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Abstract: The high demand for wood‑based composites generates a greater use of wood adhesives.
The current industrial challenge is to develop modified synthetic adhesives to remove harmful
formaldehyde, and to test natural adhesives. The scope of the current research included the man‑
ufacturing of high‑density fiberboards (HDF) using natural binders such as polylactic acid (PLA),
polycaprolactone (PCL), and thermoplastic starch (TPS) with different resination (12%, 15%, 20%).
The HDF with biopolymers was compared to a reference HDF, manufactured following the exam‑
ple of industrial technology, with commonly used adhesives such as urea‑formaldehyde (UF) resin.
Different mechanical and physical properties were determined, namely modulus of rupture (MOR),
modulus of elasticity (MOE), internal bonding strength (IB), thickness swelling (TS), water absorp‑
tion (WA), surface water absorption (SWA), contact angle, as well as density profile; scanning elec‑
tron microscope (SEM) analysis was also performed. The results showed that increasing the binder
content significantly improved the mechanical properties of the panels in the case of starch binder
(MOR from 31.35 N mm−2 to 40.10 N mm−2, IB from 0.24 N mm−2 to 0.39 N mm−2 for dry starch),
and reduces these in the case of PLA and PCL. The wet method of starch addition improved the me‑
chanical properties of panels; however, it negatively influenced the reaction of the panels to water
(WA 90.3% for dry starch and 105.9% for wet starch after 24 h soaking). Due to dynamically evap‑
orating solvents from the PLA and PCL binding mixtures, a development of the fibers’ resination
(blending) techniques should be performed, to avoid the uneven spreading of the binder over the
resinated material.

Keywords: high density fiberboard; wood; mechanical properties; physical properties; polylactide;
polycaprolactone; thermoplastic starch

1. Introduction
Progressive economic development and the growing population significantly affect

both the natural environment and the global biomass resources, including wood, forestry,
and agricultural by‑products, based on which wood‑based panels are produced. Wood‑
based panels can be classified into three basic groups depending on the form of their struc‑
tural elements. The structure and technological process determine the mechanical and
physical properties. The first group consists of fiber composites, including boards man‑
ufactured using the dry forming method, where the fiber‑carrying medium is air; this
includes high‑density fiberboards (HDF), medium‑density fiberboards (MDF); and low‑
density fiberboards (LDF). The wet forming method, where the medium is water, is used
to produce softboards (SB) and hardboards (HB). Fiber composites also include wood‑
plastic composites (WPC). The second group consists of particleboard composites, such
as particleboards (PB) and oriented strand boards (OSB). The third group is plywood, and
laminated veneer lumber (LVL), representatives of layered composites. The production
of wood‑based panels increases from year to year, reaching approx. 167 million m3 for
plywood, approx. 110 million m3 for fiberboards, and approx. 100 million m3 for particle‑
boards [1,2]. The high demand for wood‑based panels generates a greater use of wood ad‑
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hesives, which automatically translates into the use of synthetic adhesives. Formaldehyde‑
based adhesives account for approx. 90%–95% of all wood adhesives used in the industry,
and urea formaldehyde (UF) is the leader in terms of consumption, accounting for approx.
11 million tons of resin dry weight per year [3,4]. The global wood adhesives and binders
market size reached 15.8 billion US dollars (USD) in 2020, and it is projected to grow by
approx. 4% to reach 21.9 billion USD by 2028 [5]. It is worth adding that the above data
include UF, phenol‑formaldehyde (PF) resins, and soy‑based binders, the latter being a
good indicator for new green adhesives.

Until the end of the 1950s, adhesives of natural origin were available, which had
defects, e.g., low water resistance and durability, resulting in the development of petro‑
chemical adhesives. Synthetic formaldehyde‑based adhesives have gained popularity and
lack competition from natural adhesives, due to their low production cost while main‑
taining perfect adhesive properties such as excellent stability, low curing temperature,
and fast curing, colorless and resistance to microorganisms [6,7]. The biggest challenge
for formaldehyde‑based resin technology is to reduce the emission of free formaldehyde,
which is harmful to health and the environment during production and in final products
during their entire life cycle. While levels are generally low, increasingly stringent environ‑
mental regulations will require more environmentally friendly adhesives to produce bio‑
panels [8]. The turn of the 20th and 21st centuries is a period of return to the development
of natural adhesives, the desire to look for an alternative to conventional petroleum‑based
adhesives by reducing or eliminating formaldehyde, and the sustainable development of
raw materials and final products [9].

MDF is a wood‑based board produced by pressing lignocellulose fibers together with
synthetic resins under conditions of high temperature and pressure [10]. Wood fibers
comprise the dispersed phase, which is responsible for the strength and stiffness of the
board, while the matrix used is a construction binder, and can be a synthetic resin, an
inorganic compound, or a biopolymer. [11]. Currently, commonly used resins in the pro‑
duction of MDF panels are UF, melamine urea formaldehyde (MUF), PF, and isocyanate
compounds [12]. On a global production scale, 90% of MDF panels are made with UF
resin [6]. Commercial MDF has a higher density and strength than particleboard or ply‑
wood. Unlike particleboard, which is also commonly and widely used in furniture and
construction, the MDF board has a homogeneous structure over the entire cross‑section;
because of this, it has excellent mechanical workability in the milling process, a high pre‑
cision finish which provides an excellent base for veneers, and high dimensional stability,
making it ideal for use in building materials or furniture boards [13–15].

With the predominance of petrochemical‑based products raising concerns about lim‑
ited fossil resources and harm to health and the environment, it is becoming prudent to
obtain materials that will have similar properties to the properties of commercial wood‑
based panels with one difference—they will come from renewable raw materials.

A future‑proof alternative, and at the same time a response to the restrictions and
needs of the market, is the production of bio‑composites, which means that one of at least
two component materials will be of natural origin. Recyclable composites are being devel‑
oped more widely due to the possible use of renewable raw materials: by‑products from
the agricultural industry, such as sugarcane bagasse [16], kenaf stalks [17], rice husk [18],
corn [19], tomato stalks [20], sugar beet pulp [21], walnut shell [22], and forest by‑products
such as cones [23,24], tree bark [25,26], and branches [27]. The current state‑of‑the‑art of
particleboard manufacturing which uses environmentally‑friendly agricultural biomass
was widely reviewed and described by researchers [28,29]. Another important aspect of
bio‑composites is natural and renewably sourced adhesives. Synthetic resin can be re‑
placed with natural binders, i.a. starch and its modifications [30–34] lignin [35], cellu‑
lose [36], soybean and soybean protein [37–40], chitosan [41], tannins [42,43], vegetable
oils [44], natural rubber [45,46], and citric acid [47,48]. The use of biopolymers as a binder
in wood‑based material technologies has also been extensively studied. Biopolymers such
as polylactic acid (PLA), polyhydroxybutyrate (PHB), and polycaprolactone (PCL) are also



Forests 2023, 14, 84 3 of 16

used as alternatives to synthetic adhesives. PLA is the most popular and the only biopoly‑
mer currently produced on an industrial scale. The production scale was 150,000 metric
tons in 2013, with an increase of 10% in 2020. Currently, the production process of PLAgen‑
erates 60% fewer greenhouse gases and uses 50% less non‑renewable energy than the pro‑
duction of traditional polymers such as polyethylene terephthalate (PET) or polystyrene
(PS) [49].

Song et al. [50] manufactured board in a wet method process using soybean straw
fiber, with varying amounts of PLA as a binder (0, 10, 30, and 50%). They proved that the
addition of PLA weakened the mechanical properties of tested boards. However, when it
came to hygroscopic properties, they showed that increasing the amount of PLA improved
the water resistance. Ultimately, they confirmed the validity of using PLA as a binder for
fiberboards; however, a coupling agent was needed to improve the mechanical properties.
Ye et al. [51] produced fiberboards from softwood fiber, wheat, and soybean straws. They
proved that fibers from wheat and soybean straws can be used in a 50/50% agricultural
fiber/wood fiber ratio, because they could provide comparable mechanical properties and
water resistance to fiberboards made of 100% wood fiber. Many literature reports on PLA,
PCL, and PHB concerning fiber composites refer to wood‑plastic composites (WPC), pro‑
duced by methods such as direct injection molding, extrusion, compression molding, film
and sheet formation [52–56].

The current state of the art is limited on the subject of using biopolymers, e.g., PLA,
PCL, PHB, as a binder inwood‑based panel technology, particularly withmedium‑density
fiberboards. This investigation aimed to assess the impact of natural biopolymer binders—
thermoplastic starch (TPS), PLA, and PCL—on selected physical and mechanical proper‑
ties of HDF manufactured with different resination.

2. Materials and Methods
2.1. Materials and Their Characterization

In the present study, high‑density fiberboards (HDF)were producedunder laboratory
conditions from pine (Pinus sylvestris L.) and spruce (Picea abies L.) industrial fibers (IKEA
Industry Poland sp. z o. o. brand Orla, Szczecin, Poland). The fibers were dried to a
moisture content (MC) of about 4%.

Compositesweremanufacturedwith four different binders: pure, laboratory‑purpose
polylactide (PLA; Sigma‑Aldrich, Saint Louis, MO, USA, product no. 38534), polycapro‑
lactone (PCL; Sigma‑Aldrich, product no. 704105) in drops with a diameter of 3 mm, ther‑
moplastic starch (TPS; Grupa Azoty S.A., Tarnów, Poland) in drops and powder form, and
urea‑formaldehyde resin (UF; Silekol S‑123, Silekol Sp. z o.o., Kędzierzyn‑Koźle, Poland),
the latter of which is commonly used in industry.

2.2. Fiberboard Manufacturing
The HDF were manufactured with dimensions 320 mm × 320 mm, a target density

of 900 kg m−3, and an average thickness of 3 mm. The fiberboards were produced using
different binders as well as different resination values. All composites with biopolymers
as a binder were manufactured with 12%, 15%, and 20% resination. The reference variant
was produced with 12% resination, as in industrial conditions. The resination values used
in this study were previously used for particleboard with biopolymers as an adhesive [57].
Increasing the resination from 12% to 15% significantly improved the physical and me‑
chanical properties of the produced particleboards. However, increasing from 15% to 20%
seemed unjustified. Therefore, in this study, the same resination values were used, but
not exceeding 20%. No paraffin emulsion or wax was added during the manufacturing
of the high‑density fiberboards. The binder liquid solutions were mixed in a laboratory
mixer and sprayed by air gun onto the lignocellulosic fibers. The TPS powder was manu‑
ally applied into fibers, and then water was sprayed using a spray gun, with the amount of
water depending on the percentage of resination. After applying biopolymers and blend‑
ing, the resinated fibers were stored in the laboratory fume hood for 3 days to evaporate



Forests 2023, 14, 84 4 of 16

the solvents. Then, the mats were formed and pre‑densified manually. To improve the
heat transfer into the core of HDF, 65 g m−2 of water was sprayed on the top and bottom
sides before hot pressing. The HDFwas pressed in two stages: cold pressed (unit pressure
0.8 MPa, 30 s) to thicken the mat, and then hot pressed for 10 min at 180 ◦C under 2.5 MPa
unit pressure (AKE, Mariannelund, Sweden). For the reference panels, the hot pressing
time was reduced to 60 s, while other pressing parameters remained unchanged. For the
biopolymers, an extended pressing time was used to allow the thermoplastic binders to
properly melt. In the process of manufacturing wood‑based panels, the pressing tempera‑
ture depends on the binder used. DSC and TGA analysis for PLA, PCL [58], and starch [59]
allowed us to determine the “safe” temperature of 180 ◦C, which does not cause degrada‑
tion of the biopolymer and is sufficient to melt.

As a result, thirteen types of fiberboards were produced with different resination
(hereby referred to by the shortcuts listed in Table 1), and two panels of each binder type.
The manufactured HDF were conditioned in ambient conditions (20 ◦C; 65% R.H.) until
they reached a constant weight, before being cut according to the research schedule.

Table 1. Shortcuts for every elaborated HDF.

Variants of Binders and Resination Shortcut of HDF

UF 12% UF12

Powder TPS 12%—dry starch DS12

Powder TPS 15%—dry starch DS15

Powder TPS 20%—dry starch DS20

Drops of TPS 12%—wet starch WS12

Drops of TPS 15%—wet starch WS15

Drops of TPS 20%—wet starch WS20

PLA12% PLA12

PLA15% PLA15

PLA20% PLA20

PCL12% PCL12

PCL15% PCL15

PCL20% PCL20

2.3. Preparation of the Adhesives
The adhesivemass for PLA, PCL, and TPS (drops)was produced by dissolving the dry

mass of polymers in solvent to obtain the consistency of a thick liquid. The following sol‑
vents have been used to achieve liquid‑state binders: methylene chloride (CH2Cl2) for PLA
(about 23% dry matter content of resulting mixture), toluene (C7H8) for PCL [57] (about
27%drymatter content of resultingmixture), and hotwater for TPS (drops). The TPS drops
with hot water weremixed using a low‑speedmixer, until a homogeneous suspension was
achieved (about 25% drymatter content). All solution concentrations were tuned to obtain
the viscosity of solutions similar to the reference binder (in the range of 420–450 mPa s).
The referenceHDFwas producedwithUF industrial resin (65%drymatter content), where
the hardener was a 10%water solution of ammonium sulfate ((NH4)2SO4) in a weight ratio
of 50:5:1.5, respectively: resin: water: hardener. The curing time of the reference bonding
mixture at 100 ◦C was about 82 s.

2.4. Physical and Mechanical Properties
The modulus of rupture (MOR) and modulus of elasticity (MOE) were characterized

according to EN 310 [60], and the internal bond (IB) was determined according to EN
319 [61]. The mechanical properties were analyzed with an INSTRON 3369 (Instron, Nor‑
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wood, MA, USA) standard laboratory testing machine, and as many as 10 test specimens
for each fiberboard type were analyzed for the tests mentioned. Thickness swelling (TS)
andwater absorption (WA) at two‑time intervals, i.e., after 2 h and 24 h of immersion inwa‑
ter, were measured according to EN 317 [62], and 12 samples of HDF panels of each binder
variant were used. Surface water absorption was conducted according to EN 382–2 [63],
in two repetitions for each variant of the panels. The density profile (DP) of samples was
analyzed using a DA‑X measuring instrument (GreCon, Alfeld, Germany). The measure‑
ment based on direct scanning X‑ray densitometry was carried out at a speed of 0.05 mm
s−1 across the panel thickness with a sampling step of 0.02 mm. The density profile was
performed using three samples of each variant for a type of binder.

Contact angle measurements were made using the contact angle analyzer PHOENIX
300 (SEO—Surface & Electro Optics Co., Gyeonggi‑do, Ltd., Suwon City, Korea) equip‑
ment, using the method of distilled water sessile drop. A Quanta 200 (FEI, Hillsboro, OR,
USA) scanning electron microscope was used to define the surface morphology of the pro‑
duced fiberboards.

2.5. Statistical Analysis
Analysis of variance (ANOVA) and t‑test calculations were used to test for significant

differences (α = 0.05) between factors and levels where appropriate, using the IBM SPSS
statistic base (IBM, SPSS 20, Armonk,NY,USA).A comparison of themeanswas performed
when the ANOVA indicated a significant difference, by employing the Duncan test. The
detailed p‑values have been attached as Supplementary Material.

3. Results and Discussion
Thedensity profilewas characterized, and the results are summarized in Figure 1. The

average densities of all samples are ~900 kg m−3. The density profiles for individual sam‑
ples of HDF were symmetrical to the middle of the thickness of the board; therefore, the
graph presents the density profiles to their axis of symmetry to facilitate the analysis. Re‑
gardless of the biopolymer type or the resination used, the shape of all profiles did not dif‑
fer significantly. Each of the profiles presented in the graph shows a characteristic density
profile ofHDF,where the core layer has a slightly lower density than the surface layers [64].
The boards produced were 3 mm thick; therefore, the difference between the surface layer
density (SLD) and core density (CD) is smaller than in the case of 10mm thickMDF boards,
where the density distribution shows clear differences between the layers [65]. The effect
of fiber compression is more even over the entire cross‑section of the thinner board, as the
set temperature of the press shelves reaches the core layer faster, causing hardening or
binder liquefaction depending on the binder used [66]. The average density of the PCL12
samples on the surface achieved a value of 1090 kg m−3 and recorded a decrease in den‑
sity in the core layer by 24%. The most homogeneous density profile was recorded for the
PLA20 samples, where density decreases in the core layer by about 6%. The HDF was ini‑
tially cold‑pressed to densify the mat and then hot‑pressed to achieve a more even density
distribution. However, it should be pointed out that the mats were sprayed with water
on the surfaces to improve the heat transfer during hot‑pressing. This promotes a higher
densification of the face layers of the produced panels with biopolymers. Wong et al. [66]
manufactured 12 mmMDF which was subjected to a two‑step hot pressing process. They
showed that the final profile is significantly dependent on the thickness achieved in the
first stage of pressing. Obtaining a smaller thickness in the first stage resulted in a greater
difference between maximum surface layer density (SLD) and core density (CD). There is
no noticeable difference between the profiles for thermoplastic polymers and the UF resin
used in the reference panel. Figure 2 shows the changes in the appearance of the surface
of the produced HDF, depending on the binder used and the resination. HDF with PLA
and PCL as a binder has visible adhesive stains, which were caused by the too fast evapo‑
ration of the solvent during the covering of the fibers. Stains indicated that the biopolymer
did not evenly cover the fibers in the entire board. In the boards there are places with a
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large amount of biopolymer, and there are also places where this biopolymer has been
minimally distributed on the fibers. The graph shows that for PLA and PCL, the density
profile is more homogeneous with increasing of resination.
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used and the resination.

The average values of modulus of rupture (MOR) and modulus of elasticity (MOE)
under the three‑point bending stress of the tested composites are presented in Figure 3.
The error bars in the graphs represent the standard deviation. The highest value of MOR
(59.18 N mm−2) was recorded for the reference HDF, while the lowest (23.64 N mm−2)
was for PLA20. In the case of MOE, the highest average value was obtained for PS20
(4225 N mm−2), and the lowest was for PCL12 (2596 N mm−2), as well as for MOR. An‑
alyzing the obtained results for DS, it can be observed that with the increase in resin con‑
tent from 12, 15 to 20%, the average value of both MOR and MOE increases. For the WS
samples, an increase in the MOR andMOE values can be seen with an increase in the resin
content from 12 to 15%. The addition of 20% starch (WS) caused a decrease in strength
andMOE. In the case of PLA and PCL, we can observe the opposite situation as in the case
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of DS12‑DS20 boards; the average values of MOR and MOR decrease with the increase
in resination. It can also be seen that between 12–15% differences in the average MOR
and MOE values for PLA and PCL are smaller than at 15–20%. Statistically significant dif‑
ferences among all variants of panels with PLA and PCL can be noted between variants
PCL15 and PCL20. The explanation for the decrease in the MOR andMOE values for PLA
and PCL with increasing resin content can be found in the structure of the produced HDF.
As already shown above in Figure 2, there was a problem with the uniformity of the distri‑
bution of biopolymers on the fibers. The WS20 samples also show a decrease in the MOR
and MOE values, although they increased from WS12 to WS15. The photo shows surface
defects; thus, we can predict what the structure looks like in a cross‑section of the samples.
The more biopolymer, the more stain and weak areas in the board. Xiaowen et al. [50] con‑
firmed that the addition of PLA as a binder weakened the mechanical properties (bending
strength and tensile strength) of fiberboard produced using a wet method, using soybean
straw fiber. They used different pressure values, which affected the final results of the tests.
Of the two forms (powder, drops) of applying TPS to the fibers, the starch drops in the
form of a suspension show better strength properties. TheMOR value forWS12 relative to
DS12 and WS15 to DS15 is higher by 32% and 30%, respectively. There are no statistically
significant differences between DS20 and WS20. According to statistical analysis, there
are statistically significant differences between the average values of the MOR results for
UF12 and the rest of the HDF variants, also between the DS, WS, PLA, and PCL20 samples.
Taking into account statistical analysis, there are no statistically significant differences be‑
tween the average values of the MOE results from UF12, WS15, and WS20; DS12‑DS20,
WS20, PLA12, PLA15, and PCL12.
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by more effective bonding in the core layer. Ji et al. [41] developed a method for manufac-
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nent and glutaraldehyde as a crosslinking agent. They prove that an increasing amount of 
glutaraldehyde could be contributing toward the deterioration of the mechanical proper-
ties of MDF. The optimal IB value was 1.22 N mm−2, with the board sanded to reduce the 
low-density surface area which results in an improved surface quality and finish. 
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Figure 3. (a) Modulus of rupture (MOR) and (b) modulus of elasticity (MOE) of tested HDF.
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The obtained results of internal bonding (IB) tests are presented in Figure 4. The error
bars in the graph represent the standard deviation. The outcomes show that the highest
average value of IBwas that of the reference HDF (1.73 Nmm−2), and the lowest valuewas
forDS12 (0.24Nmm−2). Analyzing the results, it can be seen that the lowest IB valueswere
recorded for DS and PLA samples, regardless of the level of resination. The same relation
refers to IB as toMOR andMOE. For DS, an increase of resination from 15% to 20%, and for
WS12 to WS15, causes a slight increase in average IB values. The PLA and PCL board vari‑
ants show a decrease in the IB with an increase in resination. Better results in this test were
also obtained by starch in the form of drops, whichwere applied to the fibers in the form of
a thick liquid using a pneumatic gun. This method of the application allowed us to obtain
better coverage of the fibers. The starch powder probably did not fully mix with the intro‑
duced water, leaving zones where the binder and fibers did not mix well. No significant
influence of the density profile on the IB has been found. According to statistical analysis,
statistically significant differences exist between the average values of IB results for the
reference HDF and the rest of the panels produced; between DS12‑DS20, PLA12‑PLA20,
and variants WS12‑WS20, PCL12‑PCL20. The representative forms of damage of the sam‑
ples resulting after the IB test are compiled in Figure 5. The first group of destruction took
place in the middle of the composite thickness. The first form of destruction was obtained
by UF12, WS12, WS15, WS20, PCL12, PCL15, and PCL20. The second group includes sam‑
ples in which the destruction took place in the near‑surface zone; it includes samples with
an average IB below 0.48 N mm−2. The HDF with damage in the near‑surface layers had
theweakest strength of all tested samples, which is caused bymore effective bonding in the
core layer. Ji et al. [41] developed amethod for manufacturingmedium‑density fiberboard
(MDF) adhesives using chitosan as the main component and glutaraldehyde as a crosslink‑
ing agent. They prove that an increasing amount of glutaraldehyde could be contributing
toward the deterioration of the mechanical properties of MDF. The optimal IB value was
1.22 N mm−2, with the board sanded to reduce the low‑density surface area which results
in an improved surface quality and finish.

Baskaran et al. (2012) [67] conducted tests with the addition of freeze‑dried and pure
polyhydroxyalkanoates (PHA) in fine particles of oil palm trunk at different amounts. They
proved that MOR and MOE increased as the amount of both forms of PHA increased.
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Figure 5. Two representative forms of damage after the IB test (a) in the core layer; (b) near‑surface
zone.

Scanning electronmicroscopy (SEM)was used to analyze the bonding quality of HDF
with biopolymers and UF resin directly at the microstructure scale. The photos in Figure 6
are presented for each of the produced variants of panels, andweremarkedwith arrows to
exemplify the characteristic areas that clearly show the wood fiber covered by the binder
used, and in the case of DS samples, how powder grains are visible. There is a visible in‑
crease in the number of biopolymers covering the fibers with increasing resination. The
SEM pictures show the difference between the bonding of PLA and PCL with fibers, and
the reference board based on UF resin. The binder was not distributed uniformly, and
places where the fibers are fully covered by the biopolymer were observed in HDF with
PLA and PCL, which potentially affected the mechanical and physical properties. SEM
photos of PLA‑based composites with the addition of agricultural by‑product fibers show
poor fiber‑to‑matrix adhesion, voids, and fiber breakage [68]. Song et al. [50], performed
an SEM analysis, proving that the addition of 10% PLA in a fiberboard covers insignificant
part fibers, which causes gaps between the fibers. The addition of 30–50% PLA causes the
penetration of PLA into the gaps between fibers, which has a positive effect on water re‑
sistance and dimensional stability. Sivakumar et al. [69] observed an even distribution of
banana leaf fiber with thermoplastic cassava starch as a strong adhesive matrix, which im‑
proved the mechanical properties of the bio‑composites. The composite–water interaction
(like TS, WA, and SWA) can be dependent on the tested panels’ microstructure and binder
distribution.

The average values of thickness swelling (TS) and water absorption (WA) on HDF
after 2 h and 24 h are presented in Figure 7a–b. The error bars in the graphs represent the
standard deviation. The average TS of the specimens after 2 h of immersion ranged from
10.4% for UF12 to 37.6% for DS12. After 24 h of immersion, the results were between 21.7%
and 80.4% for UF12 and WS12, respectively.

Under industrial conditions, for the production of MDF, about 1% of paraffin emul‑
sion is added to ensure water resistance; in contrast, no hydrophobic agents were used in
these studies. The reference composites use UF resin, which is intended to be used in dry
conditions. For each tested group of biopolymers, it can be observed that TS decreases
with increasing resination. Biopolymers act as a binder but also fill the voids between the
fibers, acting in favor of water resistance. Increasing the resination was the least effective
for HDF with PLA as a binder, both after 2 h and 24 h of soaking in water. The SEM analy‑
sis confirmed that the increase in resination visibly shows a greater fiber surface coverage
by the biopolymer, which translates into a higher water resistance. The results of water
absorption (WA) of the tested HDF after 2 h and 24 h of immersion in water show a trend
consistent with the results of TS. The lowest value of WA either after 2 h and 24 h was
achieved for the reference HDF, while the highest obtained after 2 h was DS12 and after
24 h was WS12.
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Figure 7. (a) Thickness swelling (TS), (b) water absorption (WA), and (c) surface water absorption
(SWA) of tested HDF.
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The results achieved for TS and WA are further proved in surface water absorption
tests (SWA) (Figure 7c). The error bars in the graph represent the standard deviation. Ac‑
cording to the results, the SWA decreases with the rise of the binder content. The lowest
SWAaverage valuewas noted forUF12 (181 gm−2) and the highest for PCL12 (2565 g m−2)
and PLA12 (2493 g m−2). Significantly higher average values of SWA were found for the
PLA and PCL samples. This may be the effect of the uneven spread of the binder over
the fibers during blending, which causes the occurrence of local zones of binder‑less fibers
(Figure 6g–m). Despite the action of water on only the top surface for 2 h, PLA and PCL
were impregnatedwithwater over the entire thickness of the sample. Increasing the resina‑
tion caused a slight decrease in the average SWA values. Reducing the resin content for
PLA in extreme values from 12 to 20% resulted in a decrease in SWA by 4.6%, and for PCL
by 5.5%. The statistical analysis shows that there are no statistically significant differences
between the average values of the SWA results and the resination for the type of PLA and
PCL binder used. The decreasing reaction to water of the panels made with the increasing
amount of starch has been confirmed by [70].

Figure 8 presents the results of the contact angle measurements for all produced fiber‑
boards. The error bars in the graph represent the standard deviation. The water sessile
drop test conducted on DS andWS samples shows the highest hydrophobic behavior, pos‑
sibly due to decreased porosity of the HDFwith the binder with 20% resination. Therefore,
as the resination increased for both 1 s and 60 s, the average values of the contact angle in‑
creased. For PLA and PCL, an increase in the contact angle in the range of resination from
12 to 15% was observed, both for 1 s and 60 s. The changes were highest for PCL20 (19.2%
of reduction), PCL15, DS12, DS15, DS20—10.5%, 17.0%, 13.3%, 10.4%, respectively. The
smallest changes in contact angle after 60 s were achieved for TPS: 1.9% for WS12, 1.8%
for WS15, and 2.7% for WS20. A resination increase of 20% in HDF causes a decrease in
the angle value for 1 s and 60 s, which means better surface wettability and higher surface
energy for PLA20 and PCL20 [71,72]. The decrease in the wetting angle value was small;
the increase in wettability from 15 to 20% for PLA resulted in a decrease in the contact
angle by 1% after 1 s, while after 60 s the average value of the angle remained at the same
level as for the 15% resin, at 102◦. The PCL biopolymer caused a decrease after 1 s by 10%,
and after 60 s by 7%. The increase in surface wettability with the increase in resination
was probably caused by the uneven biopolymer coverage of the fibers (Figure 2). This is
also explained by the analysis of SEM images, where voids and places where there is an
excess of biopolymer are visible (Figure 6). Gumowska et al. [57] confirmed that with the
increase in resination (12, 15, 20%) in particleboard bonded by PLA and PCL, the average
values of the contact angle increased both after 1 s and after 60 s. The highest average con‑
tact angle after 1 s was recorded for DS12, DS15, DS20, reaching values of 112◦, 113◦, 115◦,
and respectively; the lowest after 1 s was recorded for PCL20, at 95◦. The highest average
contact angle after 60 s was recorded for UF12, WS12, WS15, and WS20, reaching values
105◦, 105◦, 107◦, and 107◦, respectively; the lowest after 60 s was recorded for PCL12, at
84◦. For each tested HDF sample, after the water droplets remained on the surface for 60 s,
the contact angle decreased.
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4. Conclusions
On the basis of the completed research and analysis of the results, the following con‑

clusions can be drawn:
A slightly higher densification of the face layer was found for panels where the water

spray was applied over the mat surfaces before hot‑pressing.
The bending features (MOR and MOE) depended on the binder type and resination

level; there was increasing MOR and MOE with a rise in the DS resination; the maximum
MOR and MOE values for WS were found for 15% resination; the bending properties of
panels made with PLA and PCL decreased with the resination increase; however, the rad‑
ical drop in MOR and MOE occurred when resination grew from 15% to 20%.

A similar relation between the binder type and resination level was found for IB; how‑
ever, a significantly higher IB among the panels with biopolymers was registered for WS
and PCL; the IB was not influenced by the density profile.

A slight, statistically insignificant reduction in TS,WA, and SWAwas found for panels
with increasing biopolymer binder content; an intensive increase in TS andWAwas noted
forWS after 24 h of soakingwhere the starch as a binder in wet formwasmixedwith fibers;
the PLA panels had the lowest WA, and the lowest SWA among the biopolymer‑bonded
samples was for WS.

With the increase in resination for TPS from 12 to 20%, the value of the contact angle
increased both after 1 s and 60 s. The increase in resination for PLA from 12 to 15% caused
a statistically insignificant increase in the contact angle and a statistically insignificant de‑
crease when resination grew from 15% to 20% for both 1 s and 60 s. The average value of
the contact angle for PCL increased with the increase in resin content, while for PCL20 an
increase in surface wettability was observed concerning PCL15.

In the case of dynamically evaporating solvents from binding mixtures, a develop‑
ment of fibers’ resination (blending) techniques should be carried out, to avoid the uneven
spreading of the binder over the resinated material. Further research on improving the
strength of wood‑based panels bondedwith biopolymers should focus on improving their
adhesion to the surface of wood/wood particles or fibers.
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