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Abstract: Tree peony (Paeonia section Moutan DC.) is a traditional ornamental flower of China, which
has thousands of varieties with different flower colors and types after a long history of natural
selection and artificial breeding. However, tree peony is a perennial woody plant with a long
breeding, and there are still significant challenges to accelerate the process of genetic improvement of
important ornamental traits. In this study, a total of sixteen primer pairs with high polymorphism
and good universality were selected from the initial pool of 115 SSR markers. The SSR marker set
was derived from published papers on the genetic linkage map and association analysis of tree peony.
Furthermore, we conducted a genetic diversity and population structure analysis on 322 tree peony
cultivars using molecular markers with functional. These SSRs amplified a total of 391 alleles, the
average number of different alleles was 5.113 alleles across all loci. The average Shannon’s information
index, gene diversity and polymorphism information content were 0.842, 0.532, and 0.503 over all loci,
respectively. Population genetic diversity analysis indicated that the average expected heterozygosity
of the total population was larger than the observed heterozygosity, showing the presence of a certain
degree of heterozygous deletion phenomenon. The Japan varieties had the richest diversity with the
highest H (0.508) and PIC (0.479) values. The Zhongyuan varieties showed the greatest variation
may be related to its longstanding cultivation history. Moreover, the STRUCTURE and principal
coordinate analyses indicated that 322 tree peony individuals from five populations were grouped
into two clusters. An analysis of molecular variance demonstrated significant genetic diversity among
different populations. This research may contribute to the sustainable management, conservation,
and utilization of tree peony resources.

Keywords: tree peony; functional SSR markers; polymorphism; genetic diversity; population
structure

1. Introduction

Tree peony (Paeonia section Moutan DC.), a perennial deciduous shrub belonging
to the genus Paeonia, has a long history of cultivation in China [1]. It is renowned as
the ‘king of flower’ due to its large and vibrant flowers, rich fragrance, and exquisite
appearance [2]. Tree peony has highly ornamental, medicinal, and oil values, and has been
widely planted in the world [3–6]. With the wide introduction of peony varieties, different
cultivation groups for tree peonies have gradually emerged worldwide. It is well known
that germplasm (genetic) resources are the material basis for genetic improvement of plant
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varieties and the core of agriculture [7]. Currently, the number of tree peony varieties has
exceeded 2200, which poses huge challenges in understanding their genetic relationship
and background [8].

Various random molecular marker techniques, including amplified fragment length
polymorphism (AFLP) [9], intersimple sequence repeat (ISSR) [10], random amplified
polymorphic DNA (RAPD) [11], sequence-related amplified polymorphism (SRAP) [12],
conserved DNA-derived polymorphism (CDDP) [12], and SSR markers [13–15] have been
utilized for genetic diversity assessment, genetic relationship analysis, and population struc-
ture analysis in tree peony cultivars. As an ideal marker, SSRs have been frequently used
in studies of many economically important trees due to their ubiquity, reproducibility, high
level of polymorphism, codominant inheritance, and high level of transferability [16–19],
such as for the assessment of genetic diversity [17,20,21], variety identification [22,23],
genetic relationship classification [24,25], pollination [26], genetic-linkage maps [27,28],
fingerprints [29], and evaluation of core germplasm resources [30,31]. Furthermore, the
utilization of SSR markers with potential functional is of significant importance in the
early screening of tree peony varieties with desired characteristics. Cai et al. [32] screened
79 pairs of effective SSR primers from 400 pairs, carried out a linkage analysis on 195 F1
populations, and ultimately constructed a genetic linkage map of tree peony with 72 SSR
markers. Subsequently, a QTL (quantitative trait locus) analysis was performed with
27 quantitative traits and located multiple traits related to branches, leaves, flowers, fruits,
and flower color. Similarly, the QTLs for the six traits including branch number, leaf length,
flower number, pod height, pod diameter, and flower diameter were successfully identified
based on an F1 population of 120 full-sibs [33]. These above studies indicated that the
marker loci on the genetic linkage map of tree peony had potential functional significance
and served as genetic variation tools for a further exploration of target traits.

Genetic resources research plays a crucial role in sustainable management, conser-
vation, and utilization [34–36]. Maintaining genetic diversity is essential for effective
conservation efforts [37]. Today, faced with many tree peony germplasm resources, how to
explore excellent genetic germplasm and improve breeding efficiency quickly and accu-
rately has become an important problem to be resolved in breeding research. Moreover,
genetic diversity research based on functional markers offers a new approach to solve this
problem. However, research on genetic diversity evaluation of peony based on functional
markers is limited. Hence, this study was initiated with the aim of finding the SSR markers
on genetic linkage maps and association mapping of tree peony to evaluate the genetic
diversity and population structure in tree peony germplasm. The findings could ultimately
provide a valuable foundation for genetic enhancement and the sustainable conservation
of tree peony resources.

2. Materials and Methods
2.1. Materials and Genomic DNA Extraction

In total, 322 samples of tree peony representing 5 populations were randomly collected
from the tree peony germplasm resources nursery of Henan University of Science and
Technology (112◦28′36.34′′ E, 34◦39′30.34′′ N) (the geographical location of the 5 populations
is seen in Supplementary Figure S1). In late March 2021, tender and disease-free leaves
were collected from all samples and stored at −80 ◦C after rapid freezing in liquid nitrogen
for further use. These varieties included five tree peony variety groups: Japan group
(n = 12), Jiangnan group (n = 11), Northwest group (n = 54), Southwest group (n = 8), and
Zhongyuan group (n = 237).

Total genomic DNA was extracted from 100 mg of tender leaves using the Super
Plant Genomic DNA Kit (Polysaccharides & Polyphenolics-rich) (Tiangen, Beijing, China)
according to the manufacturer’s instructions. The samples were assessed using a gel
imaging analysis system (GelDoc XR, Bio-Rad laboratories Inc., Hercules, CA, USA) with
electrophoresis on a 1% agarose gel, and their concentration was determined using a
NanoDrop 2000 UV–vis spectrophotometer (Thermo Fisher Scientific, Wilmington, DE,
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USA). Then, samples were diluted to a final concentration of 20 ng·µL−1 with a TB elution
buffer (Tiangen) and stored at −20 ◦C until they were used.

2.2. Source of Functional SSR Markers

The functional SSR markers used in this study were sourced from previously published
papers on the genetic linkage map and association analysis of tree peony. Among them,
the genetic linkage map of tree peony included 35 pairs from Guo et al. [33] and 68 pairs
from Cai et al. [32], and a total of 95 markers remained after removing 8 duplicate primers.
In addition, there were 20 pairs of association analysis primers based on Paeonia rockii
populations, which contained 2–6 repeats of motifs, and these primers were developed
based on transcriptome data [38]. Finally, a group of 115-pair primers was synthesized by
Ruibio BioTech Co., Ltd. (Beijing, China) (Supplementary Tables S1 and S2).

2.3. Screening of Functional SSR Markers and Genotyping

One hundred and fifteen pairs of SSR primers were employed to screen mixing samples
from nine different tree peony varieties with diverse flower types, colors, and origins. PCR
amplification was carried out in a 10 µL reaction mixture including 2 µL (20 ng·µL−1) of
genomic DNA, 0.2 µL (10 µM) of each reverse and forward primer, 5 µL of 2 × Taq Plus
Master Mix II (Vazyme Biotech Co., Ltd., Nanjing, China), and 2.6 µL of ddH2O. PCR
amplification was performed using a touchdown protocol by Guo et al. [39]. Subsequently,
the amplified products were analyzed individually using 1% agarose gel electrophoresis,
and the primers exhibiting polymorphism were chosen based on these results.

Then, a second screening was performed using capillary electrophoresis [40], with
36 different peony varieties with varied flower types, colors, and origins (Figure 1). The
fluorescent-labeled M13 primers and PCR amplification system and program were also
described by Guo et al. [39]. After that, a set of 16 primer pairs showing high polymorphism
and good stability were obtained. Finally, these excellent SSR markers were selected for the
amplification and analysis of all 322 tree peony cultivars.
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Figure 1. Flower photos showing the thirty-six tree peony (Paeonia section Moutan DC.) cultivars
used in this study. Note: No. 1–22: Zhongyuan group; No. 22–32: Northwest group; No. 33–36:
Jiangnan group.
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2.4. Data Analysis

To ensure the accuracy of the results, high-clarity and -stability SSRs obtained through
two rounds of screening were amplified. Subsequently, the amplified products were sepa-
rated with the ABI 3730XL DNA capillary electrophoresis analyzer (Applied Biosystems,
Foster City, CA, USA) alongside the GeneScan-500LIZ size standard. Alleles of the SSR
markers were validated using GeneMarker ver. 2.2.0 (SoftGenetics LLC, State College,
PA, USA). The parameters of genetic diversity were estimated using GenAlEx ver. 6.501
(Australian National University, Canberra ACT 0200, Australia), including the number of
different alleles (Na), the effective number of alleles (Ne), Shannon’s information index (I),
the diversity (H), the inbreeding coefficient (FIS), Wright′s fixation index (FIT), the fixation
index (FST), and the gene flow (Nm) [41,42]. Polymorphic information content (PIC) values
were calculated for each SSR primer pair using PowerMarker ver. 3.25 software (North
Carolina State University, NC, USA [43]. Furthermore, a principal coordinate analysis
(PCoA) was conducted using genotype data obtained from SSR markers to examine the
dissimilarities within and between populations.

An algorithm called Bayesian model-based clustering was used with the software
package STRUCTURE ver. 2.2.2 to analyze the population genetic structure based on
sixteen SSR markers [44]. For this study, ten separate runs were performed for each value
of K (K = 1–20), using a burn-in period of 10,000 iterations and 10,000 Markov chain Monte
Carlo (MCMC) replications, and the default values were used for the remaining parameters.
The online Structure Harvester tool (https://taylor0.biology.ucla.edu/structureHarvester/,
accessed on 12 April 2023) was employed to determine the most probable value of K using
the delta K (∆K) method [45]. Following, the bar plot of membership probability, based on
the Q-matrix results, was generated using the CLUMPAK ver. 1.1.2 [46] and Distruct ver.
1.1 programs [47].

3. Results
3.1. Screening of Polymorphic Microsatellites

After two rounds of screening, a total of sixteen primer pairs with high polymorphism
and good universality were selected from the initial pool of 115 SSR markers. The selected
sixteen SSR primers consistently amplified all five populations of tree peony under standard
conditions and were polymorphic in all the populations investigated. Detailed information
regarding these sixteen primers can be found in Table 1.

Table 1. Sixteen SSR markers’ information of 322 tree peony (Paeonia section Moutan DC.) cultivars in
this study.

Primer ID Primer Sequence (5′-3′) Primer (3′-5′)
Annealing

Temperature
(◦C)

Expected
Size (bp)

Repeat
Motif

PS371 CATTGAGCCACCCATAGA GCAACAATCCTGGTAGTGA 58 219 (CAC)5
PS119 GCAAAGACAACAGCCTCG CTCACCATCCAATCCCAC 57 289 (CAG)6
49A TCTGGGTGATAGGTGGAGCTGGTGC GGAAGACGCCCACAATGAAATCACA 55 314 (TGC)5

PS308 ACTACTCTATTGCGAAACC GTCTTATGGCGGCTATGT 53 189 (TC)7
PS074 TGCCTTGCTCCTCCTTGT CGGTTAGCCATGAATCCC 57 236 (CT)7
PS052 CAAATCTGCTAATTAAAGAC GATAGAAGGGAAAGGAAG 49 235 (CT)7
PS118 CGTAGCCGTGCTTCTTTC CCCATCAACCCATAATCC 54.5 199 (TGG)5
PS068 CTTTGGCATTCTCATTCA GGTGGTATTGGGCTTCTT 52.5 174 (TC)7
PS311 AACGCCACCATCACCTTT CCTCCTCCCTGTTCTTCT 60 277 (TTC)6
PS144 CAACCTACAATCCGACAATG TGTGGGTAGTGGTTTGTTAG 54.5 317 (TGC)5
PS24 TTGAGCAATCAGGTTCATTAGG TAGCCTCCGGTTCTGAATTG 56.4 155 (CAA)5
PS36 TCCAAGCTACTCCATGCCTTA GAATACTCACTCGCGGCTTC 58.8 277 (TCT)5
PS47 TCTCAGCTTCTAATCTTCTCCTCA ATGTCATGCCTCCAATCTCC 57.5 246 (AG)6
PS50 TTACAGCAGGCCACGACTG CATGACATCATGTGGTCCAA 55.9 262 (AGC)6
PS57 GCGACAGTACATTCCATCAA GTCAACCACACGTCTGCAAG 57.7 128 (TC)7
PS64 GATTCTGTCTGGCATTGACG CCATCTGTCTGGATCGACCT 58.1 293 (GA)6

https://taylor0.biology.ucla.edu/structureHarvester/
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3.2. Genetic Diversity Analysis

A total of 391 alleles were detected at 16 SSR loci in 322 samples, with the number
of different alleles (Na) ranging from 1.400 (PS144) up to 12.600 (PS308) with an average
of 5.113 alleles across all loci. The range of the number of effective alleles (Ne) extended
from 1.073 (PS144) to 4.294 (PS308), with an average value of 2.155. Shannon’s information
index (I) had an average value of 0.842 with the lowest value (0.101) for marker PS144 and
the highest value (1.727) for marker PS308. The gene diversity (H) and the polymorphism
information content (PIC) was consistent, with the lowest values at PS144 (0.012), the
highest at PS308 (0.834 and 0.820, respectively), and averages of 0.532 and 0.503 over all
loci, respectively. The calculated gene flow Nm was 1.951, indicating moderate levels of
gene flow (Table 2).

Table 2. Analysis of the genetic diversity of 322 tree peony cultivars with 16 simple sequence repeat
(SSR) loci.

Locus N Na Ne I Ho He H PIC FIS FIT FST Nm

PS57 28 5.800 2.699 1.002 0.948 0.577 0.757 0.722 −0.642 −0.577 0.040 6.040
PS074 27 5.400 2.138 0.930 0.620 0.512 0.644 0.599 −0.211 −0.160 0.042 5.702
PS36 20 4.000 1.721 0.632 0.330 0.340 0.595 0.536 0.030 0.182 0.156 1.349
PS24 22 4.800 2.156 0.953 0.659 0.525 0.623 0.601 −0.254 −0.181 0.058 4.032
PS47 19 3.800 1.703 0.754 0.372 0.396 0.597 0.542 0.061 0.356 0.314 0.546

PS119 17 3.600 1.740 0.643 0.393 0.354 0.587 0.544 −0.110 0.450 0.504 0.246
PS068 29 6.000 2.254 1.033 0.680 0.531 0.432 0.421 −0.280 −0.197 0.064 3.627
PS118 21 4.400 2.820 1.136 0.351 0.637 0.647 0.595 0.449 0.540 0.165 1.263
PS308 54 12.600 4.294 1.727 0.540 0.732 0.834 0.820 0.262 0.301 0.053 4.496
PS50 25 5.000 1.406 0.444 0.183 0.198 0.502 0.485 0.071 0.187 0.124 1.762
PS64 36 7.600 3.445 1.444 0.712 0.696 0.775 0.741 −0.023 0.123 0.143 1.495

PS052 14 2.800 1.381 0.442 0.028 0.242 0.387 0.359 0.883 0.894 0.093 2.448
PS311 24 4.800 1.973 0.767 0.169 0.388 0.284 0.278 0.565 0.738 0.397 0.380
PS144 7 1.400 1.073 0.101 0.000 0.056 0.012 0.012 1.000 1.000 0.102 2.193
PS371 30 6.000 1.820 0.686 0.266 0.302 0.331 0.323 0.122 0.266 0.164 1.272
49A 18 3.800 1.855 0.772 0.388 0.421 0.501 0.469 0.079 0.518 0.477 0.274

Mean 5.113 2.155 0.842 0.415 0.432 0.532 0.503 0.125 0.277 0.181 2.320

N: number of alleles; Na: number of different alleles; Ne: number of effective alleles; I: Shannon’s information index;
Ho: observed heterozygosity; He: expected heterozygosity; H: gene diversity; PIC: polymorphism information
content; FIS: inbreeding coefficient; FIT: Wright′s fixation index; FST: fixation index; Nm: gene flow.

At the population level, the Zhongyuan population had the largest numbers of dif-
ferent and private alleles among populations, probably due to the larger sample size. The
highest H (0.508) and PIC (0.479) values were observed in the Japan population, indicating
a rich diversity. The second most diverse population was that of Southwest, with H and
PIC values of 0.498 and 0.456, respectively. The He of the total population was larger than
the Ho, showing the presence of a certain degree of heterozygous deletion phenomenon.
The average FST value was 0.154, indicating that the peony population was at a moderate
level of genetic differentiation (Supplementary Tables S3 and S4).

3.3. Population Structure Analysis

The population structure analysis of the tree peony population showed that ∆K was the
highest when K = 2 (Figure 2A,B). These results and many K values (K = 2–4) suggested that
the current collection of germplasm could be classified into two primary subpopulations,
labeled as subpopulations I and II (Figure 2C). Consequently, the Q values of the five
populations were analyzed and categorized into two subgroups (Table 3). The individuals of
the Zhongyuan population were mainly distributed in subpopulation II (92.83%), the other
four population individuals were mainly distributed in subpopulation I, the Northwest
population with 98.15% and the Southwest population with 87.50%, respectively. All
individuals in the Japan (n = 12) and Jiangnan (n = 11) populations were placed in cluster I,
indicating the presence of a strong population structure (Table 3). Following, a principal
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coordinates analysis (PCoA) was performed by the unweighted genetic distances method
showing that the level of genetic differentiation of the Zhongyuan population was higher
than that of the other four populations (Figure 3).
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Table 3. The distribution of samples within each subpopulation (K = 2).

Subpopulation Japan Jiangnan Northwest Southwest Zhongyuan Total Mean Q-Value

I 12 11 53 7 17 100 0.939
II 0 0 1 1 220 222 0.938

Total 12 11 54 8 237 322 -
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Figure 3. The distribution of 322 tree peony accessions, utilizing genotyping data from sixteen SSR
markers, is visually represented through a PCoA using the first two coordinates. Axis 1 accounts for
14.29% of the variation, while axis 2 explains 9.83% of the variation.
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3.4. Population Differentiation Analysis

Nei’s genetic identity, calculated through pairwise comparisons, ranged from 0.663
(between Zhongyuan and Jiangnan) to 0.902 (between Southwest and Northwest), with
an average of 0.804. The majority of Nei’s genetic distance ranged from 0.103 (between
Southwest and Northwest) to 0.231 (between Zhongyuan and Southwest), with an average
of 0.183 (Table 4). A Mantel test was performed to examine the correlation between genetic
distance and geographical distance among tree peony populations, which indicated no
significant correlation (r = −0.243, p = 0.340) (Figure 4).

Table 4. Nei’s genetic identity (below diagonal) and genetic distance (above diagonal).

Population Japan Jiangnan Northwest Southwest Zhongyuan

Japan 0.175 0.178 0.180 0.355
Jiangnan 0.839 0.164 0.209 0.411

Northwest 0.837 0.849 0.103 0.231
Southwest 0.835 0.812 0.902 0.215

Zhongyuan 0.701 0.663 0.794 0.806
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Figure 4. Mantel test between genetic distance (FST) and geographic distance for all tree peony
populations in Luoyang.

The degree of genetic differentiation (FST) between any two populations was calcu-
lated for all five populations (Table 5). Among all populations, FST values for the global
and pairwise multilocus analysis ranged from 0.051 (Southwest vs. Northwest) to 0.223
(Jiangnan vs. Zhongyuan) with an overall FST value of 0.123. Seven pairs of FST combi-
nations were significant differences and the others were not significant. An AMOVA was
performed based on 999 permutations and revealed the genetic variation among and within
populations for tree peony samples (Table 6). The AMOVA showed that 16% of the total
genetic variation occurred among populations and a significant amount (84%, p < 0.05) of
the total variation occurred within populations.

Table 5. Pairwise genetic distance based on fixation index FST in tree peony accessions.

Population Japan Jiangnan Northwest Southwest Zhongyuan

Japan * NS NS *
Jiangnan 0.155 * * *

Northwest 0.077 0.134 NS *
Southwest 0.093 0.167 0.051 *

Zhongyuan 0.145 0.223 0.087 0.096
* p ≤ 0.05, NS: no significance.
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Table 6. Analysis of molecular variance (AMOVA) partitioning variance into among populations and
within populations for SSR markers.

Source d.f. SS MS Est. Var. % Variation p

Among pops 4 263.401 65.850 0.865 16 <0.01
Within pops 317 2915.192 9.152 4.576 84 <0.01

Total 322 3178.593 5.441 100
d.f.: degrees of freedom; SS: sum of squares; MS: mean square; Est. var.: estimated variance.

4. Discussion

Germplasm resources are not only the material basis for breeding excellent varieties
but also an indispensable component of biodiversity, which plays an important supporting
role in the construction of ecological civilization and sustainable economic development.
Previous studies on the germplasm resources of tree peony have mainly focused on Paeonia
rockii [15,48], Paeonia ostii [49], wild species [50,51], a few Zhongyuan cultivars [13,39,52],
and some foreign varieties [10]. Most of these studies have developed markers based on
sequencing results, but it is still unknown whether these markers are closely linked to the
target traits. Because of the long breeding cycle of tree peony, using functional markers for
research could better ensure the management and full utilization of germplasm resources.
However, there are few studies on tree peony varieties using functional markers.

Genetic diversity, as measured by the variation in allelic frequencies and genetic
composition within a population, is integral for the maintenance, adaptive capacity, and
evolutionary potential of populations [21,53]. Information about genetic diversity and
genetic structure is critical to revise a species management plan and conservation. A set of
highly polymorphic and stable markers obtained was a prerequisite and foundation for
conducting this study. In this study, a total of sixteen SSR primers with high polymorphism
and good universality were selected from the initial pool of 115 SSR markers after two
rounds of screening. Moreover, the average number of alleles per locus was 24.4, which
was higher than that of 37 accessions from Paeonia ostii using EST-SSR [38]. The average
of Shannon’s information index value (I) was 0.842, which was lower than the genetic
diversity analyzed by 34 SSR primers for 282 Paeonia rockii accessions (I = 0.908) [14] and
20 SSR primers for 274 specimens of wild species (I = 1.1160) [50]. These differences may be
attributed to the different source of the samples (natural populations vs. cultivated varieties
populations) and the number of SSR markers. Furthermore, the value of polymorphism
information content (PIC) in this study was PIC = 0.503, that of the Paeonia rockii population
was PIC = 0.611, and that of 274 specimens from 22 natural populations of nine wild species
was PIC = 0.53. All these studies indicated that different types of tree peony populations
exhibited high levels of genetic diversity. Furthermore, the genetic diversity levels of
samples from natural populations were higher than those of cultivated varieties. This is
consistent with the results of Zhou et al. [54], indicating that natural populations of tree
peony have a stronger ability to adapt to the ecological environment.

The expected heterozygosity is an important measure of gene diversity [55]. In our
study, the average heterozygosity values Ho and He were 0.415 and 0.432, respectively.
Similar results were obtained by Guo et al. [56] (Ho = 0.5280, He = 0.5379; Paeonia suffruticosa
cultivar groups), Liu et al. [38] (Ho = 0.57, He = 0.73; Paeonia rockii), and Xue et al. [50]
(Ho = 0.1867, He = 0.5782; wild species of tree peony) using SSR markers. Furthermore,
He was lower than Ho at six loci (PS57, PS074, PS24, PS119, PS068, and PS64). Excess
heterozygotes were also observed in the Jiangnan population (Ho = 0.444, He = 0.373)
and Southwest population (Ho = 0.427, He = 0.420), respectively. These results suggested
that the samples from the Jiangnan and Southwest populations in this study might have
been derived from hybridization between multiple related species originating from differ-
ent geographical locations [54,57]. We also found that most He values were higher than
Ho values at the locus and population levels, this indicated that heterozygote deficiency
was possible. Similar results were also reported for other species, such as, Cunninghamia
lanceolata [19], Eucalyptus cloeziana [30], Platycladus orientalis (Cupressaceae) [58], Lentinula
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edodes [59], and Nelumbo nucifera [60]. The presence of private alleles in these germplasms
suggested the existence of valuable rare genetic variations, which could offer more pos-
sibility for selecting beneficial recombinants in future breeding efforts. Therefore, when
developing a germplasm conservation and breeding program, it is necessary not only to
preserve germplasm with high levels of genetic diversity but also to give special attention
to individuals with private alleles.

The majority (70%) of pairwise comparisons of FST showed significant differences
(p ≤ 0.05), indicating a significant genetic differentiation between populations. In addition,
the FST values between Jiangnan and Japan, Jiangnan and Southwest, and Jiangnan and
Zhongyuan populations were 0.155, 0.167, and 0.223, respectively, indicating a high level
of differentiation (0.15 < FST < 0.25). The FST values between the other populations were
at a moderate level of differentiation (0.05< FST <0.15). These results were consistent with
previous studies of tree peony [50,61], indicating that the degree of genetic differentiation
varies among populations from different sources. Therefore, it is important to consider their
sources and diversity levels for the effective conservation of peony germplasm resources.

A population structure analysis of 322 tree peony samples was conducted, and two
clusters were identified. The results derived from the genetic structure analysis utilizing
multiple K-values and PCoA were consistent with the aforementioned findings. Interest-
ingly, we found that the samples from the Zhongyuan population were predominantly
assigned to cluster II, while the remaining four populations were primarily assigned to
cluster I. These indicated that the materials from the Zhongyuan population exhibited
distinct genetic backgrounds compared to the other four populations, corroborating the
findings of previous studies conducted by Peng et al. [62]. Moreover, the complexity and
diversity of the genetic background of Zhongyuan peony population might be attributed
to its longstanding cultivation history in the Zhongyuan region, particularly in Luoyang,
Henan Province, China [8,54]. However, further research is needed to fully understand the
evolutionary and domestication history of Zhongyuan cultivars.

5. Conclusions

In this study, sixteen functional primer pairs with high polymorphism and good
universality were selected from the initial pool of 115 SSR markers to analyze and infer
the genetic diversity of tree peony germplasm. The tree peony germplasm resources from
the nursery of Henan University of Science and Technology contained five populations
and showed a high genetic diversity. These group samples could be categorized into two
subpopulations, of which the Zhongyuan population was mainly distributed in subpopula-
tion II, the other four population individuals were mainly distributed in subpopulation I.
Furthermore, the observed variation was mainly attributable to within-population differ-
ences. The geographic distance is not the main driver of tree peony genetic structure. The
findings provide comprehensive and important information for the breeding of tree peony
and contribute to the sustainable management, conservation, and utilization of tree peony
in the future.
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in tree peony populations; Table S3: Summary of private alleles in each population; Table S4. Analysis of
the genetic diversity of tree peony populations in China.
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