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Abstract: In the context of a changing environment, understanding the interaction between vege-
tation and climate is crucial for assessing, predicting, and adapting to future changes in different
vegetation types. Vegetation exhibits high sensitivity to external environmental factors, making
this understanding particularly significant. This study utilizes geospatial analysis techniques, such
as geographic information systems, to investigate vegetation dynamics based on remote sensing
data and climatic variables, including annual air temperature, annual precipitation, and annual
solar radiation. The research methodology encompasses data collection, processing, and analysis,
incorporating multispectral imagery and multilayered maps of various parameters. The calculation
of the normalized difference vegetation index serves to evaluate changes in vegetation cover, identify
areas experiencing variations in green biomass, and establish strategies for the future development of
different vegetation types. During the period from 2001 to 2022, the average normalized difference
vegetation index value in the Southeastern Crimea region amounted to 0.443. The highest average
values were recorded in the year 2006, reaching a magnitude of 0.469. Conversely, the lowest values
were observed in the years 2001–2002, constituting 0.397. It has been ascertained that an overarch-
ing positive trend in the evolution of NDVI values from 2001 to 2022 is apparent, thus implying
a notable augmentation in vegetative biomass. However, adversarial trends manifest in discrete
locales adjacent to the cities of Sudak and Feodosia, along with the coastal stretches of the Black Sea.
Correlation analysis is employed to establish relationships between vegetation changes and climatic
indicators. The findings contribute to our understanding of the vulnerability of various vegetation
types and ecosystems in the Southeastern Crimea region. The obtained data provide valuable insights
for the development of sustainable vegetation resource management strategies and climate change
adaptation in the region.

Keywords: forest; change; ecosystems; GIS; remote sensing; NDVI; Crimean Peninsula; air temperature;
precipitation; solar radiation; multispectral imagery

1. Introduction

Vegetation change is considered a key indicator of ecosystem response to environ-
mental factors and conditions [1,2]. Global vegetation change has become a pressing issue
in recent years, posing a significant threat [3,4]. Consequently, all countries are actively
involved in addressing the drastic reduction of global vegetation cover, as evidenced by the
inclusion of this topic in various regulatory documents worldwide [5,6]. Climate factors
exert a profound influence on vegetation change [7–10], while endogenous catastrophic
processes, such as earthquakes [11], volcanic eruptions [12], fires [13], erosion-induced loss
of topsoil fertility [14,15], floods [16], adverse atmospheric phenomena (e.g., hurricanes,
typhoons) [17], and plant diseases caused by fungi, lichens, insects, and other agents [18,19],
further contribute to the transformation of vegetation. Moreover, anthropogenic activities,
encompassing both complex processes and intentional clearing of vegetation for various
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purposes [20–22], significantly impact vegetation change. Deforestation is particularly
acute in large timber-rich countries such as Brazil, Canada, China, Russia, and others. Vari-
ous approaches are employed to assess vegetation change, including computer modeling,
remote sensing methods [23–25], changes in land cover composition [26–28], alterations
in vegetation index characteristics [29–31], and the utilization of multispectral satellite
imagery for classification purposes [32,33].

Li et al. [34] point out that traditional vegetation dynamics monitoring based on field-
sampled data has limitations due to the intricate data collection process, which presents
challenges in analyzing long-term changes in vegetation. Consequently, the application of
remote sensing methods addresses many challenges when studying vegetation dynamics.
In recent years, the use of remote sensing data has enabled the near real-time monitoring
of vegetation change, including its qualitative characteristics. The analysis of NDVI dy-
namics has gained prominence as a widely employed method for assessing vegetation
change [30,34,35]. This can be attributed to the simplicity of NDVI calculation and the
availability of extensive archives of high-resolution multispectral satellite imagery, such as
MODIS, Landsat, Sentinel, and others. Traditionally, NDVI has found practical applications
in agriculture [36] for crop condition analysis and the calculation of norms for various
land improvement operations. NDVI has been actively applied in recent years to evaluate
vegetation change in diverse regions worldwide, including China [37–40], India [41,42],
the United States [43], Russia [41], Bangladesh [28], Argentina [35], Iran [44], Pakistan [31],
among others. Gandhi et al. [30] demonstrated the potential of employing NDVI in analyz-
ing vegetation change in the Vellore District, India. They found that forest or shrub land
and barren land cover types decreased by approximately 6% and 23%, respectively, from
2001 to 2006. In contrast, agricultural land, built-up areas, and water areas increased by
approximately 19%, 4%, and 7%, respectively. Jiang et al. [38], utilizing NDVI calculations,
revealed a significant increase in vegetation NDVI in Tibet from 2001 to 2020, with the
annual mean NDVI fluctuating between 0.31 and 0.34. Han et al. [37] demonstrated that
the NDVI values in Anhui Province ranged between 0.5 and 0.58, with a multi-year annual
mean of 0.55. Vegetation cover in Anhui Province gradually improved from 2001 to 2019.
Johnson et al. [43] assessed crop productivity in the United States using MODIS NDVI.

It Is essential to recognize that forest landscapes hold significant value within the
spectrum of vegetation cover due to their crucial contributions, as highlighted by numerous
researchers [45–47]. Forests play a vital role in carbon sequestration, exhibiting the highest
potential in this regard [48]. They also function as complex ecosystems that influence
global substance and energy transformation cycles [49,50], while providing recreational
benefits [51]. Among the most vulnerable and susceptible ecosystems are the forests of
the Amazon [52,53], Equatorial Africa [54,55], Vietnam [56], and Siberia [57]. Additionally,
forests situated at the boundaries of their natural distribution range, subject to negative
impacts from both natural and anthropogenic factors, warrant special attention. However,
the study of forest landscape functioning often receives insufficient attention.

The Crimean Peninsula, particularly Southeastern Crimea, represents a typical region
characterized by vulnerable forest landscapes. Moreover, Southeastern Crimea marks the
northern limit of downy oak forests [58]. In addition to forests, the region encompasses a
limited number of steppe landscapes, which also respond to climate change.

This study aims to: (1) assess changes in NDVI values within different vegetation
communities in Southeastern Crimea from 2001 to 2022; (2) analyze climatic changes in
Southeastern Crimea during the same period; (3) establish relationships between climatic
changes and vegetation dynamics in Southeastern Crimea from 2001 to 2022; and (4) evalu-
ate trends in vegetation change in Southeastern Crimea from 2001 to 2022.

Section 1 addresses foundational theoretical inquiries concerning the feasibility of
investigating vegetation dynamics through the application of the normalized difference
vegetation index (NDVI) in conjunction with geoinformatics methodologies. Elaborate
scrutiny is directed towards discerning the multifarious factors that exert potential in-
fluence upon the alterations within the vegetative canopy. Of particular emphasis is the
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intricate topic of global forest dynamics and transformation. The inaugural section en-
deavors to posit the proposition that the assimilation of the NDVI and the employment of
remote sensing techniques, including the dissection of satellite-derived imagery and the
computation of pertinent vegetation indices, confer the analytical capacity to evaluate the
intricate trajectory of vegetation dynamics, encompassing sylvan ecosystems, within the
expanse of the delimited study area. Section 2, elucidates the geographical parameters of
the research locale, encapsulating its physiogeographic attributes and the botanical com-
position indigenous to the study domain. Concomitantly, it expounds upon the research
methodology grounded in the exploitation of spatiotemporal variations intrinsic to the
NDVI. This methodological framework encompasses the computation of trend analyses,
coefficient of variation assessments, the application of the Hurst index, and the discernment
of climatic influencers shaping vegetational metamorphosis. Within Section 3, a com-
pendium of cartographic representations and graphical depictions, conceived through the
implementation of the methodology outlined in Section 2, is presented. Section 4 provides a
comprehensive evaluation of the obtained results, including a detailed exploration of their
implications and significance. Additionally, this section outlines the inherent limitations
that have constrained the scope and applicability of the conducted research. Section 5
encapsulates the definitive postulates derived from the research endeavor. Furthermore, it
undertakes a discourse on the potential trajectories for future investigations in this domain.

2. Materials and Methods
2.1. Study Area

Southeastern Crimea is situated in Eastern Europe, in the southeastern part of the
Crimean Peninsula (Figure 1). Its geographical coordinates range from 34◦45–35◦25′ E
and 44◦45–44◦55′ N. The area of Southeastern Crimea is approximately 568 square kilo-
meters. The boundary of Southeastern Crimea is defined according to [59]. The region is
characterized by a complex and rugged terrain, with limited surface water resources. A
detailed geographic description of the study area is provided in [58]. The territory of South-
eastern Crimea is characterized by Mediterranean climatic features. The average annual
air temperature within the Southeastern Crimea area, which varies from the northwest
to the southeast, ranges from +9◦ to +13◦. Southeastern Crimea experiences between 100
and 300 mm of precipitation during the winter period. The precipitation field decreases
from west to east, with the greatest amount falling in the northwestern part of the study
area. In summer, 80 to 160 mm of precipitation falls over the territory of Southeastern
Crimea, with the precipitation field decreasing from the northwest to the southeast. Both
in winter and in summer, the coastal areas of Southeastern Crimea are the most arid. The
annual distribution of precipitation varies from 700 to 350 mm in the west-to-east and
northwest-to-northeast directions [58].

2.2. Data
2.2.1. Vegetation of Southeastern Crimea

The vegetation data for Southeastern Crimea were obtained from the vegetation map
presented in [60]. This map served as the primary source of information on the vegetation
cover within the study area (Figure 2).

According to [60], the spatial distribution of vegetation in the study region is influenced
by elevation gradients. However, the elevation zones are not continuous belts due to
various local orographic factors. From north to south, as the absolute elevation decreases, a
succession of vegetation types can be observed. These include beech forests with a mixture
of Stephen maple, durmast oak forests with a blend of hornbeam and ash, pubescent oak
forests, pubescent oak light forest in the complex with tomillares- and savannoids-like
elements, and forb-feather grass true submontane steppes of the Crimean Mountains.
The flatter regions and lower coastal areas of Southeastern Crimea are predominantly
occupied by agricultural lands featuring orchards, vineyards, and cultivated fields. Along
the coastline, juniper forests can be found. Urban communities are widespread across the
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region. Table 1 provides an overview of the distribution of the major vegetation types
within Southeastern Crimea.
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Table 1. Major vegetation types in Southeastern Crimea.

Plant Community Area, km2

Juniper forests 38.42
Beech forests with Stephen maple 18.11
Durmast oak with hornbeam and ash forests 80.54
Pubescent oak forests and their derivative hornbeam forests 61.28
Pubescent oak light forest in the complex with tomillares and savannoids 169.03
Forb-feather grass true submontane steppes 85.39
Orchards and vineyards in the place of pubescent oak forests and
forb-feather grass genuine steppes 84.31

Cultivated areas under grain and tilled crops in the place of forb-feather
grass steppes and pubescent oak forests 2.58

2.2.2. Satellite Data

The study utilized MODIS satellite imagery covering the period from 2001 to 2022.
The use of MODIS imagery (500 m/pixel, 8-day composite) was primarily motivated
by its broader temporal coverage, including the acquisition of cloud-free and sparsely
clouded satellite images within the study area, in comparison with competitors such as
Landsat (30 m/pixel) and Sentinel-2 (10 m/pixel), which may offer higher spatial resolution.
MODIS has a higher frequency of Earth observation within the study area. Processing and
computation of NDVI values from MODIS satellite imagery were conducted using the
Google Earth Engine (GEE) cloud computing platform.

2.2.3. Temperature, Precipitation, and Solar Radiation Data

In recent years, extensive analysis has been conducted on various meteorological
databases [61,62]. Spatial and temporal distribution data of air temperature, precipitation,
and solar radiation fields were obtained from publicly available databases and published
works by other researchers. Air temperature data within the Southeastern Crimea region
were sourced from the ClimateEU database [63]. Precipitation and solar radiation data
were retrieved using the Google Earth Engine platform from the CHIRPS [62] and ERA5-
Land [64] datasets, respectively.

2.3. Methods
2.3.1. NDVI Trend Analysis

The analysis of NDVI trend changes within Southeastern Crimea was conducted for
the entire study area and for each pixel of the NDVI raster. The linear regression model
was extensively applied to assess the trend changes [38,65,66]. The assessment of NDVI
changes over time was performed using the formula:

Slope =
n ∗ NDVIi ∗∑n

i=1 i−∑n
i=1 i ∗∑n

i=1 i

n ∗∑n
i=1 i2 − (∑n

i=1 i)2 (1)

where i—year; n—the number of years of observation; NDVIi—NDVI value for year i.
Negative slope values indicate a decrease in NDVI values over time, while positive

slope values indicate an increase in NDVI values over time. Additionally, the p-values
were evaluated using the R Studio software (Version 2023.09.0+463; Posit PBC, Boston,
MA, USA).
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2.3.2. Coefficient of Variation

In order to evaluate the stability of NDVI values changes in the Southeastern Crimea
region from 2001 to 2022, the coefficient of variation was calculated. The coefficient of
variation was computed using the following formula:

CV =

√
1
n ∑n

i=1(NDVIi − NDVI)2

NDVI
(2)

where CV—coefficient of variation; n—the number of years in the study period; NDVIi—
NDVI value in year i; NDVI—the mean NDVI value for the entire study period [38].

The assessment of the coefficient of variation was performed using the R Studio
software package for each pixel within the raster in the study region. Data values from
the raster were extracted using the Quantum GIS software package (Version 3.16.16; Open
Source Geospatial Foundation (OSGeo), Beaverton, OR, USA). To gauge the stability of
changes, the coefficient of variation values was categorized into four classes based on the
guidelines provided in [37]: very stable (CV ≤ 0.04), stable (0.04 < CV ≤ 0.08), slightly
changed (0.08 < CV ≤ 0.12), and significantly changed (CV > 0.12) for each pixel in the
analyzed image.

2.3.3. Hurst Index

In order to assess strategies for the development of forest ecosystems, the Hurst index
was calculated as a means to forecast the evolution of temporal trends. The Hurst index is
an effective method for identifying long-term dependencies in time series [29]. Detailed
descriptions and calculations of the Hurst index can be found in several works [29,37,38].
The R Studio software package was utilized to simplify the calculations and determine the
Hurst index for each pixel within the study region. Data values were obtained from the
raster using the Quantum GIS software package. To calculate the Hurst index, data for
8-day periods of measurements of the MODIS space satellite were used. The calculation of
the Hurst index was conducted using the R Studio programming environment, facilitated
by the «pracma» library. This method involves the computation of the Hurst index through
R/S analysis. To execute the R/S analysis, temporal series spanning the years 2001 to
2022 were individually subjected to a comprehensive examination for stationarity or non-
stationarity. This evaluation was undertaken for each spatial cell. The Augmented Dickey–
Fuller test, available within the R Studio environment and facilitated by the «tseries»
library, was employed for this purpose. In instances where non-stationary time series
were encountered, a sequence of transformations was applied to render them stationary.
The R Studio program was employed for this transformation process, utilizing techniques
such as logarithmization and differencing. These methods were strategically utilized
to normalize variance and mitigate the presence of trends within the data. Upon the
attainment of stationary time series, the computation of the Hurst index was undertaken
through the utilization of the «pracma» library within R Studio. This index is derived
from the R/S analysis and serves as an indicator of long-range dependence or persistence
within the data. The calculated Hurst index values offer insights into the underlying
temporal dynamics of the analyzed variables across different spatial cells. It is worth noting
that this methodological approach aligns with a comprehensive workflow involving data
preprocessing, statistical analysis, and computational procedures, all orchestrated within
the R Studio environment.

2.3.4. Correlation Analysis

A correlation analysis was conducted to assess the influence of climatic factors, in-
cluding annual precipitation, annual air temperatures, and annual solar radiation, on the
average annual NDVI values within the Southeastern Crimea region. Correlation analysis
is a widely used technique for examining the relationships between climate factors and
NDVI values in various research regions worldwide [38,67,68]. Data on average annual
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NDVI values, air temperatures, precipitation, and solar radiation were obtained for a grid
of points using the Quantum GIS software package (specifically, the Vector–Raster SAGA
toolset). Each point within the presented grid of points functions as the central reference for
a square, measuring 500 by 500 m. Consequently, these points are uniformly separated by a
distance of 500 m from one another. The correlation calculation was performed according
to the following formula:

Rxy =
∑n

i=1[(xi − x)(yi − y)]√
∑n

i=1 (xi − x)2∑n
i=1(yi − y)

(3)

where Rxy—the correlation coefficient; n—the number of years in the study period; x and
y—the factors used for the correlation analysis, representing the sample means of the
variables [38].

The correlation assessment was performed using the R Studio software package. For
the purpose of conducting correlation analysis, NDVI and climatic datasets spanning the
years 2001 to 2022 were subjected to rigorous examination in terms of their stationarity or
non-stationarity. This examination was undertaken utilizing the Augmented Dickey–Fuller
test, a statistical method, within the computational environment of R Studio, specifically
leveraging the «tseries» library. Time series exhibiting non-stationarity underwent a pro-
cess of transformation into stationary series, accomplished through the application of
logarithmic and differencing techniques. These techniques were instrumental in homoge-
nizing variance across the temporal dimension and effecting the elimination of underlying
trends. Subsequent to the attainment of stationary time series, correlation coefficients were
computed individually for each temporal data point, a crucial step in elucidating the rela-
tionships between the NDVI and climatic variables. Upon generation of these correlation
datasets, a seamless transition was effected into the ArcGIS software package (Version 10.8;
ESRI, Redlands, CA, USA). Within this geospatial environment, an interpolation procedure,
employing the well-regarded «Spline» method, was executed. This interpolation operation
facilitated the derivation of intermediate values between discrete data points. Subsequently,
cartographic representations were generated to visually articulate the spatial patterns
emerging from the interpolated data, providing valuable insights into the dynamics of the
studied variables across the geographical extent.

3. Results
3.1. NDVI Dynamics in Southeastern Crimea

A consistent increase in the NDVI values has been observed in Southeastern Crimea
from 2001 to 2022 (Figures 3 and 4).

During the period from 2001 to 2022, the average NDVI value in Southeastern Crimea
was 0.443. The highest average values were recorded in 2006, reaching 0.469, while the
lowest values were observed in 2001–2002, at 0.397. In this context, the spatial distribution
of the NDVI values within the investigated area from 2001 to 2022 exhibits a range of
fluctuation spanning from 0.1 to 0.62. When comparing the annual average values for each
year with the long-term mean, a clear trend of dividing the study period into two periods
becomes apparent: before 2014, when the annual average NDVI values were consistently
lower than the long-term mean, and after 2014, when the annual average NDVI values
exceeded the long-term mean.

Figure 4 presents the dynamics of annual average NDVI values within the major
vegetation communities in Southeastern Crimea.

Within the juniper forests, the average NDVI value was 0.43; within pubescent oak
forests and their derivative hornbeam forests, it was 0.57; within the pubescent oak light forest
in the complex with tomillares and savannoids, it was 0.54; and within the pubescent oak
light forest in the complex with tomillares and savannoids, it was 0.45. Positive trends of
increasing NDVI values are evident, particularly within the oak forests. From Figures 3 and 4,
it is evident that there is a trend of increasing NDVI values, indicating overall vegetation
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growth in Southeastern Crimea from 2001 to 2022. The distribution of annual average NDVI
values within the major vegetation communities is presented in more detail in Figure 4,
where the durmast oak with hornbeam and ash forests exhibit the highest NDVI values,
while pubescent oak light forest in the complex with tomillares and savannoids show the
lowest values.
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Figure 4. Dynamics of annual average NDVI values from 2001 to 2022 within the major vegetation
communities in Southeastern Crimea: (a) durmast oak with hornbeam and ash forests; (b) pubescent
oak forests and their derivative hornbeam forests; (c) juniper forests; (d) pubescent oak light forest in
the complex with tomillares and savannoids.
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In the southeastern region of Crimea, it is noteworthy that the peak of vegetation
activity predominantly occurs in August. Figure 5 illustrates the monthly averages as well
as the maximum and minimum values of the NDVI (Normalized Difference Vegetation
Index) for the month of August, covering the period from 2001 to 2022.
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Figure 5. NDVI values in southeastern Crimea in August: (a) maximum values; (b) average values;
(c) minimum values.

Figure 6 presents the minimum, maximum, and average values of the NDVI vegetation
index for various vegetation communities in Southeastern Crimea during August.

The graph illustrating maximum NDVI values across the extensive study area demon-
strates a pronounced smoothing effect, thus limiting its ability to discern spatial and
temporal differentiations within the analyzed region. Conversely, as we narrow down the
spatial units under scrutiny and reduce their corresponding areas, the distinct differences
become more apparent, rendering maximum data more meaningful. It is worth noting,
however, that the practical application of maximum values should be exercised in light
of the total count of maximum pixels within the designated study area. Meanwhile, the
graph illustrating average NDVI values effectively captures discrepancies and offers the
analytical and interpretive potential that underpins its utility. The smoothing effect evident
in the graph of maximum values is an outcome of the representation of peak values of
individual pixels, which can be spatially dispersed across various segments of the studied
region, thereby rendering an incomplete reflection of the overarching patterns of change. A
comparable circumstance applies to the distribution of minimum NDVI values in August,
albeit, here, the scenario is characterized by a substantial dispersion of values, owing to
certain pixels yielding negative NDVI values. Consequently, the application of analysis to
both maximum and minimum values is, to a substantial extent, constrained. However, the
validity of such analyses should be predicated on the proportional prevalence of minimum
and maximum pixels within the examined region. We initially abstained from immediate
utilization of minimum values due to the region’s characteristics, wherein minimum values
could potentially encompass negative NDVI values attributed to the presence of water
bodies and the dynamic sea coastline. Through comprehensive analysis of all NDVI values
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within the study area, we determined that for certain years, negative minimum values
accounted for less than 0.1% of all data. A comparable pattern emerged in the distribution
of maximum values. Specifically, we scrutinized NDVI values > 0.9 and ascertained that,
for the majority of years, these values were either absent or constituted less than 0.5% of
the complete dataset. However, while information about minimum and maximum values
can serve to pinpoint localized growth or decline patterns, it is crucial to recognize that
these values do not offer a holistic depiction of vegetation dynamics or the comprehensive
operational landscape. Consequently, our study primarily relied upon the utilization of
average NDVI values. This preference is rooted in the fact that minimum and maximum
values, being isolated occurrences and accounting for a minute portion of the analyzed
dataset, cannot adequately encompass the multifaceted character of the studied territory in
Southeastern Crimea.
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Figure 6. NDVI values within vegetation communities of Southeastern Crimea in August: (a) maxi-
mum values; (b) average values; (c) minimum values (numerical indicators on the graphs denoted
as: 1—juniper forests; 2—beech forests with Stephen maple; 3—durmast oak with hornbeam and
ash forests; 4—pubescent oak forests and their derivative hornbeam forests; 5—pubescent oak light
forest in the complex with tomillares and savannoids; 6—forb-feather grass true submontane steppes;
7—orchards and vineyards in the place of pubescent oak forests and forb-feather grass genuine
steppes; 8—cultivated areas under grain and tilled crops in the place of forb-feather grass steppes
and pubescent oak forests; 9—urbocoenoses of inhabited localities.

3.2. NDVI Trends

Significant spatial and temporal differentiation is observed within the territory of
Southeastern Crimea, not only in the NDVI values themselves but also in the direction of
their trends. Figure 7 illustrates the analysis of NDVI trend changes for the entire period
from 2001 to 2022, as well as for five-year periods.
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As shown in Figure 7a, there is an overall positive trend of NDVI values from 2001 to
2022, indicating an increase in vegetation biomass. However, negative trends are observed
in specific areas near the cities of Sudak and Feodosia. When examining the spatial–
temporal dynamics for five-year periods (Figure 7b–f), a complex pattern emerges within
each spatial cell (pixel). During the period from 2001 to 2004, a noticeable decline in
vegetation biomass and a decrease in NDVI values are observed in the central, northern,
and northwestern parts of Southeastern Crimea. From 2005 to 2009, favorable conditions
for vegetation growth are established in these areas, as indicated by positive values of
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the NDVI trend (Slope NDVI). Conversely, in areas where environmental conditions for
vegetation growth were favorable from 2001 to 2004, conditions leading to a decrease in
vegetation biomass are observed from 2005 to 2009. The situation in 2010–2014 is similar
to that in 2001–2004. From 2015 to 2019, a complex pattern of growth and decline in
vegetation is observed, yet the overall situation resembles the period of 2005–2009. Notably,
starting from 2015, negative trends in NDVI values are observed in the western and
northwestern parts of Southeastern Crimea, indicating a decrease in vegetation biomass.
Therefore, quasi-five-year cycles can be identified, reflecting changes in vegetation cover in
Southeastern Crimea.

If we consider the average values of the NDVI trend within the major vegetation
communities, it can be observed that there is generally either an increase or a relatively
stable trend in vegetation biomass (Table 2).

Table 2. Average multi-year trend values within the vegetation communities of Southeastern Crimea
from 2001 to 2022.

Variation Trend
Trend Prediction

Minimum Maximum Average

Juniper forests −0.0012 0.0060 0.0015

Beech forests with Stephen maple 0.0000 0.0040 0.0014

Durmast oak with hornbeam and ash forests −0.0007 0.0050 0.0010

Pubescent oak forests and their derivative
hornbeam forests 0.0000 0.0040 0.0014

Pubescent oak light forest in the complex with
tomillares and savannoids −0.0020 0.0050 0.0010

Forb-feather grass true submontane steppes −0.0020 0.0103 0.0010

Orchards and vineyards in the place of pubescent
oak forests and forb-feather grass genuine steppes −0.0030 0.0050 0.0003

Cultivated areas under grain and tilled crops in
the place of forb-feather grass steppes and
pubescent oak forests

−0.0010 0.0030 0.0011

Urbocoenoses of inhabited localities −0.0020 0.0050 0.0010

Anthropogenically created vegetation communities, such as gardens and vineyards,
exhibit the least variability as they are artificially maintained throughout their existence
due to human activities.

3.3. Coefficient of Variation

Let us now delve into a more detailed analysis of the coefficient of variation (CV) of
NDVI values in Southeastern Crimea (Figure 8).

By assessing the CV of NDVI values, we were able to identify the most stable and
highly variable areas within Southeastern Crimea. As shown in Figure 8, a significant
portion of the study area exhibits a stable distribution of NDVI values. However, minor
and significant fluctuations are predominantly observed in the southern and southeast-
ern regions.

Table 3 presents the changes in the CV of NDVI within the vegetation communities of
Southeastern Crimea from 2001 to 2022.
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Table 3. Average multi-year changes in trend values within vegetation communities of Southeastern
Crimea (2001–2022).

Variation Trend
CV

Minimum Maximum Average

Juniper forests 0.04 0.21 0.06
Beech forests with Stephen maple 0.04 0.07 0.05
Durmast oak with hornbeam and ash forests 0.03 0.09 0.05
Pubescent oak forests and their derivative
hornbeam forests 0.03 0.09 0.05

Pubescent oak light forest in the complex with
tomillares and savannoids 0.03 4.43 0.06

Forb-feather grass true submontane steppes 0.04 2.90 0.08
Orchards and vineyards in the place of pubescent
oak forests and forb-feather grass genuine steppes 0.03 0.44 0.08

Cultivated areas under grain and tilled crops in
the place of forb-feather grass steppes and
pubescent oak forests

0.06 0.13 0.09

Urbocoenoses of inhabited localities 0.04 0.19 0.08

As can be observed from Table 3 and the Figure 8, the forest ecosystems exhibit greater
stability compared with the steppe ecosystems and anthropogenically created agricultural
lands and populated areas.

3.4. Hurst Index

The Hurst index provides a comprehensive assessment of vegetation variability and
offers insights into forecasted changes. Figure 9 illuminates the spatial differentiation
of Hurst index values in Southeastern Crimea, while Table 4 furnishes a comprehensive
account of the minimum, maximum, and mean Hurst index values pertaining to the
principal vegetation communities within the same region.
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Table 4. Hurst index values within vegetation communities of Southeastern Crimea (2001–2022).

Hurst Index
Minimum Maximum Average

Juniper forests 0.49 0.85 0.73
Beech forests with Stephen maple 0.58 0.84 0.71
Durmast oak with hornbeam and ash forests 0.58 0.87 0.74
Pubescent oak forests and their derivative
hornbeam forests 0.59 0.88 0.74

Pubescent oak light forest in the complex with
tomillares and savannoids 0.56 0.93 0.76

Forb-feather grass true submontane steppes 0.54 0.94 0.76
Orchards and vineyards in the place of pubescent
oak forests and forb-feather grass genuine steppes 0.59 0.93 0.77

Cultivated areas under grain and tilled crops in
the place of forb-feather grass steppes and
pubescent oak forests

0.65 0.87 0.74

Urbocoenoses of inhabited localities 0.61 0.94 0.78

It has been determined that the range of Hurst index values within Southeastern
Crimea varies from 0.49 to 0.96, with a calculated mean value of 0.75. In the broader
context of the Southeastern Crimea region, it is evident that the range of Hurst index values,
calculated for NDVI data, exhibits pronounced spatial heterogeneity. The lowest Hurst
index values are predominantly observed in the northernmost and northwestern sectors of
the research area, while the highest values are consistently recorded in the coastal, southern,
and southeastern regions. Notably, elevated Hurst index values are particularly prominent
in proximity to urban settlements such as Shchebetovka, Kurortnoe, Sudak, Solnechnaya
Dolina, and others.

3.5. Influence of Climatic Factors on NDVI Changes in Southeastern Crimea

To assess the impact of climatic factors on NDVI changes, an examination of the
temporal dynamics of annual mean air temperature, precipitation, and solar radiation
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within Southeastern Crimea was conducted. Additionally, correlation coefficients were
computed to determine the relationship between these factors and NDVI values (Figure 10).

Forests 2023, 14, 1969 14 of 23 
 

 

research area, while the highest values are consistently recorded in the coastal, southern, 

and southeastern regions. Notably, elevated Hurst index values are particularly promi-

nent in proximity to urban settlements such as Shchebetovka, Kurortnoe, Sudak, 

Solnechnaya Dolina, and others. 

Table 4. Hurst index values within vegetation communities of Southeastern Crimea (2001–2022). 

 
Hurst Index 

Minimum Maximum Average 

Juniper forests 0.49 0.85 0.73 

Beech forests with Stephen maple 0.58 0.84 0.71 

Durmast oak with hornbeam and ash forests 0.58 0.87 0.74 

Pubescent oak forests and their derivative hornbeam forests 0.59 0.88 0.74 

Pubescent oak light forest in the complex with tomillares and savannoids 0.56 0.93 0.76 

Forb-feather grass true submontane steppes 0.54 0.94 0.76 

Orchards and vineyards in the place of pubescent oak forests and forb-

feather grass genuine steppes 
0.59 0.93 0.77 

Cultivated areas under grain and tilled crops in the place of forb-feather 

grass steppes and pubescent oak forests 
0.65 0.87 0.74 

Urbocoenoses of inhabited localities 0.61 0.94 0.78 

3.5. Influence of Climatic Factors on NDVI Changes in Southeastern Crimea 

To assess the impact of climatic factors on NDVI changes, an examination of the tem-

poral dynamics of annual mean air temperature, precipitation, and solar radiation within 

Southeastern Crimea was conducted. Additionally, correlation coefficients were com-

puted to determine the relationship between these factors and NDVI values (Figure 10). 

 

 

(a) (b) 

 

 

(c) (d) 

y = 0.0668x − 122.15
R² = 0.3241

10

11

11

12

12

13

13

14

1995 2000 2005 2010 2015 2020

Te
m

p
er

at
u

re
, о

С

Year

y = −0.714x + 1928.4
R² = 0.0034

300

350

400

450

500

550

600

650

700

1995 2000 2005 2010 2015 2020 2025

P
re

ci
p

it
at

io
n

, m
m

 

Year

Forests 2023, 14, 1969 15 of 23 
 

 

 

 

(e) (f) 

Figure 10. Relationship between air temperature, precipitation, solar radiation, and NDVI: (a) dy-

namics of annual mean air temperature in Southeastern Crimea; (b) correlation coefficient between 

annual mean NDVI values and air temperature; (c) dynamics of annual mean precipitation in South-

eastern Crimea; (d) correlation coefficient between annual mean NDVI values and precipitation; (e) 

dynamics of annual mean solar radiation in Southeastern Crimea; (f) correlation coefficient between 

annual mean NDVI values and solar radiation. 

The findings from Figure 10 reveal an upward trend in air temperature and solar 

radiation, accompanied by a slight reduction in precipitation levels in Southeastern Cri-

mea. Notably, despite the modest decrease in precipitation, there exists a significant cor-

relation between precipitation and NDVI values. Moreover, the correlation coefficients 

between NDVI and air temperature, as well as NDVI and solar radiation, indicate a mod-

erate level of significance. 

4. Discussion 

Studying vegetation changes is a critical task as vegetation responds rapidly to various 

environmental factors. This is particularly important in regions with forests, which are valua-

ble resources for multiple sectors. In this study, we analyzed the dynamics of NDVI and Hurst 

index values within the major vegetation communities of Southeastern Crimea. 

Contrary to several published works [29,37,69], Southeastern Crimea does not exhibit 

significant variability in NDVI values. This can be attributed to the smaller study area 

compared with previous studies [69,70] and the prevalence of natural vegetation cover 

rather than contrasting or absent vegetation cover. 

Although there are studies on NDVI dynamics for the Crimean Peninsula and its 

parts [42,43,71–73], Southeastern Crimea remains understudied. Notably, there are works 

assessing vegetation dynamics [74]. Fan et al. [70] calculated NDVI changes in the Cri-

mean Peninsula within the Belt and Road Initiative region from 1982 to 2015. However, 

comparing their data with ours is challenging due to differences in spatial scales. 

Comparing the Hurst index values of Southeastern Crimea with other regions world-

wide, values below 0.5 prevail, similar to the Tibet Autonomous Region (China) [69] and 

Inner Mongolia (China) [29]. However, the Hurst index values (<0.4) indicate isolated cen-

ters of anti-sustainability within the downy oak forests of the Karadag Nature Reserve, 

supporting our previous findings [58]. Conversely, centers of instability predominantly 

occur at the boundaries of urban areas due to negative anthropogenic impact. Overall, 

studying NDVI dynamics and trends helps identify the most and least susceptible land 

and forest ecosystems. However, defining classes and boundaries presents challenges 

compared with previous studies [37,38], and alternative classification variants from 

[37,38] are not applicable in our research. 

Forest ecosystems exhibit the highest correlation between vegetation cover and air 

temperature, precipitation, solar radiation, indicating favorable conditions for forest 

y = 2.0729x − 2634.2
R² = 0.1501

1480

1500

1520

1540

1560

1580

1600

1620

1640

1995 2000 2005 2010 2015 2020 2025

D
o

w
n

w
ar

d
 s

u
rf

ac
e 

sh
o

rt
w

av
e 

ra
d

ia
ti

o
n

, W
/m

2

Year

Figure 10. Relationship between air temperature, precipitation, solar radiation, and NDVI: (a) dynam-
ics of annual mean air temperature in Southeastern Crimea; (b) correlation coefficient between annual
mean NDVI values and air temperature; (c) dynamics of annual mean precipitation in Southeastern
Crimea; (d) correlation coefficient between annual mean NDVI values and precipitation; (e) dynamics
of annual mean solar radiation in Southeastern Crimea; (f) correlation coefficient between annual
mean NDVI values and solar radiation.
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The findings from Figure 10 reveal an upward trend in air temperature and solar
radiation, accompanied by a slight reduction in precipitation levels in Southeastern Crimea.
Notably, despite the modest decrease in precipitation, there exists a significant correlation
between precipitation and NDVI values. Moreover, the correlation coefficients between
NDVI and air temperature, as well as NDVI and solar radiation, indicate a moderate level
of significance.

4. Discussion

Studying vegetation changes is a critical task as vegetation responds rapidly to various
environmental factors. This is particularly important in regions with forests, which are
valuable resources for multiple sectors. In this study, we analyzed the dynamics of NDVI
and Hurst index values within the major vegetation communities of Southeastern Crimea.

Contrary to several published works [29,37,69], Southeastern Crimea does not exhibit
significant variability in NDVI values. This can be attributed to the smaller study area
compared with previous studies [69,70] and the prevalence of natural vegetation cover
rather than contrasting or absent vegetation cover.

Although there are studies on NDVI dynamics for the Crimean Peninsula and its
parts [42,43,71–73], Southeastern Crimea remains understudied. Notably, there are works
assessing vegetation dynamics [74]. Fan et al. [70] calculated NDVI changes in the Crimean
Peninsula within the Belt and Road Initiative region from 1982 to 2015. However, comparing
their data with ours is challenging due to differences in spatial scales.

Comparing the Hurst index values of Southeastern Crimea with other regions world-
wide, values below 0.5 prevail, similar to the Tibet Autonomous Region (China) [69] and
Inner Mongolia (China) [29]. However, the Hurst index values (<0.4) indicate isolated
centers of anti-sustainability within the downy oak forests of the Karadag Nature Reserve,
supporting our previous findings [58]. Conversely, centers of instability predominantly
occur at the boundaries of urban areas due to negative anthropogenic impact. Overall,
studying NDVI dynamics and trends helps identify the most and least susceptible land and
forest ecosystems. However, defining classes and boundaries presents challenges compared
with previous studies [37,38], and alternative classification variants from [37,38] are not
applicable in our research.

Forest ecosystems exhibit the highest correlation between vegetation cover and air
temperature, precipitation, solar radiation, indicating favorable conditions for forest growth.
However, the downy oak forests, located at the edge of their range, face unfavorable
environmental conditions and cannot achieve their full potential in terms of green biomass.
This underscores the presence of valuable and less vulnerable ecosystems within the
Crimean Mountains.

Our findings are closely related to the data obtained by Han et al. [37] in Anhui
Province (China), which indicates that the period around 2014–2015 marks a turning point
in NDVI trend changes. However, unlike Han et al. [37], who attribute this to increased
catastrophic natural phenomena, such as landslides and avalanches, this does not apply to
Southeastern Crimea, where anthropogenic factors and global circulation processes play a
significant role.

Considering vegetation-covered regions, NDVI values cannot be negative (unlike
water surfaces), allowing us to analyze average values. However, due to pixel size limita-
tions in satellite imagery, water bodies may be included, which are subject to boundary
changes due to natural and anthropogenic factors, particularly relevant in the Crimean
Peninsula [75]. Nevertheless, the influence on calculated NDVI values in our study region
is minor since it belongs to water-deficient areas [58] and comprises numerous natural
landscapes devoid of natural or human-created water bodies. Analyzing average annual
NDVI values, as presented in Section 3, does not provide a clear understanding of change
trends, necessitating more complex indicators to assess vegetation changes. The calculation
of Hurst index and trend prediction values effectively addresses this research objective.
Thus, the Hurst index proves to be a useful tool for analyzing future changes in regional



Forests 2023, 14, 1969 17 of 23

NDVI, determining the stability or instability of trends, and predicting long-term vegetation
cover changes.

The question of selecting the primary factor or combination of factors influencing
vegetation growth within a specific research region remains unresolved. While temperature,
precipitation, and solar radiation significantly contribute to the functioning of distinct veg-
etation communities in Southeastern Crimea, they are not the sole factors. Identifying and
analyzing various environmental factors that influence vegetation functioning represent
a promising research direction. The utilization of G.E. Hutchinson’s concept of multidi-
mensional ecological niche [76] is highly relevant for studying vegetation dynamics. This
framework provides valuable insights into the ecological requirements and responses of
species within their respective environments. Simultaneously, our analysis has exclusively
examined the impact of three climatic factors on vegetation change. Recognizing the intri-
cate influence of climatic variables on the development and functioning of ecosystems and
landscapes, it is imperative for future investigations to encompass a more comprehensive
array of external factors. This expansion should not only encompass climatic variables but
also extend to various other elements within the external environment.

When addressing the matter of selecting vegetation indices appropriate for the evalua-
tion of vegetative landscape dynamics, the adoption of the NDVI demonstrates markedly
heightened utility and applicability when compared with alternative vegetation indices.
The preference for the NDVI vegetation index can primarily be attributed to its extensive
prevalence and its capacity for facilitating inter-comparability among datasets generated by
researchers. Esteemed scholars, including those referenced in sources [37,38,77], affirm that
the NDVI possesses an enhanced capacity for delineating the growth status of vegetation,
engendered by its heightened sensitivity to vegetative constituents. Accordingly, it is
conventionally embraced as an efficacious evaluative metric for the surveillance of regional
ecological systems. In the words of Li et al. [78], amongst the entire gamut of vegetation
indices, the NDVI evinces a robust correlation with net primary productivity (NPP), canopy
extent, and biomass. This confluence of attributes enables it to aptly encapsulate and
gauge the trajectory of vegetative growth. Consequently, it assumes prominence within
investigations into the temporal vicissitudes of regional vegetative ecosystems.

Concurrently, an extensive array of vegetation indices, amenable to computation based
on satellite-derived imagery, exists. For instance, the ratio vegetation index (RVI) [79], in-
frared percentage vegetation index (IPVI) [80], and transformed vegetation index (TVI) [81],
while relying on identical satellite image channels as NDVI for computation, are integrally
linked to NDVI. Their autonomous consideration, dissociated from the NDVI framework,
is bereft of practical import. Notably, NDVI’s ascendancy is underscored by its scalar
range, spanning from −1 to 1, unlike the ratio vegetation index (RVI) [79] or the difference
vegetation index (DVI) [82], both characterized by dimensionality sans constraints, thereby
exacerbating the intricacies attendant upon inter-data comparison and interpretation.

Pioneers in the field, including Huete et al. [83] and Elvidge and Lyon [84], have
underscored the substantive influence of soil cover upon vegetation indices. However, it is
germane to apprehend that the sensitivity of all vegetation indices to the overprint of soil
cover and unadorned tracts bereft of vegetation is ubiquitous. In the context of an examined
image pixel, NDVI is amenable to calculation, encapsulating the entwined characteristics of
soil and aquatic features. Yet, with the burgeoning of vegetative constituents within the con-
fines of this pixel, the NDVI amplitude burgeons in tandem, reflective of the enshrouding of
soil domains or the supplanting of erstwhile aquatic expanses. Moreover, certain vegetation
indices encompass considerations of both soil and ground surface influence. Instances
thereof comprise the transformed soil adjusted vegetation index (TSAVI) [85], modified
soil adjusted vegetation index (MSAVI) [86], and enhanced vegetation index (EVI) [87].
Their deployment, however, is confined to locales characterized by a luxuriant mantle of
vegetation, encompassing the studied region. This confinement emanates from the intricate
constraints impeding precise delimitation of soil constants, as delineated extensively in the
monograph [88]. Under these circumstances, the predilection for NDVI prevails, owing to
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its optimized resonance with vegetative profusion, emblematic of Southeastern Crimea’s
ecological tapestry. Although the integration of the enhanced vegetation index (EVI) was
contemplated during the preparatory stages of inquiry, its notable proclivity for inaccuracy
precluded its integration into the investigative paradigm. Furthermore, as underscored
in the discourse [42], EVI values evince marginal alignment with alternative vegetation
index metrics (most notably NDVI). The calculus of EVI betrayed an elevated susceptibility
to terrain topography, a consideration that becomes particularly salient in the backdrop
of the study area’s intricate and variegated topographical terrain, thereby giving rise to
pronounced disparities [89]. Martín-Ortega et al. [90] elucidate the fact that the enhanced
vegetation index (EVI) displays enhanced sensitivity to biophysical parameters such as leaf
area index (LAI), and is notably impacted by atmospheric conditions to a greater extent than
the conventional normalized difference vegetation index (NDVI), owing to the inherent
non-ratio nature of EVI. Moreover, empirical evidence underscores that EVI exhibits a
heightened degree of responsiveness, approximately five times greater than NDVI, towards
fluctuations in near-infrared reflectance (NIR). In contrast, Martín-Ortega et al. [90] observe
that the ratio-based formulation of NDVI confers the ability to effectively ameliorate a
substantial quantum of perturbations stemming from dynamic solar angles, topographical
variations, cloud-induced interference, and shading effects. This inherent property endows
NDVI with enhanced robustness against alterations in luminous conditions.

The incorporation of vegetation indices calibrated to ameliorate the influence of soil
cover necessitates a nuanced incorporation of regional idiosyncrasies, concomitant with
the integration of sundry correction coefficients. These coefficients, inevitably variably
distributed across raster cells due to the heterogeneity characterizing soil and terrestrial sub-
strate, preclude universal homogenization. Ergo, the electivity for NDVI culminates in its
conspicuously salient relevance for the entire Crimea Peninsula, and Southeastern Crimea,
specifically, as manifestly chronicled in scholarly contributions [73,74,91]. The ramifications
of soil characteristics at localized and regional research junctures command prodigious
endeavor and temporal investment in the context of field and laboratory spectroscopic
evaluations of soil. Analogous undertakings, frequently conducted to fine-tune global
models and extricate regional particularities across assorted scientific disciplines leveraging
remote terrestrial sensing datasets, are amply discernible in the extant corpus [92,93].

Another crucial aspect to consider in the analysis of NDVI value changes and the
calculation of the Hurst index was the transformation of time series into a stationary form.
This was necessitated by the fact that one of the most widely used methods for calculating
the Hurst exponent is the R/S analysis. Holl et al. [94] point out that in the natural world,
real-life data often contains inherent trends that render the series nonstationary, thereby
rendering the R/S analysis inappropriate. This phenomenon arises from the fact that the
R/S analysis can be applied to series that exhibit a degree of stationarity on mean [95].
Furthermore, as indicated by reference [96], it is imperative to consider that in order
to compute the Hurst index, the length of the observational series should encompass a
minimum of 256 measurements.

Another limitation of this study is the paucity of data and the challenges associated
with the geospatial processing of climatic characteristics within Southeastern Crimea. We
concur with the findings of Han et al. [37], who highlighted that different interpolation
methods for climatic data can lead to divergent raster fields of climate factors.

Furthermore, it is important to recognize the potential use of more detailed satellite
imagery with higher spatial resolution (e.g., Sentinel-2 with a resolution of 10 m/pixel), in
contrast to the MODIS data employed in this study. Nevertheless, the use of MODIS satellite
imagery was primarily driven by its extensive spatial and temporal coverage, despite its
lower resolution. As satellite imaging frequency increases in the future, endeavors should
be made to enhance data quality and obtain higher-resolution datasets. Additionally, it is
imperative to improve the quality of available open climatic data, which currently can only
be spatially correlated with MODIS satellite imagery. Another pivotal constraint inherent to
this research pertains to the observation duration, a parameter dictated by the accessibility
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of data procured from orbiting satellites. In the case of the MODIS satellite, as delineated
within our investigation, the dataset spans from 2001 onwards. In the event alternative
spaceborne satellites are employed for the acquisition of requisite multispectral satellite
imagery, instrumental for NDVI computations, the temporal extent of observational records
could conceivably expand (as in the case of Landsat) or conversely contract (as exemplified
by Sentinel-2). Another salient consideration in research lies in the recognition that the
computation of NDVI values, executed across diverse satellite platforms and software
suites (such as MODIS, Landsat, Sentinel-2, among others), inherently yields variations due
to discrepant imaging epochs. The challenge of coherently aligning images for a specific
temporal point compounds this variation. Moreover, even in instances where alignment is
achieved, the fact remains that MODIS, Landsat, Sentinel-2, and analogous satellite sensors
capture imagery within distinct spectral ranges. Consequently, the comparative analysis of
resultant data emerges as an intricate endeavor. It is imperative to duly acknowledge this
intricacy as a prospective stipulation shaping the contours of the study’s limitations.

Addressing these limitations and incorporating advanced data sources and analytical
methods will contribute to a more comprehensive understanding of vegetation dynamics
and the underlying environmental factors in Southeastern Crimea.

5. Conclusions

Vegetation cover serves as a crucial indicator of the environmental condition and offers
valuable insights into ecosystem health. It plays a significant role in assessing environ-
mental parameters, monitoring anthropogenic activities, evaluating ecosystem services,
and understanding forest landscape functions. Understanding the dynamics of vegetation
change is essential for effective conservation planning, species preservation, sustainable
forest management, and protection. However, it is crucial to recognize the conflicting
interests between economic exploitation of forests and environmental conservation efforts.

To achieve a balance between economic development and environmental preservation,
it is necessary to comprehend the impact of human activities and climate change on vege-
tation cover. Future research should focus on comprehensive analysis and comparison of
various vegetation indices beyond NDVI, exploring functional characteristics of vegetation
such as primary productivity and carbon sequestration, integrating NDVI calculations
with other remote sensing techniques such as unmanned aerial vehicle (UAV) imagery
for precise assessments of canopy structure and three-dimensional characteristics, and
investigating localized redistribution of key meteorological parameters. An auspicious
avenue of research lies in the utilization of detrended fluctuation analysis techniques for
the assessment of NDVI dynamics.

The utilization of geospatial analysis and remote sensing techniques enables the acqui-
sition of extensive spatial information regarding vegetation dynamics and its correlation
with climate change. This knowledge facilitates improved environmental planning, decision
making, and the implementation of sustainable practices for conservation and development.

Studying vegetation dynamics provides valuable insights into environmental changes
and plays a pivotal role in preserving natural ecosystems, managing resources, and striving
towards sustainable development objectives.
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