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Abstract: Rapid climate variability and intense human activities generate obvious impacts on the
Qilian Mountains ecosystem. The time series of fractional vegetation coverage (FVC) from 1986 to
2021 were used to quantify the impact of climate variability and human activities on vegetation
variations in the Qilian Mountain National Nature Reserve (QMNNR), using 3147 land satellite
images based on the Google Earth Engine cloud platform. The contributions of climate variability
and human activities to FVC were quantified using multiple regression residual analysis. Partial
correlation and correlation methods were used to quantify the impact of temperature, precipitation,
and human activity footprints on FVC. The results showed that from 1986 to 2021, the increase rate of
FVC was 1.7 × 10−3 y−1, and the high vegetation coverage of the FVC was mainly distributed in the
southeastern part of the reserve. In contrast, the low vegetation coverage was mainly distributed
in the northwest part of the reserve. The Mann–Kendall mutation test found that the year of 2009
was the year of the mutation. The growth rate of FVC from 2010 to 2021 was greater than that from
1986 to 2009. In addition, climate variability and human activities exhibited a remarkable spatial
heterogeneity in FVC changes. Climate variability and human activities contributed 49% and 51% to
the increase in FVC in the reserve, respectively, and the contribution of human activities was greater
than that of climate variability. The warming and humidification phenomena in the reserve were
obvious. However, precipitation was the dominant factor affecting the dynamic changes in FVC. This
study improves our understanding of the response of vegetation dynamics to the climate and human
activities in the QMNNR.

Keywords: fractional vegetation coverage; analysis of drivers; climate variability; human activities;
Qilian Mountain National Nature Reserve

1. Introduction

Vegetation is a crucial part of terrestrial ecosystems [1], playing an important ecological
role in promoting groundwater recharge [2], the material cycle, and carbon regulation [3,4].
Fractional vegetation coverage (FVC) is an important indicator for monitoring changes in
the ecological environment [5] and is also an important parameter reflecting the dynamic
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characteristics of vegetation and plays a relevant role in monitoring regional ecological en-
vironment quality [6,7]. Recent research has shown that “greening the planet” is prominent
in China and India due to the impacts of climate variability and human activities [8]; how-
ever, the vegetation in some other regions, such as high latitudes and North America, has
gradually stabilized or even decreased [9]. Vegetation changes in the Qinghai–Tibet Plateau
are a combined effect of human activities and climate variability [10–12]. In contrast, the dis-
tribution and changes in vegetation patterns in the Qinghai–Tibet Plateau are significantly
affected by temperature increases and precipitation variation [13,14]. Additionally, human
activities, including the implementation of ecological restoration projects [15] and grazing,
promote vegetation changes [16]. Therefore, clarifying the impact of climate variability
and human activities on vegetation changes can effectively support the formulating of
reasonable policies for ecological environment restoration.

Climate variability alters the regional climate by driving vegetation growth [17,18]. Air
temperature and precipitation promote the overall greening of global vegetation [19] and
are the main factors influencing vegetation growth [20]. Chen [21] showed that different
climate conditions in the Tibetan Plateau affect the spatial differences in vegetation response
to temperature and precipitation. For example, vegetation in the northern area of the
Tibetan Plateau is positively correlated with precipitation, whereas the vegetation in the
southern area is positively correlated with temperature. Huang demonstrated [22] that the
comprehensive effects of temperature and precipitation on the Qinghai–Tibet Plateau show
strong spatial heterogeneity, and precipitation dominates vegetation growth in arid steppe
and meadow regions. With global warming, the severely cold climate in the Qinghai–Tibet
Plateau region has improved, and the vegetation belt has extended to high altitudes and
latitudes [23]. Studies have revealed the impact of changes in the air temperature and
precipitation on spatial changes in the FVC; however, few studies have quantified the
temperature and precipitation contributions. Therefore, understanding the influence of the
climate on regional-scale vegetation is of great significance for the ecologically sustainable
development of reserves.

The impact of human activities on vegetation coverage changes can be positive or
negative [24,25]. In the past few decades, human activities in the Tibetan Plateau have
mainly been based on grazing [26]. With economic development, meadows in the Tibetan
Plateau have been seriously degraded due to overgrazing [27]. In contrast, with increasing
emphasis on ecological environment protection, the Chinese government has launched
a series of ecological restoration projects, including the Three Northern Shelter Forest
Program [28], the Grain for Green Program [29], and the Ant Forest Project [30,31]. These
projects aim to restore the ecological environment by planting trees and protecting local nat-
ural forests. Ecological engineering projects have greatly promoted vegetation restoration
in semiarid and subhumid areas in Northern China [32]. However, there are few studies
specifically clarifying the impact of human activities on the FVC.

Large-scale vegetation dynamics do not reflect detailed features at small regional
scales. Previous studies have mostly retrieved the FVC based on remote sensing vegetation
indices, among which the normalized difference vegetation index (NDVI) is the most widely
used [33]. Commonly used NDVI data include SPOT-NDVI [34], AVHRR-NDVI [35], and
MODIS-NDVI [36]. Although these data have been updated several times, their application
in vegetation monitoring is limited due to their low spatial resolution and short time
series. The NDVI data obtained using Landsat has a longer time series and better spatial
resolution and can be used to monitor vegetation changes in the QMNNR. With the
development of remote sensing cloud computing platforms, such as the Google Earth
Engine (GEE), researchers can use these cloud platforms to conduct research on large-area,
long-term series of high-resolution image data [37,38], thus overcoming the data resolution
barriers of restriction. In recent years, various methods have been used to analyze the
attribution of climate variability and human activities to vegetation, such as statistical
methods [39,40], the partial correlation method [41], and the multiple regression residual
analysis method [42]. Statistical methods have high requirements on the completeness and
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accuracy of historical statistical data, and a single method cannot fully clarify the causes
of vegetation changes [43]. Combining statistical methods and partial correlation analysis
methods can clearly quantify the factors affecting vegetation changes [44,45]. Based on
the assumption of FVC change in the study area, multiple regression residual analysis can
better quantify the relative influence of climate variability and human activities to FVC
change [46]. Therefore, statistical methods, first-order correlation analysis methods, and
multiple regression analysis methods were widely used to elucidate the effects of human
activities and climate on the FVC. At present, it is impossible to quantify specific human
contributions, as the data related to human activities may not be fully expressed on a
spatial scale. The human activity footprint dataset [47] is generally made via weighted
summation of eight variables (including the building environment, population density,
night lights, cultivated land, pastures, roads, railways, and navigable waterways) that
reflect human pressure. This dataset enables a better understanding of the scope and
intensity of human impact.

The Qilian Mountains are located in the northeastern part of the third pole of the earth
(the Tibetan Plateau). The Qilian Mountains are a priority area for biodiversity conservation
in China, an important water sources for the Yellow River Basin [48], and play a crucial
strategic role in maintaining local ecological security [49]. The QMNNR is located in
the north of the Qilian Mountains. In recent years, many problems, such as vegetation
degradation, glacier melting, and soil erosion, have occurred in this reserve [50]. Previous
studies have shown that vegetation changes in the reserve are affected by various factors,
mainly including extreme events, such as temperature and precipitation [51], and human
activities, such as illegal prospecting, mining, and construction of water conservancy
projects [52]. To date, few studies have analyzed the change in FVC in the reserve on a
geographical scale. Therefore, research on the dynamic changes in the FVC in reserves at
the municipal level is of great significance for further exploring the evolution of ecological
environment quality in long-term sequences of the reserve and comprehensively managing
the ecological environment of the reserve.

Therefore, this study quantitatively analyzed the temporal and spatial variation char-
acteristics of the FVC in the QMNNR from 1986 to 2021, using the GEE cloud platform
to construct a FVC time series using 3147 Landsat remote sensing images. Based on this,
temperature, precipitation, and human activity footprint data were introduced to clarify
the influence of human activities and climate variability on the FVC. The findings of this
study may provide an important reference for the restoration of the ecological environment
in the reserve.

2. Materials and Methods
2.1. Area

The QMNNR (97◦23′34′′–103◦45′49′′ N, 36◦29′57′′–39◦43′39′′ E) was established in
1988 with the approval of the State Council forest and wildlife type nature reserves
(Figure 1). The total area of the reserve is about 2.65 × 104 km2, and the functional area
is divided into a core area (5.05 × 103 km2), a buffer zone (3.87 × 103 km2), and an ex-
perimental area (1.09 × 104 km2) [53]. Most of the reserve is situated 3000–3500 m above
sea level, and precipitation is mainly distributed from May to September, with the most
precipitation concentrated in the period from July to August. The annual average precipita-
tion is between 300 and 500 mm, and the annual average temperature is 1.0–4.0 ◦C. This
reserve has a plateau continental climate, with long and cold winters and short and mild
summers. The climate elements change regularly from bottom to top with the elevation
of the mountains, showing obvious vertical climate belts [54]. This reserve covers forests,
meadows (Figure 1a), rivers, glaciers (Figure 1b), and other ecological resources, with rich
and diverse species. For a long time, ecological damage problems, such as local water and
soil erosion (Figure 1c), have been very serious in the Qilian Mountains.
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Figure 1. Overview of the Qilian Mountain National Nature Reserve.

2.2. Data Source and Preprocessing

We selected Landsat 5/7/8 SR data based on the Landsat Collection Tier 1 dataset
available online on the GEE platform. Considering the seasonal changes in vegetation [55],
low cloud cover (cloud < 20%) screening was performed on the remote sensing images of
the reserve from June to September in the years from 1986 to 2021. The NDVI was obtained
according to the band operation. The maximum value synthesis algorithm was used to
synthesize the NDVI image, and FVC was calculated by combining the dimidiate pixel
model. Table 1 lists the data used in the study.

Table 1. Sources of data used in this study (All data accessed on 1 October 2022).

Dataset Type Image Usability
Analysis

Spatial
Resolution/m

Time
Resolution/Year Data Source

Image data

Landsat 5 SR Raster 1326 scenes 30 1986–2011 United States Geological Survey
https://www.usgs.gov/

Landsat 7 SR Raster 1167 scenes 30 1999–2021 United States Geological Survey
https://www.usgs.gov/

Landsat 8 SR Raster 654 scenes 30 2013–2021 United States Geological Survey
https://www.usgs.gov/

Basic data

Landsat
path row
(WRS–2)

Vector / / 1983–now
Geodata Platform, School of Urban and

Environmental Studies, Peking University
http://geodata.pku.edu.cn

Product data Raster / 30 2019–2021
National Qinghai–Tibet Plateau Scientific

Data Centre
https://data.tpdc.ac.cn/zh-hans/

Temperature and
precipitation data Raster / 1000 1986–2020

(monthly)
Climatic Research Unit gridded Time Series
https://crudata.uea.ac.uk/cru/data/hrg/

Human footprint
dataset Raster / 1000 2000–2018 [47]

https://www.usgs.gov/
https://www.usgs.gov/
https://www.usgs.gov/
http://geodata.pku.edu.cn
https://data.tpdc.ac.cn/zh-hans/
https://crudata.uea.ac.uk/cru/data/hrg/
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In this study, the availability of Landsat images in the reserve was analyzed based on
the GEE cloud platform, with a total of 3147 images. Figure 2 shows the spatial distribution
(Figure 2a), temporal distribution (Figure 2b), frequency of images (Figure 2c), and number
of available images (Figure 2d) for the period 1986–2021.
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Figure 2. Availability of Landsat images of a time–space series of the reserve from 1986 to 2021. (a) The
range of the Landsat Worldwide Reference System 2 (WRS–2) covering the reserve, (b) Landsat image
time distribution, (c) Landsat image frequencies, and (d) total number of sensor images (Landsat
5/7/8).

2.3. Methods

An overview of the methodology and structural framework is shown in Figure 3,
with the following main steps: (I) Landsat remote sensing image availability analysis and
data pre-processing. Based on the GEE platform, the FVC time series was constructed
using the maximum value compositing (MVC) [56] combined with the dimidiate pixel
model. Climate data, human activity footprint data, and product data were preprocessed
using ArcGIS 10.4 software; (II) construction of a dimidiate pixel model and spatial and
temporal trend analysis using Theil–Sen analysis and the Mann–Kendall test. Multiple
regression residual analysis, correlation, and partial correlation methods were used to
explore the driving factors of FVC changes; (III) driving analysis. A binary linear regression
model was established based on growing season FVC, temperature, and precipitation. The
impact of climate variability and human activities on the FVC was quantified. The effects
of temperature and precipitation and human footprint on the FVC were quantified using
the correlation and partial correlation methods; (IV) consistency check of the study results.
The results of this study were tested for their reliability based on 30 m product data from
the Tibetan Plateau Science Data Center.
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2.3.1. Retrieval of Fractional Vegetation Coverage

The normalized vegetation index (NDVI), compared with other vegetation indices,
has the advantages of high sensitivity and wide-area monitoring for vegetation monitoring,
and the ability to eliminate shadows and radiation interference from topography and
community structure, as well as the noise from the solar altitude angle and atmosphere.
The specific calculation formula used is shown in Formula (1):

NDVI =
NIR− Red
NIR + Red

(1)

where NIR is the near-infrared band of the Landsat image, and Red denotes the red band of
the Landsat image.

The dimidiate pixel model in the mixed pixel model expresses the linear relationship
between remote sensing information and vegetation coverage in the same way as the linear
regression model, and has the advantages of simplicity, no geographical restrictions, and
easy promotion. The dimidiate pixel model also makes up for the shortcomings of the
NDVI in terms of soil background and atmospheric influence [57]. The FVC is better able
to measure surface vegetation conditions and ecological environment changes [58]. The
principle of calculating the FVC based on the dimidiate pixel model is to assume that each
image has two parts, soil and vegetation, one for the image with vegetation cover (NDVIveg)
and the other for the image without vegetation cover (NDVIsoil), where the value of each
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image is a linearly weighted composite of NDVIveg and NDVIsoil. The specific calculation
formula employed is shown in Formula (2):

FVC =
NDVI − NDVIsoil

NDVIveg − NDVIsoil
(2)

where NDVIsoil represents the value corresponding to no vegetation or bare soil, and
NDVIveg indicates the value corresponding to vegetation.

In theory, NDVIsoil is 0 and NDVIveg is 1. However, these data can be affected by
necrotic pixels and noise in the remote sensing image itself. Pixels without vegetation and
pixels with pure vegetation cannot reach the theoretical value. We referred to previous
relevant research results [46] and defined the NDVI value in the NDVI frequency histogram
of the image corresponding to a cumulative frequency, with a value of 5% as NDVIsoil
and a value of 95% as NDVIveg. As suggested in a previous study [59], and in terms
of the actual situation of the reserve, the FVC was divided into five classes, namely low
[0–0.2], medium–low [0.2–0.4], medium [0.4–0.6], medium–high [0.6–0.8], and high [0.8–1.0]
vegetation cover.

2.3.2. Theil–Sen Median Trend Analysis and the Mann–Kendall Test

Using the combination of Theil–Sen trend analysis and the Mann–Kendall test, the
interannual variation trend of FVC and its significance level were discussed [60,61]. Theil–
Sen median analysis can effectively eliminate the impact of invalid values by calculating
the median of the time series, which is calculated by Equation (3):

β = median(
FVCj − FVCi

j− i
), 1986 < i < j < 2021 (3)

where β denotes the trend of FVC, median (FVCj – FVCi/j – i), 1986 < i < j < 2021) is the
median function, and FVCi and FVCj are the FVC values of the i and j years, respectively.
When β > 0, FVC trends to rise, and vice versa.

2.3.3. The Mann–Kendall Nonparametric Test

The Mann–Kendall method was not disturbed by invalid values, and was used to
reveal the mutation phenomenon of the FVC trend time series characteristics during the
study period [62].

S = ∑n−1
i=1 ∑n

j=i+1 sign(FVCj − FVCi) (4)

sign(FVCj − FVCi) =


1 FVCj − FVCi > 0
0 FVCj − FVCi = 0
−1 FVCj − FVCi < 0

(5)

Var(S) =
n(n− 1)(2n + 5)

18
(6)

Zc =


S−1√
var(S)

, S > 0

0, S = 0
S+1√
var(S)

, S < 0

(7)

In the above equations, FVCj and FVCi refer to the FVC values of the j and i years, respec-
tively; n represents 36 in this study; sign is a symbolic function; and var( ) is the variance
function of the random variable. The scope of Z is (−∞, +∞).

Theil–Sen median trend analysis and the Mann–Kendall test were superimposed in
ArcGIS10.4, and the superimposed results were divided into five classes, as shown in
Table 2.
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Table 2. Theil–Sen median trend analysis and the Mann–Kendall test level (p < 0.05) of trend change.

β Z Trend Characteristics

β > 0
Z > 1.96 Significantly increased
Z < 1.96 Increased

β = 0 Z = 0 Stable and unchanged

β < 0
Z > −1.96 Decreased
Z < −1.96 Significantly decreased

2.3.4. Multiple Regression Residual Analysis

Multiple linear regression and residual analysis were used to study the influences
and relative contributions of climate variability and human activities to the changes in
vegetation coverage [63] (this study assumed that FVC was only affected by the combined
impact of two factors: human activities and climate variability). This method mainly
involves the following three steps: (1) Selection of the growing season FVC as the dependent
variable, with temperature and precipitation as the independent variables, establishes
a binary linear regression model and permits the calculation of the parameters of the
model. (2) Using the temperature and precipitation data, along with the parameters of
the regression model, the predicted value of FVC (FVCCC) was calculated (Equation (8))
to represent the impact of climate factors on the FVC. (3) The difference between the
FVC observations (FVCobs, FVC inverted from remote sensing images) and FVCCC was
calculated and defined as the FVC residual (FVCHA) [64,65]. The FVC residual (FVCHA)
represents the impact on the FVC in the context of human activities. The calculation formula
is as follows:

FVCCC = a× Tmp + b× Pre + c (8)

FVCHA = FVCobs − FVCCC (9)

where a, b, and c are regression model parameters, and Tmp and Pre denote the mean
temperature and accumulated precipitation, respectively.

2.3.5. Correlation Analysis and Partial Correlation Analysis

Pearson’s correlation coefficient was used to analyze the correlation between FVC
and HA to characterize the response of vegetation coverage to HA. Pearson’s correlation
coefficient (r) was calculated as follows:

rxy =

N
∑

i=1

[(
Xi − X

)(
Yi −Y

)]
√

N
∑

i=1

(
Xi − X

)2 N
∑

i=1

(
Yi −Y

)2
(10)

where rxy represents the degree of correlation between variables x and y.
When multiple factors are simultaneously correlated with FVC, partial correlation

analysis [66] can eliminate the influence of other factors and separately analyze the cor-
relation between a single factor and FVC. The formula for partial correlation analysis is
as follows:

rxy.z1z2···zg =
rxy.z1z2···zg−1 − rxzg.z1z2···zg−1 ryzg.z1z2···zg−1√(

1− r2
xzg.z1z2···zg−1

)(
1− r2

yzg.z1z2···zg−1

) (11)

where rxy.z1z2···zg are the bias correlation coefficients of z1, z2, ..., zg of the partial correlation
coefficients of the x and y variables of the control variables, respectively.
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3. Results
3.1. Multivariate Residual Regression Model Rationality Assessment

The residual plot was used to verify the rationality of the hypothesis of the multiple
regression residual model in this study. It could be seen that the residual followed a normal
distribution (p < 0.01) (Figure 4a). Figure 4b indicates that the model assumptions in this
study were reasonable. Moreover, the residuals were uncorrelated and random (Figure 4c).
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3.2. Spatiotemporal Variation Characteristics of FVC

The spatiotemporal change model of the FVC in the reserve was established using
the dimidiate pixel model. The results showed that the annual average FVC of the reserve
showed a significant upward (p < 0.05) trend from 1986 to 2021, with a linear trend of
1.7 × 10−3 y−1 (Figure 5a). The annual FVC mutation map of the reserve was constructed
using the Mann–Kendall mutation test (Figure 5b). The results showed that this mutation
occurred in 2009. This study used 2009 as the time node to segment the FVC time series
of the reserve, as there was an effective mutation point in the UF and UB curves in 2009.
The increasing trend of FVC in the reserve from 2010 to 2021 was slightly greater than that
from 1986 to 2009. As shown in Figure 5c,d, the FVC-increased area accounted for about
28.39% of the total area from 1986 to 2009, mainly distributed in certain vegetation types,
such as meadows and broad-leaved forests in Wuwei City. In contrast, the unchanged
area accounted for about 27.70% of the total area, with higher distributions in the high-
altitude areas of Zhangye City, where the land cover was mainly alpine meadows and
perennial snow. The descending area accounted for approximately 43.91% of the total area
and was mainly distributed in deserts and alpine sparse vegetation areas in high-altitude
areas of Zhangye City. The percentage of FVC-decreased area was greater than that of
the FVC-increased area during this time period. From 2010 to 2021, the increased area
of FVC accounted for about 48.78%, mainly distributed in the grassland and meadow
vegetation-type areas in some parts of Zhangye City, and the grassland vegetation area in
Wuwei City. The unchanged FVC area accounted for approximately 16.53% of the total
area, mainly distributed in the perennial snow-covered areas of Zhangye City, shrubs,
meadows, and other vegetation types in Wuwei City. The FVC reduction area accounted
for approximately 34.69% of the total area, mainly distributed in the grassland and meadow
vegetation types in Zhangye City. In the past 12 years, the area of FVC increased more than
the area decreased. Generally, the FVC of the reserve has significantly increased since 2009.
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Figure 5. FVC interannual variation, Theil–Sen median trend analysis, and Mann–Kendall trend
change and area proportion. (a) FVC trend change from 1986 to 2021, (b) the MK mutation test,
(c) Theil–Sen median trend analysis, and Mann–Kendall trend change and area ratio from 1986 to
2009, (d) Theil–Sen median trend analysis and Mann–Kendall trend change and area ratio from 2010
to 2021, and (e) the area proportion from 1986 to 2021.

From the perspective of the city scale (Figure 6), the intensity of vegetation damage
in each area of the reserve gradually decreased, and the FVC time series curve showed a
fluctuating upward trend. However, some areas still deteriorated. The recovery rate of
FVC in Jinchang City was the fastest, reaching 5.3 × 10−3 y−1, followed by the Wuwei
section of the reserve, with a recovery rate of FVC at 2.7 × 10−3 y−1. The recovery rate of
FVC in the Zhangye section of the reserve was the slowest (1.3 × 10−3 y−1).
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Figure 6. FVC changes at a city scale. (a) FVC trend change in the Zhangye section of the reserve
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3.3. Analysis of the Driving Factors of FVC

Spatial heterogeneity exists in the dynamic changes in the FVC in the reserve due
to climate variability and human activities (Figure 7). The area where climate variability
promoted vegetation improvement accounted for 43.34%, and was mainly distributed in
the middle of the reserve. In contrast, the area of stable vegetation growth accounted for
53.11%, and was mainly distributed at both ends of the reserve. Vegetation-degraded areas
in the reserve accounted for 3.55%. The area where human activities promoted vegetation
improvement accounted for 50.76%, mainly distributed in the southeast part of the reserve.
The area where vegetation grew stably accounted for 21.20%, and the area of vegetation
degraded by human activities accounted for 28.04%, and was mainly distributed in the
northwestern part of the reserve.
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3.3.1. Relative Contributions of Climate Variability and Human Activities to the FVC

As shown in Figure 8, the rate of climate variability contribution to the change in
FVC in the reserve was 59% of that in the positive area. Areas with contribution rates
greater than 80% accounted for 13%, and were mainly distributed in the border areas
of Zhangye, Wuwei, and Jinchang. The contribution of climate variability to the change
in FVC in the reserve accounted for approximately 41% of the negative area, which was
mainly distributed in the high-altitude areas of Zhangye City.
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The contribution of human activities to the change in FVC in the reserve was 61%
of that in the positive area. The area with a contribution rate greater than 80% was
25% and was mainly distributed in the low-altitude areas of Wuwei City in the reserve.
The contribution of human activities to the change in FVC in the reserve accounted for
approximately 39% of the negative area and was mainly distributed in the high-altitude
areas of the reserve.

3.3.2. Spatiotemporal Evolution Characteristics of FVC under the Influence of
Climate Variability

Long-term changes in temperature and precipitation in the reserve from 1986 to 2020
were analyzed. The results showed that since 1986, the reserve has experienced a noticeable
trend of warming and humidification (Figure 9), providing good conditions for vegetative
growth and recovery. From 1986 to 2020, the temperature in the reserve showed a significant
upward trend, with an average temperature of –0.89 ◦C, rising at a rate of 4.5 × 10−2 y−1.
After 1997, the climate warming rate significantly increased (p < 0.05). From 1986 to 2020,
the precipitation in the reserve showed a significant increasing trend, with an average
precipitation of 177.86 mm, increasing at a rate of 6.82 × 10−1 y−1.
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Figure 9. Temperature and precipitation changes from 1986 to 2020. (a) Temperature changes in the
reserve from 1986 to 2020. (b) Precipitation changes in the reserve from 1986 to 2020. (tmp represents
temperature, and pre represents precipitation).

Figure 10 shows that FVC in the reserve was positively correlated with temperature
and precipitation. The partial correlation coefficient between the FVC and precipitation
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was 0.155. The positive correlation between the FVC and precipitation was about 75.11%,
mainly distributed in the northwestern end of the reserve. The mean value of the bias
relationship between the FVC and temperature was lower than that for precipitation (0.027).
The proportion of FVC positively correlated with temperature was 51.08% and was mainly
distributed in the southeastern end of the reserve.
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3.3.3. Spatiotemporal Evolution of FVC under the Influence of Human Activities

The human footprint alters natural ecological processes. The landscape changes exert
pressure on the ecological environment [47]. The global annual human activity footprint
data show that the overall human activities in the reserve showed a downward trend from
2000 to 2018, with a decline rate of 1.9 × 10−3 y−1 (Figure 11b). Pearson’s correlation
coefficient was used to explore the influence of human footprints on the FVC of the reserve
(Figure 11c). The area where FVC was positively correlated with human activity footprints
was approximately 41.78%, with a significant positive correlation of 5.10%. However, the
negative correlation area was approximately 58.22%, with a significant negative correlation
area of 19.88%. The negative correlation areas were mainly distributed in the northwestern
part of the reserve.

3.4. Consistency Test

FVC products of the National Qinghai–Tibet Plateau Scientific Data Center, with a
monthly 30 m from 2019 to 2021, were used as validation data [67]. The effective pixel
values of it, and the FVC data of the reserve, are shown in Figure 12 (N = 30,000). The results
indicated that the coefficient of determination, R2, was greater than 0.88. The FVC retrieved
in this study was similar to the FVC product results, which also proved the liability of the
results of this study.
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4. Discussion
4.1. Spatiotemporal Variation Characteristics of FVC

The overall FVC of the reserve showed an upward trend, and the growth rate of
the FVC from 1986 to 2021 was 1.7 × 10−3 y−1. Using the Mann–Kendall mutation test,
it was found that 2009 was the mutation year, and is consistent with existing research
results [49,55,68]. Although the vegetation condition improved, the rate of FVC growth
from 1986 to 2009 was 0.9 × 10−3 y−1, as the rate was slow. The rate of FVC growth from
2010 to 2021 was 1.0 × 10−3 y−1, which is faster than that between 1986 and 2009. In
2003, the Chinese government implemented a national conservation policy to support the
ecological project of the degrazing plan in Northern China. In the same year, the local
government of the Qilian Mountains launched an ecological protection project to transfer
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52,000 herdsmen to the valley area within 3–5 years, which had a great impact on improving
vegetation [49].

From 1986 to 2021, the FVC in the reserve showed a spatial distribution pattern of
“low vegetation in the northwest and high vegetation in the southeast,”, mainly because
the southeastern part of the reserve has a lower latitude, higher temperature, and more
precipitation, which were conducive to the development of vegetation. From 1986 to
2009, the proportion of FVC increased by 28.39%, and the area proportion was relatively
low, which was related to ecological damage phenomena, such as overgrazing, illegal
construction of hydropower stations, illegal construction of mining and prospecting, and
the disorderly operation of tourist facilities. From 2010 to 2021, the FVC growth area
accounted for 48.78%, and the area increased. The rising rate of forestland in the reserve
was 0.34 y−1, and the rising rate of grassland was 0.18 y−1. The mine environment was
fully restored through implementing certain measures, such as afforestation, fencing,
soil leveling, and reinforced berms [69]. A good policy atmosphere, and effective policy
implementation, restored the vegetation and ecological environment in the reserve.

From a city-scale perspective, compared with the other two cities, the average value
of FVC in Zhangye City was lower. The Statistical Yearbook of Gansu Province, along with
previous studies [69], revealed that many unauthorized hydroelectric power stations, tourist
attractions, and mining prospecting projects exist in the Zhangye section of the reserve, and
relatively high-intensity human sabotage activities have caused severe vegetative damage.
Simultaneously, the vegetation types in the Zhangye section of the reserve were mainly
shrubs, snow-covered glaciers, and other vegetation types, and the vegetation recovery
period was relatively long.

4.2. Analysis of the Driving Factors of FVC
4.2.1. Relative Contributions of Climate Variability and Human Activities to the FVC

The contribution rate of climate variability to the change in FVC in the reserve was
positive, accounting for 59%. Recent studies have shown that the reserve is located in arid
and semi-arid regions, where climate transitions occurred from warm and dry to warm and
humid [70]. As most arid and semi-arid regions have insufficient precipitation to meet the
needs of vegetative growth, this warming and humidification pattern suggests that climate
variability may provide a benefit to vegetative growth in the reserve [71]. The contribution
rate of human activities to the change in FVC in the reserve was positive, accounting for
61% of the area. The reserve was established in 1986, and the Grain for Green Program
policy was implemented in 2003. With the concept that the lucid water and lush mountains
are invaluable assets and the environmental protection policy of mountains, rivers, forests,
farmlands, lakes, and grasslands were implemented successively, laying an important
foundation for restoring vegetation in the reserve.

4.2.2. Evolution Characteristics of FVC under the Influence of Climate Variability

From 1986 to 2020, the temperature increase rate in the reserve was 4.5 × 10−2 y−1,
and the precipitation increase rate was 6.82 × 10−1 y−1. The warming and humidification
phenomena in the reserve were evident. Partial correlation analysis showed that among the
climate variability factors, precipitation was the dominant factor affecting vegetation. At
the northwestern part of the reserve, precipitation was positively correlated with FVC [55],
whereas temperature was negatively correlated, as an increase in temperature may increase
evaporation and reduce soil moisture, thereby limiting vegetative growth [72]. Precipitation
was negatively correlated with FVC at the southeastern part of the reserve, whereas temper-
ature was positively correlated. Excessive precipitation aggravates soil erosion and reduces
soil organic matter content. An increase in temperature increases evapotranspiration,
reduces the water use efficiency of plants [73,74], and promotes vegetative growth.
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4.2.3. Human Activities affect the Spatiotemporal Evolution of FVC

The decline rate of the human activity footprint is 1.9 × 10−3 y−1, which is consistent
with existing research data [75], and the intensity of human activities reached its maxi-
mum in 2016. Pearson’s correlation coefficient showed that the area of positive correlation
between FVC and human activity footprints accounted for approximately 42% and was
mainly distributed in the low-altitude areas of the Wuwei section, where the grazing pres-
sure is low, and the vegetation types are mainly cultivated vegetation. Good geographical
conditions and low livestock pressures are advantageous for vegetative growth. The area of
negative correlation between FVC and human activities accounted for approximately 58%,
and was mainly distributed in areas, such as Zhangye City, within the reserve where the
altitude is high, and where there are many types of alpine vegetation, shrubs, and meadow
vegetation. The pressure on livestock is high, and the disorderly mining of mines and
illegal construction of hydropower stations have destroyed the ecological environment and
inhibited the growth and restoration of vegetation to a large extent, which is consistent with
the fact that human activities inhibit vegetative growth, mainly in areas such as Zhangye
City, in the reserve.

4.3. Limitations of the Current Study

The drivers of vegetative growth and change are critical to the sustainable management
and development of reserve ecology. Although the SR data in Landsat Collection 2 Tiers 1
have been calibrated between sensors, the atmospheric and surface noise signals, along
with the choice of models, may lead to uncertainty in the identification of vegetation
coverage [76,77]. In this study, the normalized difference vegetation index (NDVI) was used
to invert the vegetation coverage. However, since the NDVI has a non-linear dependence
on leaf overlap, the vegetation coverage will be represented in a non-linear manner for
sparse-leaf and dense-leaf vegetation types. In future research, we will try to improve or
choose better indicators for vegetation coverage extraction.

The multiple regression residual analysis method was widely used to study the effects
of human activities on vegetation changes. However, the method itself also had certain
drawbacks [44]. At present, it was not clear how to reasonably select climate factors.
Previous studies have shown that vegetation changes in the Qinghai–Tibet Plateau was
mainly influenced by temperature and precipitation [21,22]. However, climate variability
also includes climate factors, such as humidity, wind speed, sunlight duration, solar
radiation, and so on [78]. Therefore, more climate factors should be used to analyze
changes in vegetation changes in the study area for future research.

5. Conclusions

In this study, the FVC was used as an index to monitor the dynamic FVC changes in
the reserve. The effects of climate variability and human activities on vegetation dynamics
were assessed using partial correlation and multiple regression residual analyses. The
results show that:

(1) From 1986 to 2021, FVC in the reserve recovered in stages. A sudden change happened
in 2009, and the increase rate of FVC in 2010–2021 was greater than that in 1986–2009.
From 1986 to 2021, high vegetation coverage of the FVC was mainly distributed in the
southeastern part of the reserve, and low vegetation coverage was mainly distributed
in the northwestern part of the reserve. Due to the high intensity of vegetation
damage in the Zhangye section of the reserve, the vegetation recovery period was
relatively long.

(2) Climate variability and human activities have obvious spatial heterogeneity on FVC
changes. Climate variability contributed 49% to the increase in FVC in the reserve, and
human activities contributed 51% to the increase in FVC in the reserve, dominating the
growth of FVC in most areas. Multiple regression residual analysis can quantify the
impact of climate change and human activities on vegetation, but how to reasonably
select climate elements is important.



Forests 2023, 14, 2042 17 of 20

(3) The warming and humidification phenomena in the reserve are evident. In climate
variability, precipitation is the dominant factor affecting vegetation change, followed
by temperature. The areas positively correlated with precipitation were mainly dis-
tributed in the high-altitude areas of Zhangye City in the reserve. The areas positively
correlated with temperature were mainly distributed at the junction of Zhangye and
Wuwei. Overall, affected by human activities and climate variability, the FVC in the
reserve has increased annually, and the ecological environment has tended to improve.
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