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Abstract: Aimed at addressing deficiencies in existing image fusion methods, this paper proposed a
multi-level and multi-classification generative adversarial network (GAN)-based method (MMGAN)
for fusing visible and infrared images of forest fire scenes (the surroundings of firefighters), which
solves the problem that GANs tend to ignore visible contrast ratio information and detailed infrared
texture information. The study was based on real-time visible and infrared image data acquired by
visible and infrared binocular cameras on forest firefighters’ helmets. We improved the GAN by, on
the one hand, splitting the input channels of the generator into gradient and contrast ratio paths,
increasing the depth of convolutional layers, and improving the extraction capability of shallow
networks. On the other hand, we designed a discriminator using a multi-classification constraint
structure and trained it against the generator in a continuous and adversarial manner to supervise the
generator, generating better-quality fused images. Our results indicated that compared to mainstream
infrared and visible image fusion methods, including anisotropic diffusion fusion (ADF), guided
filtering fusion (GFF), convolutional neural networks (CNN), FusionGAN, and dual-discriminator
conditional GAN (DDcGAN), the MMGAN model was overall optimal and had the best visual effect
when applied to image fusions of forest fire surroundings. Five of the six objective metrics were
optimal, and one ranked second-to-optimal. The image fusion speed was more than five times faster
than that of the other methods. The MMGAN model significantly improved the quality of fused
images of forest fire scenes, preserved the contrast ratio information of visible images and the detailed
texture information of infrared images of forest fire scenes, and could accurately reflect information
on forest fire scene surroundings.

Keywords: forest fire scenes; visible and infrared images; image fusion; deep learning; GAN

1. Introduction

Forest fire surroundings are affected by terrain, meteorology, light, smoke, fire spread,
and other factors, making it difficult to judge the internal conditions of the forest fire scene,
which can easily lead to casualties if rescuers make errors in judgment during operations [1].
Therefore, firefighters need to quickly and accurately understand the conditions inside
the fire and make avoidance decisions. Forest fire surroundings have obvious visible
and infrared image feature information. Visible images of forest fire scenes can clearly
express texture detail information, but they are difficult to adapt to changes in forest fire
surroundings; infrared images of forest fire scenes are less affected by light and smoke and
can better reflect the changes in forest fire surroundings, but it is difficult to reflect texture
detail features in them.

Due to the complexity of forest fire scene surroundings, relying only on single-sensor
data often does not provide enough information to support firefighters’ decision-making.
Image fusion technology has important advantages in forest fire scene rescue. By fusing
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visible and infrared images of forest fires, the advantageous features of both sources can be
fully utilized to provide more comprehensive and accurate fire scene information. Visible
light images can provide clear texture details to help firefighters recognize objects and
terrain, but they are affected by factors such as light and smoke. Infrared images, on the
other hand, can better reflect the distribution of hot spots and fire expansion, and are
relatively insensitive to light and smoke. Therefore, the study of visible and infrared image
fusion in the scene of forest fires can make up for the limitations of each of the images,
provide more comprehensive and accurate information about the fire scene, improve the
efficiency and safety of rescuers, and thus significantly reduce the casualties caused by forest
fires. Image fusion technology has gained widespread attention for its convenient, fast
and economical features, assisting firefighters in making accurate decisions and providing
an efficient method for fire rescue. At the same time, the application of image fusion
technology can also provide a reference and inspiration for image processing and analysis
in other fields and promote the development and application of imaging technology.

In addition, many studies have shown that image fusion techniques have the potential
for practical applications in forest fire scene rescue. For example, Dios et al. used image
fusion techniques to improve the accuracy of fire source localization, fire monitoring,
and fire boundary identification [2]. Nemalidinne et al. used visible and infrared image
fusion techniques to improve fire detection [3]. These findings suggest that image fusion
techniques have great potential to improve the efficiency and safety of firefighters in forest
fire rescues.

The scene of forest fire image fusion is a special form of image fusion field. Cur-
rent visible and infrared image fusion methods can be classified into traditional methods
and deep learning-based methods according to their principles. Traditional image fusion
methods mainly include spatial domain methods and transform domain methods. Repre-
sentative methods include logical filtering methods [4], color space methods [5], multi-scale
transform methods [6], principal component analysis methods [7], sparse representation
methods [8], and wavelet transform fusion methods [9]. However, traditional fusion meth-
ods have large limitations in terms of feature extraction and fusion rules. On the one hand,
the diversity of source images makes the manual design of feature extraction and fusion
rules increasingly complex; on the other hand, the generalizability of traditional methods
is limited, and further improvement of fusion performance faces difficulties.

In recent years, the rapid development of deep learning has driven great progress
in the field of image fusion. Deep learning-based methods utilize the powerful nonlin-
ear fitting ability of neural networks to make fused images with desired distributions
and further improve the performance of fused images. Convolutional neural networks
(CNN) construct deep structural neural networks by training on natural samples, which
enables a deeper image feature extraction to maintain the integrity of structural information
and the preservation of detailed information in fused images [10]. CNNs have achieved
good performance in multifocal images, but their computation is time-consuming, and
the fusion performance depends on the characteristics of the training samples [11]. Ma
et al. innovatively introduced generative adversarial networks (GAN) into the field of
image fusion, combining adversarial learning and content-specific loss bootstrapping to
achieve the preservation of significant contrast and texture details in fused images in an
unsupervised situation [12]. However, the aforementioned methods do not sufficiently
consider the extraction of information from shallow networks when extracting source
image information, so there is still room for further improvement in fusion performance.
If we can improve the degree of information utilization in the training process of GANs
and achieve a good balance in maintaining visible and infrared image information, we are
bound to further improve the performance of image fusion.

The superior performance of existing deep learning-based methods relies on a large
number of labeled (reference image) datasets. However, labeled images are difficult to
obtain for forest fire scene image fusion tasks. In order to make full use of the small
amount of labeled data and a large amount of unsupervised data, this paper proposes the
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visible and infrared image fusion of forest fire scenes using a method based on a multi-
level and multi-classification GAN, referred to as MMGAN, which divides the input of
the generator into a gradient path and intensity path, constructs primary and secondary
information loss functions, and improves the depth of the convolutional layer of the
generator, enhancing the information extraction capability of the shallow network. A
multi-classifier is used in the discriminator, which determines the probability that the input
is a visible image and an infrared image. By constraining these two probabilities through
successive standoff learning, the generator can align the probability distributions of both
IR and visible images. This effectively prevents the dilution of dominant information,
resulting in fused images with pronounced contrast and intricate texture details. The
comparative experimental results show that the proposed method can better accomplish
the fusion of effective information from visible and infrared images of the forest fire scene,
and the proposed method has better fusion performance compared with other, similar
fusion methods. In addition, the proposed method has good generalizability and can be
extended to any visible and infrared image fusion dataset.

2. Materials and Methods
2.1. Data and Pre-Processing

The visible and infrared image data of the forest fire scene in this study were acquired
in real time from forest fires in Xintian County, Yongzhou City, Hunan Province, through a
visible and infrared binocular camera integrated into a single firefighter’s helmet. Xintian
County is located in the southern part of Hunan Province, a region rich in forest resources
and characterized geographically by mountainous, hilly, and forest-covered areas. The
forest fire encompasses multiple ignition points and areas, yielding a wealth of visible and
infrared image data. The acquired image data captured the characteristics of the fire smoke,
burned areas and surroundings, and recorded the different stages and locations of the fire,
providing a valuable data resource for research.

The TNO dataset comprises multispectral images of various scenes captured by differ-
ent multi-band camera systems, including Athena, DHV, FEL and TRICLOBS. It is a widely
used public research dataset in the field of infrared and visible image fusion, and its images
have been subjected to strict image alignment [13].

In this paper, the forest fire scene’s visible and infrared images and the TNO public
dataset were selected as the data for the comparison experiments. The number of image
pairs used for testing in the forest fire domain was 50 pairs, and 4000 pairs of images were
cropped using a sliding window of 8 × 10; the number of image pairs used for testing in
the TNO dataset was 100 pairs, and 8000 pairs of images were cropped using a sliding
window of 8 × 10. All of these images maintain a uniform size of 2.6 × 3.5 cm, accounting
for various factors such as data acquisition and processing.

To address the problems arising from the acquisition and transmission of forest
fire scene images, the acquired images are preprocessed, including (1) a particle swarm
optimization-based approach to grayscale forest fire scene images [14,15], based on the
grayscale histogram distribution law of high pixel values in a single channel of a color
image, particle swarm search is used to select the optimal threshold, as well as to auto-
matically generate the weights of components for grayscale processing of forest fire scene
images. (2) An image denoising method based on wavelet transform is used to remove the
effect of noise on forest fire scene images to improve the image quality [16], the wavelet
transform analysis method is established based on the idea of short-time Fourier transform
localization, the image signal is segmented and refined according to multiple levels, and
the wavelet coefficients obtained from the wavelet transform are appropriately processed,
which can be used for suppressing the noise randomly generated by the sensor in the
imaging process. (3) A frequency domain-based image enhancement method is employed
to enhance the visual quality of the images, highlighting finer details in the forest fire
scene images [17]. This involves processing the image signal with a specialized high-pass
filter to achieve enhancement. Gaussian filtering uses a Gaussian convolution kernel to



Forests 2023, 14, 1952 4 of 17

apply different Gaussian weights to pixel gray values at various locations in the image,
smoothing the forest fire scene image. (4) Based on the above data preprocessing, the SURF
alignment method is used to align the visible and infrared images of the forest fire scene
for the problem of non-overlap, which leads to errors in image fusion [18], extract the
feature points of the forest fire scene image, use integral images to simplify the operation
process, construct the Hessian matrix to extract the image feature points, construct the
scale space to form the three-dimensional scale space of the feature points; obtain the
direction of the feature points by calculating the harr wavelet response; form the feature
description subvector based on the main direction of the feature points; add the scale factor
in eliminating the erroneous feature points, choose the appropriate similarity metric to
match the similar feature points, and finally obtain the completely overlapped visible and
infrared images of the forest fire scene.

2.2. Generative Adversarial Network Fundamentals

Generative adversarial networks (GAN) were proposed by Goodfellow et al. in 2014
and consist of a generator and a discriminator [19]. The generator is the target network
that aims to generate false data that match the target distribution; the discriminator is a
classifier that is responsible for accurately distinguishing between real data and the fake
data generated by the generator. Thus, there is an adversarial relationship between the
generator and the discriminator. In other words, the generator wants to generate forged
data that the discriminator cannot identify, while the discriminator wants to distinguish the
forged data accurately. The generator and discriminator enhance their capabilities through
continuous iterations until the discriminator can no longer differentiate between real data
and the forged data generated by the generator. At this point, the generator has the ability
to generate data that match the target distribution. Next, the above adversarial learning
process is described formally.

Suppose the generator is denoted as G and the discriminator is denoted as D. The
random data input to the generator are denoted as Z = (z1, z2,. . ., zn), and the target data as
X = (x1, x2,. . ., xn)~Px. Then, the generator is committed to estimate the distribution of the
target data XP X and generates data G(z) matching that distribution as much as possible,
while the discriminator D needs to distinguish accurately between the real data X and the
generated pseudo data G(z). In summary, the purpose of generating adversarial networks
is to make the distribution of the faked data PG continuously approximate the target data
distribution PX during continuous adversarial training. Therefore, the objective function of
the GAN is defined as Equation (1):

minG maxD Exi∼PX [log(D(xi))] + Ezi∼Pz [log(1−D(G(zi)))] (1)

In continuous iterative training, the generator and the discriminator promote each
other as an adversarial relationship, continuously improving their falsification or discrimi-
natory ability. When the distance between the two distributions becomes sufficiently small,
the discriminator will no longer be able to distinguish between real and fake data. At
this point, we can say that the generator has successfully estimated the distribution of the
training data.

2.3. MMGAN Structural Design

The overall network structure consists of a generator network and a discriminator network.

2.3.1. Network Structure of Generator

The multilayer convolutional structure has a powerful feature representation capa-
bility as well as a hierarchical learning capability, and with the increase in the number
of convolutional layers, the model can gradually capture higher-level features as well as
understand the global and local information of the image, improving the efficiency of
image analysis and processing. Hence, by increasing the depth of the convolutional layers,
the generator network architecture enhances the accuracy of model training. We used a
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pre-trained network on ImageNet as the base network and fine-tuned it for the fusion
task. For both the gradient path and the intensity path, we employed 8 convolutional
layers, each utilizing a 3 × 3 convolutional kernel. As an example, one of these layers had
dimensions 64 × 3 × 3 × 128, where 64 represents the number of input channels, 3 × 3 is
the convolutional kernel size, and 128 is the number of output channels. Each convolutional
layer includes a Leaky ReLU activation function layer and a batch normalization (BN) layer.
In addition, the input of the 4th convolutional layer is feature-connected to the output
of the 2nd and 3rd convolutional layers, and the input of the 6th convolutional layer is
feature-connected to the output of the 4th and 5th convolutional layers. This structure helps
to preserve the characteristics of the shallow network, thus effectively reducing the loss of
image information. Finally, the two feature maps are interconnected along the channels
to achieve full fusion of information. The step size of the last convolutional layer is set
to 1, and the output uses a Tanh activation function and a 1 × 1 convolutional kernel to
obtain the fusion result of the network. The structure of the generator network is shown in
Figure 1.
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By designing the gradient path and intensity path, the extraction of contrast informa-
tion of the visible image and texture information of the infrared image is realized in the
generator network structure. The gradient path aims to extract the texture information
of the image, while the visible image is rich in texture detail information, so two visible
images and one infrared image are coupled to one channel as the input of the gradient path;
the intensity path aims to extract the contrast information of the image, while the infrared
image is rich in contrast information, so two infrared images and one visible image are
coupled to one channel as the input of the intensity path. This serves as the input to the
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intensity path, enabling the balanced extraction of gradient and intensity information and
facilitating complementary information between both images.

2.3.2. Network Structure of Discriminator

The discriminator is designed using a multi-level multi-classification constraint struc-
ture capable of distinguishing visible image features, infrared image features, and fused
image features generated by the generator. It estimates the probability of each class within
the input image, resulting in a 1 × 2 probability vector as output. We accomplish this by
employing a pre-trained network from ImageNet as the base network and fine-tuning it for
the discriminator task. The discriminator consists of four convolutional layers, and one
linear layer. Four convolutional layers are used to process the input image features, all of
size 3 × 3 convolutional kernels, all activation functions are Leaky ReLU functions, and
the last three convolutional layers are set with a step size of 2 and are batch normalized
by adding BN layers. The last linear layer outputs a 1 × 2 two-dimensional classification
probability based on the image features extracted from the first four convolutional layers
as input, indicating the probability of the input feature being a visible image feature Pvis
and the probability of the input feature being an infrared image feature Pir, respectively.
The generator learns a reasonable fusion strategy at that time. The discriminator network
structure is shown in Figure 2.
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2.3.3. General Framework of MMGAN Model

Compared with the overall GAN framework, the generator input path of MMGAN
is divided into gradient as well as intensity. Firstly, for the gradient path of the generator,
two visible images and one infrared image are combined along the channel dimension;
secondly, for the intensity path of the generator, two infrared images and one visible
image are combined along the channel dimension; then, with specific loss functions and
network design, the generator can extract gradient and intensity information in a balanced
way, so that the primary gradient and secondary intensity information of the visible
image is collected, and the primary intensity and secondary gradient information of the
infrared images complement each other. As the discriminator assesses the fused images,
the generator anticipates that these images are a combination of both visible and infrared
components, resulting in an expectation for the discriminator’s output to yield a high
probability. The discriminator’s task is to accurately judge the fused image as a false image,
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i.e., it expects the output probability to be both small, which excludes the possibility that the
generated image is a visible and infrared image, i.e., the output image can only be a fused
image. Therefore, the generator and the discriminator are continuously trained against
each other. When both of the two-dimensional probabilities Pvis and Pir of the discriminator
output are small, the generator can independently generate information-balanced fusion
images. The general framework of GAN is shown in Figure 3, and the general framework
of MMGAN is shown in Figure 4.
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Through the aforementioned design, this paper’s method can produce superior fusion
results compared to traditional generative adversarial networks. It accomplishes this by
preserving not only significant visible image contrast information but also by incorporating
rich texture details from infrared images.

2.3.4. Loss Function Design

The loss functions include generator loss function LG and discriminator loss func-
tion LD, where the discriminator loss function consists of visible light discriminator loss
function Lvis

D and infrared discriminator loss function Lir
D and forest fire discriminator loss

function Lfused
D .
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(1) Generator loss function

The generator loss function consists of the generator content loss function LGcon for
constraint information extraction and the generator adversarial loss function LGadv for
constraint information balancing. The specific formula is shown in Equation (2):

LG = γLGcon + LGadv (2)

where γ is the regularization parameter responsible for maintaining the balance between
the two items and is set to 100.

The LGcon content loss function consists of four parts: the main gradient loss, the main
intensity loss, the auxiliary intensity loss and the auxiliary gradient loss, and the content
loss function is shown in Equation (3):

LGcon = Lintensitymain
+ Lgradmain + Lgradaux + Lintensityaux

= δ1‖Ifused − Iir‖2
F + δ2‖∇Ifused −∇Ivis‖2

F + δ3‖∇Ifused −∇Iir‖2
F + δ4‖Ifused − Ivis‖2

F
(3)

where δ1, δ2, δ3, and δ4 are set to 1, 2, 3, and 4, respectively.
The balance between the image information can be achieved by adding the adversarial

loss with discriminator to the generator’s loss function, and the adversarial loss function
definition LGadv is shown in Equation (4):

LGadv = (D(In
fused)[1]− a)2 + (D(In

fused)[2]− a)2
)

(4)

where a denotes the discriminator’s probabilistic labeling for the fused image, and a is
set to 1. The first term in the vector D(.) [1] denotes the probability that the discriminator
determines that the generated fused image of the forest fire scene is a visible light image,
while the second term D(.) [2] then denotes the probability that the discriminator determines
that the generated forest fire fusion image is an infrared image.

(2) Discriminant loss function

The discriminator is a multi-level multi-classifier that estimates the probability of each
class of the input image. The loss function must continuously improve the discriminator
discriminative power, which drives it to effectively and accurately discriminate whether
the fused image is a visible image or an infrared image. Therefore, the discriminator loss
function LD consists of three components to determine the loss Lvis

D of the visible image, the
loss Lir

D of the infrared image and the loss Lfused
D of the fused image, and the discriminator

loss function is shown in Equation (5):

LD = Lvis
D + Lir

D + Lfused
D (5)

The discriminator outputs 1 × 2 vectors including Pvis = D(x)[1] and Pir = D(x)[2].
In order to improve the discriminator’s ability to recognize visible images, the pre-

dicted Pvis needs to be close to 1 and Pir close to 0 when the input image is a visible image.
The loss function Lvis

D corresponding to the visible light image is shown in Equation (6):

Lvis
D =

1
2N

N

∑
i=1

(
(Pvis(In

vis)− a1)
2 + (Pir(In

vis)− a2)
2
)

(6)

where a1 and a2 are probability labels corresponding to visible light images, a1 is set to 1,
and a2 is set to 0.

In order to improve the discriminator’s ability to recognize infrared images, when the
input image is an infrared image, the prediction Pir needs to be close to 1 and Pvis close
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to 0. The loss function Lir
D corresponding to the infrared image is defined as shown in

Equation (7):

Lir
D =

1
2N

N

∑
i=1

(
(Pvis(In

ir)− b1)
2 + (Pir(In

ir)− b2)
2
)

(7)

where b1 and b2 are the probability labels corresponding to the infrared images, b1 is set to
0, and b2 is set to 1.

Finally, in order to improve the discriminator discrimination performance, when the
input image is a forest fire fusion image, both the prediction Pir and Pvis need to be close to
0 in order to represent the ability of the forest fire fusion image to be neither a visible image
nor an infrared image.

The loss function Lfused
D corresponding to the fused image is defined as shown in

Equation (8):

Lfused
D

=
1

2N

N

∑
i=1

(
(Pvis(In

fused)− c1)
2 + (Pir(In

fused)− c2)
2
)

(8)

where c1 and c2 are the probability labels corresponding to the fused images of the forest
fire, c1 is set to 0, and c2 is set to 0.

2.4. Training Process and Parameter Setting
2.4.1. Training Process

(1) Initialize the network parameters of the generator and the discriminator, input the
visible and infrared images of the forest fire scene into the corresponding discriminator,
and update the parameters of the discriminator according to the output results.

(2) Link the visible and infrared images of the forest fire scene and input them into the
generator network, obtain the fused images of the forest fire scene generated by the
generator, and update the parameters of the generator network by combining the
corresponding generator loss. Repeat this process up to 20 times.

(3) Input the visible image and infrared map of the forest fire scene and the fusion image
generated by the generator into the corresponding discriminator, respectively, and
update the parameters of the discriminator according to the output results. Repeat
this process up to 5 times.

(4) Repeat processes (2) and (3) until the network reaches equilibrium.

2.4.2. Parameter Setting

Throughout the generator and discriminator training process, we set the Leaky ReLU
activation function layer parameter to 0.01, configured a batch size of 48 in the batch
grouping layer, and employed Adam as the optimizer to adjust the network’s weight
parameters. These parameters were updated by calculating the gradient to minimize the
loss function. The number of training iterations was set to 10, and the initial learning rate
was set to 0.0001.

2.5. Evaluation System

In this paper, the performance of the fusion method is evaluated from two aspects:
subjective evaluation and objective evaluation. The subjective evaluation approach relies on
the observer’s visual perception, and a successful fusion result should encompass both the
pronounced contrast of the infrared image and the abundant texture of the visible image.

Six quantitative metrics that are widely used in the field of image fusion were chosen
for the objective evaluation, including information entropy (IEN) [20], standard devia-
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tion (STD) [21], average gradient (AG) [22], space frequency (SF) [23], feature mutual
information (FMI) [24] and structural similarity (SSIM) [25].

IEN = −
L−1

∑
l=0

pl log2 pl (9)

STD =

√√√√ 1
M×N

M

∑
i=1

N

∑
j=1

[
F(i, j)− F

]2 (10)

AG =
1

(M− 1)(N− 1)

M−1

∑
i=1

N−1

∑
j=1

√
[F(i, j)− F(i + 1, j)]2 + [F(i, j)− F(i + 1, j)]2

2
(11)

SF =
√

RF2 + CF2 (12)

FMIAB
F = FMI(A, F) + FMI(B, F) (13)

SSIM = SSIMA,F + SSIMB,F (14)

In Equations (9)–(14), pl is the frequency of the occurrence of points with gray value l,
L is the number of gray levels of the fused image, and the larger value of STD represents
the higher contrast of the image and the better quality of the image. Where, M denotes
the width of the fused image, N denotes the height of the fused image, F(i,j) is the gray
value of image F at pixel (i,j), F is the mean gray value, RF denotes the spatial frequency in
the horizontal direction, CF denotes the spatial frequency in the vertical direction, F is the
fused image, A and B are the source images, SSIMA,f is the brightness loss, and SSIMB,f is
the correlation loss. The larger the value of all metrics, the better.

3. Results

Five image fusion methods were selected for experimental comparison with the
methods in this paper: (1) anisotropic diffusion-based image fusion method (ADF) [26];
(2) guided filtering-based image fusion method (GFF) [27]; (3) convolutional neural network-
based image fusion method (CNN) [28]; (4) generative adversarial network-based image
fusion method (FusionGAN) [12]; and (5) image fusion method based on dual discriminator
generative adversarial network (DDcGAN) [29]. The proposed methods in this paper are
all pre-trained on the dataset.

3.1. TNO Dataset Fusion Results and Comparative Analysis
3.1.1. Subjective Assessment

To demonstrate the superiority of the MMGAN model proposed in this paper, com-
parative experiments were first conducted on the publicly available dataset TNO.

Figure 5 shows three sets of representative subjective evaluation results to demonstrate
the performance of various methods. In the subjective evaluation comparison results, the
ADF method has low contrast and does not highlight significant target features; the GFF
fusion method has severe distortion, and the details in the local zoomed-in image have
become illegible; the CNN method focuses too much on preserving the structural texture
and neglects the preservation of the thermal radiation target; the FusionGAN method loses
many texture details, and the boundary produces artifacts that make the boundary of the
target widen and the whole blurred; while the DDcGAN method better maintains the
saliency of the thermal radiation target in the infrared image, our proposed method excels
in preserving the sharpness of the thermal target’s edges and presents a superior visual
effect. For example, in the first and third sets of results, the method in this paper is able to
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better preserve the house structure with clearly visible edges, while other methods result in
blurred contours due to edge diffusion.
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3.1.2. Objective Assessment

In order to objectively evaluate the fusion effectiveness of ADF, GFF, CNN, Fusion-
GAN, DDcGAN, and MMGAN, we conducted a quantitative analysis on 20 test im-ages
from the TNO dataset, and the results are presented in Table 1. According to the data in
the table, our proposed method in this paper achieved the top rank in four metrics: IEN,
AG, FMI, and SSIM, and it secured the second position in STD and SF metrics, just after
DDcGAN. These objective findings indicate that our method outperforms others in terms
of information richness, minimal introduction of pseudo-information, high correlation with
the source image, and superior contrast.

Table 1. Objective evaluation results for assessing the quality of fused images based on the
TNO dataset.

Method
Metric

IEN STD AG SF FMI SSIM

ADF 6.750 34.259 6.836 12.710 12.261 0.612
GFF 6.781 40.147 7.855 11.104 13.389 0.608
CNN 7.101 48.113 6.657 14.895 14.007 0.610

FusionGAN 7.431 51.534 7.472 15.348 14.099 0609
DDcGAN 7.642 52.036 8.059 17.896 14.325 0.622
MMGAN 8.830 51.265 9.198 17.764 14.866 0.656

Bold indicates the method of this paper; highlight bold indicates the optimal result.

Moreover, the quantitative results are in line with the visual assessment shown in
Figure 5. The fusion outcomes obtained by our method exhibit a clearer and more de-
tailed representation of the forest fire scene compared to other methods. The enhanced
information richness and improved contrast in the fused images can significantly assist
firefighters in comprehending the fire scene environment and making critical decisions
during rescue operations.

In conclusion, our proposed method demonstrates superior performance in objec-
tive evaluation metrics on the TNO dataset compared to existing fusion techniques. We
believe that the results presented in this study will have a meaningful impact on advanc-
ing forest fire image fusion techniques and contribute to more effective and safer forest
firefighting efforts.

3.2. Fusion Results and Comparative Analysis of Forest Fire Scene Datasets

In order to further demonstrate the superiority of the MMGAN algorithm proposed
in this paper, a comparative analysis of subjective and objective evaluations of forest fire
scene image fusion results was performed.

3.2.1. Subjective Assessment

Three groups of typical fusion results are selected to demonstrate the performance of
each method, as shown in Figure 6. Observing the fusion result plots, we can find that the
ADF method contains rich texture detail information, but the noise is more obvious. The
GFF has a great defect in the contrast display of the image, the texture information and
contrast information in the plots are defocused, a certain number of artifacts are at the edges,
and the clarity is poor. The CNN method does a good job in preserving the tree texture, but
the brightness is too high, resulting in insufficient thermal radiation information. While the
FusionGAN fusion method provides rich contrast information, it suffers from significant
loss of infrared texture detail. DDcGAN retains more infrared texture information compared
to FusionGAN, but it is slightly lacking compared to MMGAN. It is obvious from the figure
that MMGAN can retain the salient targets in the IR image very accurately with almost
no loss of thermal radiation intensity, and the edges remain sharp; meanwhile, it can also
retain the texture details in the visible image very well. Therefore, MMGAN not only
retains rich texture detail information of visible and infrared images, but also maintains
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rich contrast information. Overall, the method in this paper has obvious advantages in
terms of sharpness and contrast, and can achieve a good balance of visible and infrared
image information.
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3.2.2. Objective Assessment

In order to objectively evaluate the fusion effects of ADF, GFF, CNN, FusionGAN,
DDcGAN and MMGAN, the fusion results for forest fire scenes were quantitatively an-
alyzed on 20 forest fire scene images, and the results are shown in Table 2. The data in
the table show that the MMGAN proposed in this paper obtained the highest average
value in five objective quality evaluation metrics, namely, IEN, STD, AG, FMI, and SSIM;
among them, although the SF value had only the second-highest value, it can be seen that
it significantly exceeded the SF value of other methods, especially FusionGAN, which
indicates that MMGAN can be better than FusionGAN in maintaining a good balance of
visible and infrared image information. In addition, the SF values obtained by MMGAN
were much larger than those of all other methods, thus indicating that the method in this
paper can better fuse the contrast and texture detail information of visible and infrared
images, and the fused image information is richer.

Table 2. Objective evaluation results for assessing the quality of fused images based on the forest fire
scene dataset.

Method
Metric

IEN STD AG SF FMI SSIM

ADF 6.259 35.744 7.025 14.259 12.517 0.612
GFF 6.753 35.157 7.724 15.322 13.27 0.606
CNN 6.452 33.51 7.647 13.865 12.903 0.664

FusionGAN 7.730 50.916 7.572 15.765 14.170 0.638
DDcGAN 7.849 52.473 8.983 17.600 14.836 0.669
MMGAN 8.862 52.674 9.652 17.347 14.958 0.680

Bold indicates the method of this paper; highlight bold indicates the optimal result.

In summary, MMGAN transmits the most information from the source image to the
fused image, introduces the least pseudo-information, and maintains the edges best during
the fusion process. The resulting fused images contain the most information, exhibit the
highest contrast, and boast the richest overall texture structure. Therefore, the method in
this paper is also quantitatively advantageous compared to the other fusion methods.

3.3. Comparative Analysis of Fusion Efficiency

Operational efficiency is one of the important metrics to assess the performance of
a method. To evaluate operational efficiency, we calculated the average running times of
various methods on both the TNO dataset and the forest fire scene dataset and conducted a
comparison. The results are shown in Table 3. The method proposed in this paper achieves
the fastest average running speed on both datasets, which is more than five times faster
than other compared methods. This means that our method is able to complete the image
fusion task in a shorter time, improving the overall efficiency.

Table 3. Average running time(s) of each model based on each dataset.

Method Forest Fire Scene TNO

ADF 9.476 7.456
GFF 5.302 3.259
CNN 0.562 0.499

FusionGAN 0.196 0.360
DDcGAN 0.613 0.613
MMGAN 0.143 0.066

Bold indicates the method of this paper; highlight bold indicates the optimal result.

4. Discussion

This study improved the model learning as well as generation capabilities by improv-
ing the design of the generator, discriminator, and loss function. Specifically, by dividing
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the input path of the generator of the traditional GAN into gradient and intensity, the
depth of the convolutional layer of the generator is increased to further improve the in-
formation extraction capability of the shallow network, enabling the generator to better
capture the detailed features of visible and infrared images, thus improving the quality
and accuracy of the fused images. At the same time, the discriminator is designed by using
multiple classifiers that can discriminate the input images as visible, infrared, and fused
images simultaneously and output two-dimensional probabilities, so that the discriminator
improves the ability to distinguish different image types and helps to better evaluate the
authenticity and quality of the fused images. Through the design of the loss function, the
discriminator constrains the generator and performs inverse parameter updates, aiding the
generator in gradually optimizing the quality of the generated images during continuous
adversarial training. This process leads to the generation of fused images.

The study addresses the issue of potential computational slowdown due to increased
model depth by modifying the network structure through the inclusion of batch normal-
ization, residual connections, and depth-wise separable convolution. This modification
reduces the number of parameters and the computational complexity of the network,
enhancing the model’s computational efficiency and speed. Consequently, it accelerates
the training and inference processes of MMGAN, providing more timely and accurate
environmental awareness and decision support for forest fire scenes.

The application of image fusion technology to the forest fire scene in our research yields
significant practical benefits. By fusing images of the forest fire scene, forest firefighters
can quickly understand the surrounding status of the fire, including fire expansion, smoke
distribution, burning hot spots, and other key information, and can more accurately assess
the danger level of the fire and make timely risk avoidance decisions based on changes
in the fire environment. This is important for protecting the safety of the firefighters and
improving the efficiency of fire rescue and helping reduce the casualties and property losses
caused by forest fire accidents.

Current research on visible and infrared image fusion for forest fire scenes focuses
on static images, while the changing situation of fires often requires the processing and
analysis of continuous video data. In the future, research can delve deeper into applying
visible and infrared image fusion techniques to forest fire scene video data using multi-level,
multi-classification generative adversarial networks. This approach can enable more precise
monitoring of fire dynamics by analyzing and fusing continuous video frames. It can also
aid forest firefighters in making timely decisions and taking appropriate rescue actions,
ultimately leading to a significant reduction in firefighter casualties due to forest fires.

5. Conclusions

To tackle the issue where traditional GANs often neglect visible contrast ratio in-
formation and detailed infrared texture details, this study introduced a multi-level and
multi-classification GAN-based approach for fusing forest fire scene images from the visible
and infrared spectra, and validated its accuracy. In terms of visual results, the fused images
generated by MMGAN had a more significant contrast ratio and richer detailed texture
information, as MMGAN could retain both the contrast ratio of the visible images and the
detailed texture information of the infrared images. In terms of objective evaluation metrics,
compared to the sub-optimal image fusion method, the evaluation results based on IEN,
AG, FMI, and SSIM for MMGAN improved by 15.6%, 14.1%, 3.77%, and 5.47%, respectively,
when applied to the TNO dataset; the evaluation results based on IEN, STD, AG, FMI, and
SSIM improved by 10.23%, 0.383%, 7.46%, 0.82%, and 1.94%, respectively, when applied to
the forest fire scene dataset. Furthermore, based on the same dataset, MMGAN’s image
fusion speed was more than five times faster than that of the sub-optimal fusion method.

In conclusion, the proposed method has better interpretability, which means it can
generate more reasonable fusion strategies self-adaptively based on input images. In
addition, MMGAN can retain both rich textures in detail and a significant contrast ratio
of source images, effectively avoiding the weakening of beneficial information during
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the fusion process. The model’s computational speed is optimized while enabling better
performance in the fusion of visible and infrared images. Therefore, MMGAN image fusion
technology applied to forest fire scenes can quickly provide more accurate and compre-
hensive information on forest fire surroundings for firefighters, which helps firefighters
and disaster management personnel to better understand the real-time situation inside the
fire, including the location of the fire source, the degree of combustion, and the expansion
of the fire, so as to provide a more accurate and comprehensive description of the fire
environment. It also serves as a scientific foundation for firefighters to precisely identify
and locate the fire source and other critical targets.

Finally, MMGAN image fusion technology lays a vital foundation for enhancing the
intelligence and automation of forest fire scenes by integrating deep learning with image
fusion technology. In the future, with the continuous development of artificial intelligence
and image processing technology, MMGAN image fusion technology is expected to play
an increasingly important role in forest fire rescue and disaster management, and make
greater contributions to people’s safety and property security.
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