.18 a 4.14 ± 0.61 a

50 7.63 ± 2.00 a 9.43 ± 3.27 a 3.78 ± 0.97 b 5.01 ± 1.48 a 22.10 ± 4.55 a 4.22 ± 0.63 a

ZT
CK 7.71 ± 1.70 c 6.85 ± 2.48 a 3.94 ± 0.89 b 5.87 ± 1.69 a 25.11 ± 6.77 a 4.03 ± 0.68 a

5 9.10 ± 1.97 b 6.20 ± 3.21 a 4.48 ± 1.06 a 5.23 ± 2.10 ab 25.76 ± 8.02 a 3.78 ± 0.62 a

20 10.24 ± 2.71 a 7.20 ± 2.48 a 4.89 ± 1.22 a 5.05 ± 1.78 b 24.84 ± 5.75 a 3.82 ± 0.48 a

Data are expressed as mean ± standard deviation, ±means plus or minus; different letters in the same column
indicate significant differences at a 0.05 level, while the same letter indicates no significant difference.
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Figure 5. The mixed catkin of Castanea mollissima under different treatments. (A,D) represent the
control treatment of jasmonic acid and zeatin, respectively; (B,C) represent the application of 10 mg
and 50 mg jasmonic acid, respectively; (E,F) represent the application of 5 mg and 20 mg zeatin,
respectively; CK means the control group of treatment with pure water. The axillary female flowers
are circled with red circles.

3.4. Basic Data of Transcriptome Sequencing

After filtering the raw data, each sample’s high-quality clean readings reached more
than 98%. The percentage of Q20 base and Q30 base was greater than 96% and 92%,
respectively. The percentage of GC ranged from 42.21% to 45.37%. These reference data
suggest that the sequencing results were trustworthy (Table S1). The reference sequence for
comparison was the chestnut genome [35], and the results of the comparison are presented
in Table S2.

We annotated All-Unigene in the six databases: the Gene Ontology (GO) database,
the KEGG protein database (KEGG), the Clusters of orthologous groups (COG) database,
NCBI’s Non-redundant protein database (NR), the Swiss Prot protein database (Swiss
Prot), and the Pfam protein families database (Pfam). A total of 34,053 Unigene sequences
were annotated. The NR database had the most annotations, accounting for 94.96% of
the whole, while the KEGG database contained the fewest annotations, accounting for
37.50% (Table 3).

Table 3. The statistical results of functional annotations in Castanea mollissima ‘Tanqiao’.

Database Number of
Annotated Genes

Percentage of Annotated
Genes (%)

Percentage of
All-Unigene (%)

GO 22,244 63 61.91
KEGG 13,474 38.03 37.50
COG 27,346 77.55 76.11
NR 34,117 94.77 94.96

Swiss Prot 24,861 70.52 69.20
Pfam 25,265 71.84 70.32
Total 34,053
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3.5. Differentially Expressed Genes during Female and Male Flower Differentiation

A total of 20,510 differentially expressed genes were found during mixed catkin
differentiation, of which 10,302 were upregulated and 10,208 were downregulated. In M4 vs.
F4, the most DEGs were discovered, with 2264 upregulated genes and 2950 downregulated
genes, respectively, while F1 vs. F2 generated the fewest DEGs (Figure 6A,B). The number
of timepoint-specific DEGs in male flowers ranged from 310 (M1 vs. M2) to 3038 (M3
vs. M4), while in female flowers, the number ranged from 77 (F1 vs. F2) to 1868 (B0 vs.
B1). Furthermore, throughout the five comparisons, 55 and 6 genes exhibited substantially
distinct expression in male and female flowers, respectively (Figure 6C,D).
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Figure 6. (A) The number of differentially expressed genes (DEGs) in different comparisons. Up−
and down−regulated DEGs are shown in the orange and blue columns, respectively. (B) The PCA
analysis of all groups; (C) Venn diagrams of DEGs in male flowers; (D) Venn diagrams of DEGs in
female flowers.

3.6. Analysis of KEGG Pathway of DEGs

The DEGs in male flowers were mapped to 1, 9, and 13 KEGG pathways that were
significantly enriched in M1 vs. M2, M2 vs. M3, and M3 vs. M4, respectively. The most
common enriched pathways in male flowers were phenylpropanoid biosynthesis, plant
hormone signal transduction, and flavonoid biosynthesis (Figure 7A). In comparison with
male flowers, the DEGs in female flowers were mapped to 13, 12, and 10 KEGG pathways
that were significantly enriched in F1 vs. F2, F2 vs. F3, and F3 vs. F4, respectively. Within
these important pathways, starch and sucrose metabolism occurred in all comparisons,
while zeatin biosynthesis, ABC transporters, phenylpropanoid biosynthesis, and protein
processing in the endoplasmic reticulum occurred in two comparisons. Furthermore, the
MAPK signaling pathway-plant was highly enriched in F3 vs. F4 (Figure 7B).
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Figure 7. (A) The significant KEGG enrichment pathway of DEGs in male flowers at different
developmental stages. (B) The significant KEGG enrichment pathway of DEGs in female flowers at
different developmental stages. The area of the bubbles represents the quantity of enriched DEGs,
while the color of the bubbles symbolizes the p-adjust and p-value shown in the panel to the right.

3.7. WGCNA Analysis

To reveal the key genes associated with the development of female flowers, we ran the
RWGCNA package on all 30 samples. A soft-threshold power of eighteen was inserted into
the network topology to uncover the network’s scale independence and mean connectedness
(Figure 8A,B).

The dynamic shear method was used to divide the modules, and a total of 13,574 genes
were clustered into 22 modules with a similarity greater than 75%. The turquoise module
contained the largest number of genes at 3850, while the dark module had the smallest
number at 45. Using an absolute value of Pearson correlation coefficient >0.7 and p < 0.05
as the screening condition, three modules specifically related to female flower development
were identified. The pink module (R = 0.775) was positively correlated with female flower
development (Figure 8C,D). Thus, we mapped the gene co-expression network of the pink
module; among these 10 genes (Table 4), the transcription factor IDD7 may be the key gene
during the female flower differentiation of C. mollissima ‘Tanqiao’ (Figure 8E).
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transcription factors, the expression levels of bHLH52, AHL23, ERF084, and VRN1 were 
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Figure 8. (A) Fitting index R2 of the scale-free network corresponding to different soft thresholds;
(B) the average connectivity corresponding to different soft thresholds; (C) the module gene number
distribution; and (D) correlation heat map between modules and traits. The data outside the brackets
and the data inside the brackets represent the correlation coefficient and p-value among modules and
traits, respectively. (E) Core gene co-expression network.

Table 4. Functional annotations of hub genes in the pink module.

Gene ID Gene Name Functional Annotation

gene-CMV_002842 IDD7 Protein indeterminate-domain 7
gene-CMV_007156 BBX19 B-box zinc finger protein 19
gene-CMV_009221 APC1 Anaphase-promoting complex subunit 1
gene-CMV_015433 EF1G3 Elongation factor 1-gamma 3
gene-CMV_020812 ARATH Pentatricopeptide repeat-containing protein
gene-CMV_023061 DIRL1 Putative lipid-transfer protein DIR1
gene-CMV_024365 ACD6 Protein ACCELERATED CELL DEATH 6
gene-CMV_024461 NAKR1 Protein SODIUM POTASSIUM ROOT DEFECTIVE 1
gene-CMV_025624 UFOG5 Anthocyanidin 3-O-glucosyltransferase 5
gene-CMV_029222 LBD25 LOB domain-containing protein 25

3.8. DEGs Related to Flower Differentiation

According to the results of WGCNA, transcription factors exhibit an essential role in the
differentiation of the female and male flowers of C. mollissima. Based on 266 common DEGs
between four comparative groups (Figure 9A), a total of 16 transcription factors related to
the differentiation of female and male flowers were excavated. Among the 16 transcription
factors, the expression levels of bHLH52, AHL23, ERF084, and VRN1 were downregulated
with flower development, while bHLH92, WRKY40, and HSP17.7 were upregulated in the
early stages of female flower development. The expression levels of KUA1, MYB26, and
LAX1 were significantly high during F1 to F4 and decreased from M1, while NAC056, AG,
MADS9, and AMS were highly increased during the male flower stages (Figure 9B).
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Figure 9. (A) Venn diagrams of DEGs between mixed inflorescence and female and male flowers at
differentiation stages in Castanea mollissima ‘Tanqiao’. (B) Heatmap of DEGs related to the transcription
factor in C. mollissima ‘Tanqiao’. Red and green represent upregulated and downregulated, respectively.

3.9. Time-Series Analysis

The transcriptome data of six stages of B0 to F4 and B0 to M4 were analyzed using
the STEM time-series clustering algorithm. The expression trends of profile0 and profile23
decreased and increased during the development of male and female flowers, respectively
(Figure 10A,B). Combined with the dynamic changes in endogenous hormone contents in
the development of male and female flowers, three genes related to JA biosynthesis and
signal transduction and 34 genes related to ZT biosynthesis and signal transduction were
screened in profile0 and profile23 (Table 5).
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Figure 10. (A) Gene expression profiling of all genes through 6 stages of male flowers. (B) Gene
expression profiling of all genes through 6 stages of female flowers. The temporal pattern of profiles
with colors is conspicuous, while the temporal pattern of profiles without colors is not conspicuous.
The number of the profile is shown in the upper-left corner of the rectangle, the number in the
lower-left corner is the p-value, and the trend of expression over time is symbolized by the line.
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Table 5. Functional annotations of significant genes related to ZT and JA in the 0.3 profile in Castanea
mollissima ‘Tanqiao’.

Gene Pathway Definition Gene Name Number Gene ID

JA biosynthesis and
signal transduction

AOS3 1 gene-CMV_027313
COIL 1 gene-CMV_028222
MYC2 1 gene-CMV_022981

Zeatin biosynthesis and
signal transduction

AHK3 1 gene-CMV_002656
ARR17 1 gene-CMV_030552
UGTK4 1 gene-CMV_017378
UFOG4 1 gene-CMV_008253
CKX5 1 gene-CMV_017974
CKX3 1 gene-CMV_014383
CKX6 1 gene-CMV_022840

LOGL1 1 gene-CMV_018548

LOG1 2
gene-CMV_025587
gene-CMV_005650

LOG3 1 gene-CMV_020510

LOG5 2
gene-CMV_017862
gene-CMV_009202

UGT8 2
gene-CMV_014086
gene-CMV_026607

7DLGT 2
gene-CMV_010956
gene-CMV_026588

U73C6 4

gene-CMV_008252
gene-CMV_014625
gene-CMV_015292
gene-CMV_015294

UGTK5 5

gene-CMV_017379
gene-CMV_021009
gene-CMV_017377
gene-CMV_017576
gene-CMV_027806

UGT2 8

gene-CMV_005081
gene-CMV_008238
gene-CMV_023426
gene-CMV_025853
gene-CMV_027908
gene-CMV_023427
gene-CMV_006423
gene-CMV_021488

3.10. DEGs Associated with Zeatin and Jasmonic Acid during Flower Differentiation

According to the results of KEGG enrichment analysis and time-series analysis, we
extracted 3 genes related to jasmonic acid biosynthesis and signal transduction, 3 genes
related to zeatin biosynthesis, and 18 genes related to zeatin signal transduction. The
expression levels of LOG5, ARR4, ARR9, and UFOG4 were highly expressed from F1 to F4,
while CKX5/6 and 7DLGT were highly expressed from M3 to M4. Interestingly, the gene
family LOG, which is related to zeatin biosynthesis, was only highly expressed in female
flowers, suggesting that gene family LOG may be the core hormone gene during female
flower differentiation (Figure 11A).
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seq, demonstrating that the RNA-seq results were credible. 

Figure 11. (A) Heatmap of DEGs related to jasmonic acid and zeatin in Castanea mollissima ‘Tanqiao’. Red
and green represent up- and downregulated. (B) Heatmap of DEGs related to the zeatin biosynthesis path-
way. iPRTP: Isopentenyl-ATP; iZRTP: trans-Zeatin riboside triphosphate; iZRDP: trans-Zeatin riboside
triphosphate; iZRMP: trans-Zeatin riboside monophosphate; tZR: trans-Zeatin riboside; tZ: trans-Zeatin.

In the ZT biosynthesis pathway, IPT, CYP735A, and LOG were the main enzymes
that synthesize ZT. As an early gene in ZT biosynthesis, IPT was upregulated during
M3-M4 and expressed in F3 and F4 in female flowers. Cytokinin hydroxylase CYP735A was
upregulated at M3 and then sharply downregulated at M4. LOG, coding for a cytokinin-
activating enzyme in the later stage of ZT biosynthesis, was only highly expressed in F3
and F4 in female flowers. These findings indicate that cytokinin activity may be higher in
female flowers. Downstream of zeatin biosynthesis, cytokinin glycosyltransferase UGT85A
and UGT735C were only expressed in female flowers, while ZOG was only expressed in
male flowers. These findings suggest that, as flowers differentiated, the expression of the
genes involved in ZT biosynthesis and pathways changed (Figure 11B).

3.11. RT-qPCR Verification

RT-qPCR experiments were performed on the ten samples (B0, B1, F1, F2, F3, F4, M1,
M2, M3, and M4) to validate the reliability of the transcriptome data. Thus, we randomly
selected six genes in transcriptome data. As shown in Figure 12, the expression patterns of
the six genes obtained from RT-qPCR were almost consistent with those from RNA-seq,
demonstrating that the RNA-seq results were credible.
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4. Discussion
4.1. The Differentiation Process of Male and Female Flowers in Castanea mollissima

As a monoecious plant, C. mollissima has two types of catkins: pure male catkins
and mixed catkins. The upper part of the mixed catkins differentiates into male flowers,
while the lower part differentiatess into female flowers. Since the female flower is the
foundation of yield in C. mollissima, it is essential to study the process of mixed catkin
differentiation in production practice. Some scholars observed the process of male flower-
bud differentiation in Chinese chestnut. Chen et al. [36] found that female flower formation
includes the development of the flower primordium, sepal primordium, pistil primordium,
style, stigma, ovary, ovule, and embryo sac. Yan et al. [37] showed that the primordia of
bisexual catkins appeared in early March, while the primordia of female flower clusters
became ovule primordia in mid-May for ‘Yongfeng No.1’. In our paper, we subdivided the
primordia into different types: flower cluster bract primordium, flower cluster primordium,
sepal primordium, stamen primordium, and pistil primordium. In female flowers, the
inner side of the stamen primordium differentiated into pistil primordia and then rapidly
elongated and widened and became stigma. Unlike female flowers, pistils developed
slowly and gradually degenerated or even disappeared after the formation of the pistil
primordia in male flowers. Thus, we speculate that pistil primordium differentiation stage
is critical in mixed catkin differentiation.

4.2. Dynamic Change in Endogenous Hormones during Female and Male Flower Differentiation

Numerous studies have proven that plant hormones are involved in flower differen-
tiation. Plant hormones, including GA, ABA, and IAA, among others, had a significant
impact on flower differentiation. The impact on flowering varied between plants [38]. High
levels of IAA and ABA were beneficial for female flower differentiation in Zanthoxylum
planispinum var. Dingtanensis [39]. Low levels of IAA can promote flower differentiation
in Camellia perpetua and Ziziphus jujuba Mill. during early stages, while high levels of IAA
are required during late stages [40,41]. In our study, the IAA level in female flowers was
higher than in male flowers from the F2 to F4 stages and showed a similar trend. The accu-
mulation of ethephon (CEPA) and ABA could inhibit female differentiation in C. henryi [42]
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and other species, such as Eriobotrya japonica Lindl ‘Ninghaibai’ [43] and Manihot esculenta
Crantz [44]. Similar results were observed in C. mollissima, where the high contents of GA3
and ABA promoted male flower differentiation, but the dynamic changes in ZT and JA
were favorable for female flower differentiation. ZT is one type of CK, and similar research
has reported that CK plays an important role in the flower development of C. henryi [45].

4.3. Exogenous ZT Application Alters the Number of Female Flowers

In order to enhance the yield of monoecious plants, increasing the number or ratio
of female flowers is necessary. Exogenous IAA [46], 6-BA [47], and GA3 [10] were demon-
strated to enhance the number of female flowers in various plants. CK has been discovered
to increase the quantity of female flowers significantly and even had a feminization effect
on male flowers. A 50 mg/L forchlorfenuron (CPPU) treatment could turn the male plant
into a bisexual plant in Vitis amurensis [48]. A 125 mg/L CPPU can transform a male catkin
into a mixed catkin in C. henryi, but the transformed catkins were sterile [49]. ZT is a natural
plant CK found in vascular plants. Our results showed that 20 mg/L ZT significantly
increased the quantity of fertile female flowers compared with the control. This suggests
that an amazing improvement in the quantity of female flowers might be achieved with the
appropriate application of ZT.

4.4. Transcription Factors and Genes Related to Zeatin Co-Regulate the Flower Differentiation

Numerous studies have reported that phytohormones participate in the flower dif-
ferentiation of many plants. Among numerous phytohormones, CK plays a key role in
influencing flower differentiation between males and females. In sweet cherry, the reg-
ulatory network of female flowers is related to zeatin [50]. Some B-type MdRR genes
(MdRRB9 and MdRRB11) are implicated in the positive impact of CK on apple flower
induction [51]. Furthermore, CK could change the fate of the apical meristem in male
flowers and stimulate the growth of carpel primordia in P. volubilis [52]. CPPU accelerated
the development of pistil and induced the maturation of the octonucleate embryo sac in
male flowers, which induced a sex change in Vitis amurensis Rupr. with fertility [53], which
is consistent with CK treatment in Jatropha curcas [54]. ZT, as one type of CK, isopentenyl
transferase (IPT); cytochrome P450 monooxygenase, family 735, subfamily A (CYP735A);
and cytokinin-activating enzyme (LOG) were the main enzymes that synthesize ZT. In
Arabidopsis, transgenic plants with the AP1::IPT4 gene significantly increased the number
of flower primordia, mediating the upregulation of CUC3 and LBD3 in the development
of inflorescence [55]. LOG encodes a cytokinin enzyme that works in the final step of
cytokinin synthesis. It can convert inactivated cytokinin nucleotides into free-base forms
with biological functions directly through its specific phosphoribohydrolase. LOG1/3/7,
which is related to ZT biosynthesis, joins in the determination of flower sex in C. henryi [49].
The conclusions of the present research on C. mollissima are a further proof of these findings,
as LOG1/5/8 were highly expressed in female flower differentiation. Thus, we speculate that
the number of female flowers highly correlates with the activity of ZT in C. mollissima, and
the LOG gene family might be the core hormone gene during female flower differentiation.

Transcription factors (TFs) perform an essential role in plant growth and development,
particularly in flower differentiation [56]. Members of the MYB transcription factor have
been extensively studied in many plant species. DEGs related to MYB families involved in
the process of flower differentiation were found in Schisandra chinensis [57], Prunus avium L.
cv. Bing [50], and Idesia polycarpa Maxim. var vestita Diels [58]. The MR1TCONS_00020658.1
was only expressed in male flowers of red bayberry [59]. In the late stages of female flower
development in Idesia polycarpa Maxim. var vestita Diels, the downregulation of the B
gene family had an impact on stamen fertility [58], which suggests a vital role in flower
differentiation. Meanwhile, the bHLH family, such as PAVMYC2, was also proven to be
essential in the flower differentiation of Osmanthus [60]. The transcription level of PpIDD11
in peach was highest in the pistil, and its overexpression mutant exhibited an abnormal
stretch of the stigma [61]. Previous research has shown that transcription factors could
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regulate flower differentiation with phytohormone [47,62]. PpIDD-DELLA1 complexes
activated the transcription of PpGA20ox1 [63], while exogenous GA induced the downregu-
lation of MDIDD7 to regulate flowering in apple ‘Changfu 2’ [64]. According to our results,
we found that some TFs, including bHLH92, IDD7, and MYB26 genes, are involved in the
flower development of C. mollissima. These findings suggest that transcription factors and
their interactions with phytohormones might regulate flower differentiation.

5. Conclusions

This study explored the mechanisms involved in the differentiation of mixed catkins
in C. mollissima ‘Tanqiao’. The hormone levels of JA and ZT were highly related to female
flower development. Through KEGG pathway analysis, time-series analysis, and WGCNA
analysis, 21 genes related to zeatin biosynthesis and transduction and 16 transcription
factors were screened. Among these genes, we speculate that the LOG gene family and IDD7
may be the core regulatory factors in regulating female flower development. But whether
LOG interacts with IDD7 remains to be further studied. In addition, spraying zeatin could
significantly increase the number of fertile female flowers. These findings are critical for
understanding the mechanism of mixed catkin development in Chinese chestnut.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/f14102057/s1. Supplementary Table S1: Statistics of raw reads for
transcriptome in C. mollissima ‘Tanqiao’. Table S2: Data of clean reads mapping to the reference
chestnut genome in each stage.
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