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Abstract: Deep neural networks (DNNs) have driven the recent advances in fire detection. However,
existing methods require large-scale labeled samples to train data-hungry networks, which are diffi-
cult to collect and even more laborious to label. This paper applies unsupervised domain adaptation
(UDA) to transfer knowledge from a labeled public fire dataset to another unlabeled one in practical
application scenarios for the first time. Then, a transfer learning benchmark dataset called Fire-DA
is built from public datasets for fire recognition. Next, the Deep Subdomain Adaptation Network
(DSAN) and the Dynamic Adversarial Adaptation Network (DAAN) are experimented on Fire-DA to
provide a benchmark result for future transfer learning research in fire recognition. Finally, two trans-
fer tasks are built from Fire-DA to two public forest fire datasets, the aerial forest fire dataset FLAME
and the large-scale fire dataset FD-dataset containing forest fire scenarios. Compared with traditional
handcrafted feature-based methods and supervised CNNs, DSAN reaches 82.5% performance of
the optimal supervised CNN on the testing set of FLAME. In addition, DSAN achieves 95.8% and
83.5% recognition accuracy on the testing set and challenging testing set of FD-dataset, which out-
perform the optimal supervised CNN by 0.5% and 2.6%, respectively. The experimental results
demonstrate that DSAN achieves an impressive performance on FLAME and a new state of the art on
FD-dataset without accessing their labels during training, a fundamental step toward unsupervised
forest fire recognition for industrial applications.

Keywords: forest fire recognition; unsupervised domain adaptation; transfer learning; deep
neural network

1. Introduction

Fire is one of the major disasters facing humankind today, since it causes a large
number of casualties and property damage. According to a report [1] by the Fire and
Rescue Department Ministry of Emergency Management, People’s Republic of China, there
were 748,000 fires nationwide in 2021, resulting in 1987 deaths, 2225 injuries, and CNY
6.75 billion in property damage. In the United States, local fire departments responded to
1,353,500 fires in 2021. These fires caused 3800 civilian deaths, 14,700 civilian injuries, and
USD 15.9 billion in property damage [2]. Therefore, it is essential to detect and warn of
fires on time.

After temperature and particle sensors, vision sensors are now widely used in fire
detection because of their long detection distance, fast response, and ability to monitor fire
size, location, and expansion rate. Vision sensor-based algorithms have gone through a
journey from handcrafted feature-based to DNN-based approaches.

The handcrafted feature-based approach usually contains two parts, a feature extractor
and a classifier. Feature extractors were generally designed based on static features, such
as color [3], shape [4], edge [5], texture [6], etc., and dynamic features, such as motion [7],
shape variation [8], flicker [9], dynamic texture [10], etc. The classifiers were usually based
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on rule [11], expert system [8], machine learning (such as SVM [12], Bayes networks [13],
linear model [14], neural network [15]), etc. The advantages of the handcrafted feature-
based approaches are simplicity and ease of deployment, while the disadvantages are high
false-alarm rates and lack of robustness to different scenarios.

In recent years, DNNs have been widely used in fire detection based on the following
attributes: 1. the powerful feature extraction and representation learning capabilities; 2. the
“end-to-end” automatic learning ability; 3. improved accuracy, reduced false-alarm rate,
and enhanced robustness over the handcrafted feature-based approaches. However, the
DNN:s also introduce the following new challenges: 1. the networks are time-consuming
and computationally expensive when training from scratch and tend to overfit on small-
scale datasets; 2. the “end-to-end” automatic learning process requires large and diverse
datasets, which are time-consuming and laborious to collect and label. As for the first
challenge, this paper applies the “pre-train and fine-tuning” technique to accelerate the
convergence and improve the generalization of the networks [16-19], where the networks
are pre-trained on ImageNet and fine-tuned on fire datasets. In response to the second chal-
lenge, this paper builds a transfer learning benchmark dataset called Fire-DA from public
fire datasets with labels and applies UDA to transfer the domain-invariant knowledge from
Fire-DA to other unlabeled fire datasets. Extensive experiments based on the FLAME [20]
and FD-dataset [21] are conducted to compare the fire recognition capabilities of UDA with
existing handcrafted feature-based and supervised CNN-based methods.

The main contributions of this paper are as follows:

e UDA is applied to fire recognition for the first time, which transfers the knowledge learned
from labeled public fire datasets to unlabeled ones in specific application scenarios.

e  The Fire-DA dataset for transfer learning is constructed for validation in the hope that
it can serve as a benchmark for future work.

e  Extensive transfer experiments are conducted on Fire-DA to study the transfer proper-
ties between different fire datasets and compare the performances of DSAN [22] and
DAAN [23].

e  The performance of the traditional handcrafted feature-based methods, supervised
CNNs, and DSAN is compared based on the FLAME and FD-dataset. The feasibility
of our UDA-based approach for fire recognition is verified.

The remainder of the paper is organized as follows: Section 2 presents related work,
Section 3 describes the Fire-DA dataset and the framework of our UDA-based method for
fire recognition, Section 4 contains experimental results and analysis for our method in fire
recognition tasks, and Section 5 consists of conclusions and future perspectives.

2. Related Work

In this section, we focus on the current status of DNN applications in fire detection
and then introduce the UDA and its applications.

2.1. DNNs in Fire Detection

Deep learning has made a big splash in the computer vision (CV) field. As a typ-
ical downstream task of CV, fire detection has yielded many methods based on deep
learning [24].

First of all, various DNNs were applied to fire detection, such as AlexNet [16,21,25,26],
VGG [27], GoogleNet [18,26], ResNet [17,27], EfficientNet [28,29], SqueezeNet [19], Mo-
bileNet [27,30], and other classification networks for fire recognition, Faster-RCNN [27],
EfficientDet [29], SSD [31], YOLO [29,32], and other object detection networks for fire
detection, DeepLab [33], FusionNet [34], UNet [35], and other segmentation networks for
flame segmentation, LSTM [25], GRU [36], and other RNNs for video fire recognition, and
Generative Adversarial Network (GAN) [35,37] for fire data augmentation. For forest fire
detection, [29] proposed an ensemble learning method for different forest scenarios based
on YOLOVS5, EfficientDet, and EfficientNet. Ref. [20] collected a fire aerial image dataset
called FLAME for forest fire detection and segmentation. Ref. [38] proposed a transfer
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learning-based method for fire recognition on FLAME and explored the effects of different
backbones, network depths, activation functions, fine-tuning layer settings, and sample
augmentation (SA) methods on forest fire recognition.

Secondly, some research focused on the structural modification of DNNs for fire detec-
tion. The attention mechanism was incorporated [21,28,35,39] and the multiscale features
were fused [19,21,40] with CNNS. Specifically, [28] implemented coarse object localization
under weakly supervised conditions using the gradient-weighted class activation mapping
(Grad-CAM) techniques. Ref. [34] proposed a semantic segmentation network for fires
by combining FusionNet with a residual structure-based middle-skip connection module.
Ref. [40] designed the feature-squeeze block to fuse the feature maps of different depths to
improve the recognition accuracy for flames in various sizes. In addition, some research
compressed CNNSs to trade-off between fire detection accuracy and model complexity for
lightweight deployment in real-world surveillance networks, e.g., [18] balanced the com-
putational efficiency and accuracy by transfer learning, [19,21] reduced the parameters and
saved computational cost by replacing the convolutional kernels with small ones, [19,30]
further decreased the computational complexity and model size by eliminating fully con-
nected layers, and [26] obtained a lightweight structure by reducing the depth and width
of CNN.

Thirdly, some researchers tried to combine traditional methods with DNNs for fire
detection. Ref. [25] converted RGB images into optical flow images to exclude background
interference and then extracted spatial and temporal features for fire detection based on
CNN and LSTM, respectively. Ref. [26] achieved fire localization by combining lightweight
CNN and traditional super-pixel localization techniques. Ref. [27] combined the 2D Haar
transform and CNN to propose a new fire detection algorithm called Haar-CNN to compen-
sate for the limitations of convolutional and pooling layers for spectral analysis. Ref. [32]
proposed a video fire detection approach by combining YOLO and a random forest classi-
fier for night-time. Ref. [41] extracted the suspected region based on the traditional RGB
model and then detected fires by CNN. Ref. [42] began with extracting the motion region
in the video frame via conventional background subtraction, then obtained the suspected
region by the pixel frequency matrix, and finally determined whether there was a fire
by CNN. Ref. [43] solved the information loss due to the large-view angle of UAV aerial
images by combining traditional saliency detection and CNN.

In summary, although plenty of DNNs were applied in fire detection tasks, they
invariably required the support of a large amount of data with labels. Transfer learning-
based methods have also been proposed for fire detection to solve the problem of insufficient
data in the target domain [16-19,28,38,39]. However, they are still supervised because the
target domain labels are accessed during fine-tuning. Therefore, this paper introduces UDA
to free the hands of people working on labeling.

2.2. UDA and Its Application

UDAs project the labeled source domain and unlabeled target domain into a common
feature space and then align their feature distributions by different means to learn transfer-
able knowledge. According to the alignment method, there are two main types of existing
UDAs, discrepancy-based and adversarial-based UDAs.

The discrepancy-based UDAs measure the feature distribution gap between source
and target domains based on predefined distances and achieve alignment by explicitly
reducing the gap. DDC [44] proposed a parallel CNN structure with a single adaptation
layer to learn category-discriminative and domain-invariant features by “end-to-end”
training. It designed a joint loss combining supervised classification loss in the source
domain and unsupervised cross-domain distribution distance based on maximum mean
discrepancy (MMD). DAN [45] applied multiple kernel variants of MMD (MK-MMD)
to multiple adaptation layers based on DDC. It integrated task-specific representations
of multiple layers and solved the problem that MMD is sensitive to the choice of kernel
functions. DeepCoral [46] aligned the source and target domains’ second-order statistics
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(covariance) by polynomial kernels. DSAN [22] addressed the problem that traditional
discrepancy-based UDAs can only align the marginal distribution. It obtained a more
fine-grained alignment by minimizing the local maximum mean discrepancy (LMMD) of
the subdomains formed by the samples from the same category in both domains.

The adversarial-based UDAs achieve feature alignment via the minimax two-player
game strategy, where one player is the domain discriminator trained to distinguish the
source domain from the target domain and the other is the feature extractor trained to
confuse the domain discriminator by learning domain-invariant features. As an early
adversarial-based UDA, DANN [47] contained the following four parts, a feature extrac-
tor, a label classifier, a domain discriminator, and a gradient reverse layer (GRL). The
GRL was designed between the feature extractor and domain classifier to let the domain
classifier weights update in the opposite direction to the feature extractor weights when
optimizing the domain classifier loss so that the two-step alternate training process could
be implemented in one step. Since the domain discriminator accepted the overall samples
from both domains, DANN is a marginal distribution adversarial-based UDA. MADA [48]
extended DANN’s single-domain discriminator to multiple-domain discriminators and
aligned complex multi-peak distributions by considering both marginal and conditional
distributions. DAAN [23] introduced dynamic factors based on MADA to play the role of
different distribution alignments in different situations by dynamically aligning marginal
and conditional distributions.

Recently, UDAs have been widely used in the CV field, such as image classification [49],
object detection [50], image/video segmentation [51], and image/video retrieval [52] tasks.
To our best knowledge, there is no work that is the same as ours for vision-based fire
detection using UDA.

3. Materials and Methods
3.1. Problem Definition

As shown in Figure 1a, we are aware of a labeled source domain and an unlabeled
target domain for the UDA-based fire recognition task. The two domains follow different
distributions. UDA aims to train a network capable of extracting domain-invariant features
so that the classifier trained on the source domain can distinguish samples from the target
domain. We define the source domain Ds and the target domain D; to be obtained by
sampling through different distributions p and g (p # ), denoted as Ds = { (x5,y5) }1",
and D; = {xf ?;1, respectively, where n; and n; represent the number of samples in
the source and target domain, respectively. The label y° in the source domain and y in
the target domain belong to the same label space R®, where C represents the number
of categories. The goal is to learn the optimal model F : x! — y! by labeled samples in
the source domain and unlabeled samples in the target domain such that the prediction
error € = E(, yep,[ F(x) # y] on the target domain is minimized. The loss function of
discrepancy-based and adversarial-based UDA can be uniformly defined as:

L= Etask(DS) + Aﬁudapt(Ds/ Dt) (1)

where Ly, () represents task-related loss, L,g,¢(, -) denotes domain adaptation loss, and
A is a trade-off factor.

3.2. DSAN

Among discrepancy-based UDAs, MMD is a classical measurement of distribution
distance, and its empirical approximation is usually expressed as follows:

MMD(D, D) =] = ¥ ¢(u) -~ L 9(x) I, @

s X,’GDS X]'GD[
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where H represents the reproducing kernel Hilbert space (RKHS), ¢(-) indicates the map-
ping from original space to RKHS, which can be understood as layer activation in CNNSs,
and || - ||3, denotes the RKHS norm. Furthermore, the loss function of MMD-based UDA
can be expressed as follows:

L = Ls(Ds) + AMMD(Ds, Dy) 3)

where L 5(D;) is the cross-entropy loss in the fire recognition task.

v

Figure 1. The UDA framework for fire recognition in this paper, including the feature alignment
flowchart (a), DSAN (b), and DAAN (c).

As seen from Equation (2), the MMD-based UDAs receive all samples of both domains,
resulting in only achieving global alignment and ignoring the effect of the local alignment of
the samples from the same category in both domains. DSAN proposes the LMMD to ensure
local alignment. Specifically, DSAN divides D; and D; into C pairs of subdomains according
to the category and then performs alignment operations in subdomains separately based
on LMMD. LMMD is defined as follows:

1 C
LMMD(D;, Dr) = = ) || 1 wi‘p(xi) — ) wi‘p(x)) [ (4)
c=1 x;€Ds x]‘EDt
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where wj¢ and w]t-c are the probabilities that samples, x; and x; belong to the cth cat-

egory, respectively, and Y, wi = 7; jwi = 1. We calculate wj® and wi¢ by the
following equations:
Y
i g — 5)
! E(x,y)GDs Y ¢
AC
wif = /- (6)

Z(x,y)eDt yc

In Equation (5), we calculate wj¢ using the real label y in the source domain. In
Equation (6), w]t»c cannot be calculated directly since the target domain has no label in UDA,
so we estimate cu]t-c by the pseudo labels j; = F (xj) in the target domain. Ultimately, the

loss function of DSAN is expressed below:
L = Ly5(Ds) + ALMMD(Ds, Dy) (7)

The framework of DSAN is illustrated in Figure 1b. The LMMD is deployed at the
bottleneck layer and the ¢(-) in Equation (4) indicates the activation of the bottleneck layer.
3.3. DAAN

To achieve transferable knowledge, the adversarial-based UDAs learn domain-invariant
features through a “two-player game” of feature extractor and domain discriminator. The
loss function of DANN can be derived from Equation (1) as shown below:

= Ecls (DS) + )"Cadv (DS/ Dt)

=+ L Ey(gy(gf(xi))fyo—ﬁ )3 Ed(gd<gf(xi))rdi>

n
* (xi,y;) €Ds x€(DsUDy)

®)

where L, (-) and L;(-) represent the label classifier loss and domain discriminator loss,
respectively, G¢(-), Gy(-), and Gy(-) the feature extractor, label classifier, and domain
discriminator, respectively, and d; the domain label (e.g., d; = 0 for the source domain
and d; = 1 for the target domain). Similar to the training process of GAN, the parameters
0, 0y and 6, are alternately optimized by adversarial training of G¢(-) and G4(+) until the
network converges. The optimization process is shown in Equations (9) and (10).

(9f, (%) = argmin(efley)ﬁ(ef, 0y, éd) 9)

0; = argmaxedﬁ (éf, 9y, 9d> (10)

To make the training process more efficient, DANN designs the GRL between G (-)
and G,(-) so that the parameters 6y, 6, and 6; can be optimized simultaneously in back-
propagation by one step.

As seen in Equation (8), the domain discriminator of DANN receives all samples in
both domains and, thus, DANN only achieves the alignment of the marginal distribution.
DAAN achieves conditional and marginal distribution alignment through a structure with
C subdomain discriminators G§(-) and one global discriminator G,(-), where C is the
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number of categories and the subdomain consists of the samples from the same category in
both domains. The loss function of DAAN can be expressed as follows:

L(Gf, Oy, 0a, 95’5:1)

1
1 v nfafo))
® (xiyi)€Ds
Label classifier loss
1
—A (1 — (/J) Li(G406G (xi) rdi 11
e T adaloe)a) w
Global domain discriminator loss
C A
+wns + ny Lo L L (gd (yigf(xi))’di)

c=1x;€(DsUDy)

Local domain discriminator loss

where the total loss £(-) consists of the label classifier loss, global domain discriminator
loss, and local domain discriminator loss. A represents the domain adaptation weights and
w the dynamic adjustment factor between global and local domain discriminators. In local

domain discriminator loss, the label classifier uses the predicted output 5 = G, (g ¥ (xi))

of the label classifier as the probability that sample x; belongs to the cth category. The
framework of DAAN is illustrated in Figure 1c.

3.4. Fire-DA Dataset

We collect the following popular datasets published recently to build a domain adap-
tation benchmark dataset for fire recognition. BoWFire is an image fire dataset in urban
emergency scenarios containing 119 fire images and 107 non-fire images. It is commonly
used as a testing set since it is very challenging [18,19,30,34]. VisiFire is a video fire and
smoke dataset for many traditional handcrafted feature-based detection methods, con-
taining 15 fire videos and 24 normal ones [4,13]. The MIVIA fire detection dataset has
been used as a training or testing set by many CNN-based fire detection methods [8,16,39].
Further, 27 of the 31 videos are from VisiFire and the authors captured the rest. Among
these videos, the first 14 have fires and the last 17 do not. FIRESENCE is a video fire dataset
that includes 11 fire videos and 16 non-fire ones, 5 of which are also from VisiFire [10].
KMU Fire & Smoke Database contains 22 fire videos and 16 non-fire ones, with most
clips being gasoline or heptane fires captured from afar [10]. We extract frames from the
clips according to different sampling rates to obtain a balanced image dataset containing
1000 images per category. Then, a benchmark dataset called Fire-DA is constructed by the
following datasets, BoWFire (B), FIRESENCE (F), MIVIA fire detection dataset (M), and
KMU Fire & Smoke Database (K), and each of them is considered as a subdomain. It is
important to note that we do not consider the VisiFire as a subdomain of Fire-DA since it is
very similar to the MIVIA fire detection dataset. Further information is given in Table 1
and some sample images of Fire-DA are shown in Figure 2.
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Table 1. The detailed statistics of the Fire-DA.
Raw Data Sampled Images
Dataset . . Downloading Links . .
Format  Fire Non-Fire (Accessed on 1 November 2022) Fire Non-Fire

BoWfFire (B) Image 119 107 https:/ /bitbucket.org/gbdi/bowfire-dataset 119 107
FIRESENSE (F)  Video 11 16 http://doi.org/10.5281/zenodo.836749 1000 1000
MIVIA (M) Video 14 17 http:/ /mivia.unisa.it 1000 1000
KMU (K) Video 22 16 https:/ /cvprkmu.ac.kr 1000 1000

VisiFire Video 15 24 http:/ /signal.ee.bilkent.edu.tr/VisiFire - -

BoWFire

FIRESENSE

MIVIA

VisiFire

Figure 2. Some sample images from five public fire datasets. Columns one to three show fire samples
and columns four to six illustrate non-fire samples.

4. Experiments

In this section, we conduct two experiments. One is the transferability research
between subdomains of Fire-DA based on two UDAs: DSAN and DAAN. The other is the
performance comparison between traditional handcraft feature-based methods, supervised
CNN-based methods, and DSAN on the FLAME and FD-dataset. DSAN and DAAN are
implied on the PyTorch framework, and the backbones AlexNet [53] and ResNet50 [54]
are pre-trained on ImageNet [55] and fine-tuned on our transfer tasks, respectively. In
this paper, the experimental hardware platform is a server with an NVIDIA RTX 2080Ti
graphics card with 12 GB of RAM.

4.1. Experiment I: Transferability Research on Fire-DA Based on UDA
4.1.1. Implementation Details

Following the standard protocols of UDA, we build all 12 transfer tasks based on
the four subdomains of Fire-DA: B—F, F—B, B—M, M—B, B—K, K—B, F—M, M—F,
F—K, K—=F M—K, K—M, using one dataset as the source domain and another as the
target domain. The labels in the target domain are only used for evaluation. To verify
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the effectiveness of UDA in Fire-DA, we establish a baseline named train-on-source (ToS),
which only accesses samples in the source domain during training and then is evaluated
directly on the target domain. In other words, when A = 0, UDA degenerates to ToS.

We fine-tune all convolutional and pooling layers and train the classifier layers by
backpropagation for UDA on Fire-DA. Since the classifier is trained from scratch, a learning
rate of 10-times that of the other layers is set. We use minibatch stochastic gradient descent
(SGD) with a momentum of 0.9 as an optimization scheme, and the learning rate variation
strategy follows existing work [47]. Due to the high computational cost, the learning rate is
not chosen by grid search but is adjusted during SGD training with the following formulas,
g =10/(1+ aG)ﬁ , where 6 is the training progress and varies linearly from 0 to 1, 779 = 0.01,
« =10 and B =0.75. We fix the adaptation factor A = 0.5 in DSAN and A =1 in DAAN, and
the batch size = 32 in both methods. We report the average classification accuracy with five
random experiments for each transfer task and present the standard error.

4.1.2. Results and Analysis

The accuracy of UDA on Fire-DA is shown in Table 2, from which we can draw the
following conclusions. Firstly, UDAs improve almost all tasks compared with ToS on Fire-
DA, making unsupervised fire recognition possible. Specifically, as to the average accuracy
of 12 transfer tasks, DAAN + AlexNet and DSAN + AlexNet improve by 10.6% and 10.7%,
respectively, over ToS + AlexNet, as well as DAAN + ResNet50 and DSAN + ResNet50
improve by 4.8% and 14.5%, respectively, over ToS + ResNet50. It indicates that the
performances of UDA on the target domain can be improved by aligning cross-domain
feature distribution without accessing the sample labels of the target domain during
training. Secondly, DSAN performs better than DAAN when the backbones are the same,
indicating that DSAN has a more substantial domain adaptation capability than DAAN
on Fire-DA. Specifically, DSAN + AlexNet improves by 0.1% over DAAN + AlexNet, and
DSAN + ResNet50 improves by 9.2% over DAAN + ResNet50. Finally, the combination of
DSAN and ResNet50 achieves the highest average accuracy (85.2%), which is 8.8% better
than the suboptimal DSAN + AlexNet. It yields the highest accuracy in 8 out of 12 transfer
tasks, owing to the excellent domain adaptation capability of DSAN and the powerful
feature extraction and representation learning capability of ResNet. In addition, we obtain
some interesting findings, such as task B—F shows high accuracy in most cases, and
the possible reasons are the slight domain shift between B and F and the poor category
separability of the source domain B. Through the qualitative analysis in Figure 2 and
the quantitative analysis from the ToS results in Table 2, the slight domain shift of task
B—F makes knowledge transfer easier. Meanwhile, B contains many strong interference
samples despite the small sample size to make the model obtain better classification
performance, both of which lead to the high accuracy of task B—F. On the contrary, the
category separability of F is better than B, making the classification performance of the
model obtained by training on F degraded. Thus, the accuracy of task F—B is not as good
as task B—F.

To verify the effectiveness of UDA and the performance gap between different UDAs,
we visualize the learned feature representations using t-SNE on task M-K. Figure 3a—c
illustrate the learned feature representations of the source domain M and target domain K
based on the following three methods, ToS + ResNet50, DAAN + ResNet50, and DSAN
+ ResNet50, respectively. As shown in Figure 3a, when trained with only source domain
samples, the network performs well in classification on the source domain but poorly
on the target domain due to the distribution discrepancy between the source and target
domains. As to Figure 3b,c, when the UDAs are introduced to align the feature distributions
in the source and target domains, the sample features from the same category tend to be
aggregated, ensuring that the classification boundary obtained by supervised learning on
the source domain is also discriminative for the target domain. Comparing Figure 3b,c,
DSAN confuses the sample features of the same category in both domains together, further
improving the network’s accuracy on the target domain.
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Table 2. Accuracy (%) on Fire-DA for unsupervised domain adaptation. The values show the average classification accuracy with five random experiments and the

standard error.

Method B—F F—B B—M M—B B—K K—B F—M M—F F—K K—F M—-K K—M Avg

ToS + AlexNet 899+21 704+14 709+£31 653+£22 550424 6314+07 784402 870X£10 512+£08 70018 729+£07 743+23 70.7
DAAN + AlexNet 91.0+18 750+34 798+25 651+£13 871+£08 664£19 823%£15 893+12 744+07 77.6+3.0 746+40 762410 78.2
DSAN + AlexNet 949 £33 719+£19 786+28 734+17 8l6+17 660+09 790+£12 883+£12 741+£07 773+£13 754+04 79.0%+17 78.3
ToS + ResNet50 874+15 781+16 863+£13 741+14 573+31 685+11 801407 838+£18 480*£11 767£32 71.6+£18 805+22 74.4
DAAN +ResNet50  91.5+18 799+19 880+14 789+26 69120 712+£11 817£14 878+£32 469+25 803+£36 784436 821421 78.0
DSAN + ResNet50 91.0+28 844+39 89.7+16 747+18 953+31 83.0+09 819+08 901+12 623+14 83.8+£22 971+16 89.5+23 85.2
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¢ ‘: » .
£ A-distance
(b) DAAN (c) DSAN (d) Distribution discrepancy

Figure 3. (a—c) Visualizations of the learned feature representations using t-SNE on task M—K
w/or w/o UDA. The red and yellow circles represent the source and target domain fire samples,
respectively. The blue and green circles represent the source and target domain non-fire samples,
respectively. The grey dashed lines indicate possible classification boundaries. (d) Distribution
discrepancy between domain M and K measured by A-distance.

Further, based on the theoretical results of [56], we quantify the feature distribution
discrepancy between domains using A-distance. Since it is challenging to compute the
exact value of A-distance, a general approximation defines A-distance =2 (1 — 20), where
o represents the generalization error of a trained binary classifier to discriminate input
samples from the source and target domains. A larger A-distance means a more significant
distribution gap between domains. Figure 3d presents the A-distances on task M-K under
those three different methods in Figure 3a—c, respectively. It can be concluded that the use
of UDA can effectively reduce the A-distance by a large margin, and DSAN outperforms
DAAN, which is consistent with the classification accuracy results shown in Table 1 and
the feature visualization findings in Figure 3a—c.

4.2. Experiment 1I: Comparison of Different Fire Recognition Methods on FLAME and FD-Dataset
4.2.1. Dataset

The FD-dataset is a large-scale fire detection dataset consisting of 25,000 fire and
25,000 non-fire images [21]. It is based on MIVIA fire detection and BoWFire and is enriched
with many pictures from the Internet. The fire images are captured from diverse scenarios,
such as fires on cars, buildings, boats, forests, etc. The non-fire images contain several
fire-like objects, such as fallen yellow leaves, red cars, flying flags, burning clouds, sunsets,
and glaring lights. The original paper divided the data into the training, validation, and
testing sets with a ratio of 7:2:1. It also selected the most challenging images from the testing
set to create a challenging testing set with 250 fire and 250 non-fire images. FD-dataset is
not a dedicated forest fire dataset but contains many positive and negative samples for
forest fire recognition. FLAME is a forest fire dataset collected by UAV in an Arizona pine
forest [20], as shown in Figure 4. It is captured by Zenmuse X4S, Phantom 3, both from DJI
company(Shenzhen, China), and annotated frame by frame to obtain a training/validation
set of 39,375 images and a testing set of 8617 images. Compared with Fire-DA and FD-
dataset, the FLAME dataset has fewer scenes, the camera views are primarily top-down
and wide range, and the flames are smaller in the frame. Some representative sample
images of the FLAME and FD-dataset are illustrated in Figure 5.

Since there is no benchmark image /video dataset in fire recognition, we fuse the image
samples from the four subdomains in Fire-DA to form a new composite fire recognition
dataset with diverse real-world scenery environments. As a result, the fused Fire-DA
contains 3119 fire images and 3107 non-fire images. Then, we build two UDA-based trans-
fer tasks: Fire-DA—FLAME and Fire-DA— FD-dataset for fire recognition and compare
them with the traditional handcrafted feature-based and supervised CNN-based methods.
Notably, in the transfer task of Fire-DA—FD-dataset, we remove the images of Fire-DA
that appeared in the FD-dataset in order to make the comparison more rigorous.
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UNITED
STATES

Figure 4. The FLAME is collected in Flagstaff, Arizona, USA, Ponderosa pine forest on Observatory
Mesa.

FD-dataset

Figure 5. Some sample images from the FLAME and FD-dataset. The first row shows fire samples
and the second row illustrates non-fire samples for each dataset.

4.2.2. Implementation Details

Considering that DSAN performs better than DAAN in Experiment I, we adopt DSAN
as the UDA-based method in this experiment. We treat the fused Fire-DA as the source
domain with labels and each training set of the FLAME and FD-dataset as the target
domain without accessing labels during training and evaluate metrics on their testing sets
for performance comparison. The details of the experiment settings are shown in Table 3.
Furthermore, AlexNet and ResNet50 are used as the backbones, pre-trained on ImageNet,
and fine-tuned on these transfer tasks. We fix the adaptation factor A = 5.0 for both transfer
tasks. The other hyperparameters are the same as the settings of DSAN in Experiment L.
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Table 3. The detailed statistics of training and testing sets for DSAN.

Transfer Task Data Division Fire Images Non-Fire Images  Labels
Trainin Fire-DA (source) 3119 3107 Vv
Fire-DA—FLAME J The training set of FLAME (target) 25,018 14,357 X
Testing The testing set of FLAME 5137 3480 Vv
Trainin Fire-DA (source) 2654 3107 Vv
& The training set of FD-dataset (target) 17,500 17,500 X
Fire-DA—FD-dataset The testing set of FD-dataset 2500 2500 vV
: The challenging testing set of
Testin 8ing &
& FD-dataset 20 250 v

Then, we set up two baselines with different backbones, train on source (ToS) and
train on target (ToT). ToS is the same as the baseline in Experiment I, which will obtain an
undesirable result on the target domain because of the domain shift. In contrast, ToT is the
traditional supervised CNN-based approach on the target domain with labels, which will
yield promising results. The result obtained by ToS and ToT can be regarded as the lower
and upper bound for the performance of UDA, respectively.

In addition, we also discuss the recognition performance of DSAN with the traditional
methods based on handcrafted features and supervised CNNs. For FLAME [20], the
supervised CNNs are based on Xception [20] and ResNet50 with sample augmentation
(SA) [38]. For the FD-dataset, the traditional methods are based on heuristic rules [3,57],
fuzzy inference [57], and BP neural network [58], respectively, and the supervised CNNs
are based on AlexNet [16], ResNet50 [17], GoogleNet [18], SqueezeNet [19], improved
lightweight AlexNet [21], and MobileNet [30]. The quantitative results of these methods
are from [20,21,38]. As for our transfer tasks, the average results of the evaluation metrics
are reported with three random experiments.

4.2.3. Evaluation Metrics

The evaluation metrics used to validate the performance of the fire recognition meth-
ods in this section include recall, precision, accuracy, and F1 score, which are expressed
as follows:

TP
recall = TPLEN (12)
precision = % (13)
accuracy = TP+ TN (14)
YT TPYTN+FP+FN
Fleox recall x precision (15)

recall + precision

where TP, FP, FN, and TN represent True-Positive, False-Positive, False-Negative, and
True-Negative values, respectively.

4.2.4. Results and Analysis

The average results of evaluation metrics on the testing set of the FLAME are shown
in Table 4. DSAN is inferior to the supervised CNNs in all metrics. Ref. [20] uses Xception
to achieve 76.2% recognition accuracy. Ref. [38] uses ResNet50 and combines it with data
augmentation to improve the recognition accuracy to 77.5%. However, the recognition
accuracy of DSAN is 63.9%. The possible reasons are as follows: 1. never forget that
DSAN does not access the labels of FLAME during training but only transfers the domain
knowledge from Fire-DA to FLAME and then evaluates the performance on the testing set
of FLAME; 2. through the qualitative analysis of the sample images in Figures 2 and 5, as
well as the quantitative analysis of the results of ToS, the domain shift between Fire-DA



Forests 2023, 14, 52

14 of 19

and FLAME is relatively large, which leads to a destructive impact on the transfer effect;
3. the UDA is under such a setting that the target domain labels are not accessible during
training, resulting in the inability to perform model selection as in supervised CNNs;
4. to obtain more convincing results, we report the average result of three randomized
experiments instead of the best one, which is also lossy. Nevertheless, DSAN reaches 82.5%
performance in [38]. Under the same training conditions and settings, the accuracy of
DSAN is improved by 41.4% over ToS to 94.7% of ToT. From the side, DSAN achieves an
impressive performance on the transfer task Fire-DA—FLAME.

Table 4. Quantitative results of supervised CNNs and DSAN on the testing set of FLAME.

Method Recall  Precision Accuracy F1-Score
Xception [20] 76.2
Supervised CNNs ResNet50 w/SA [38] 82.0 80.6 77.5 0.813
ToT + ResNet50 (Upper bound) 86.5 68.3 67.5 0.761
Unsupervised DSAN ToS + ResNet50 (Lower bound) 8.3 98.3 45.2 0.152
(Ours) DSAN + ResNet50 60.7 782 63.9 0.662

The average results of evaluation metrics on the testing set of the FD-dataset are shown
in Table 5. Firstly, in terms of overall metrics, DSAN is better than ToS and close to ToT.
Specifically, the accuracy of DSAN + AlexNet is improved by 8.3% over ToS + AlexNet to
98.1% of ToT + AlexNet, while the accuracy of DSAN + ResNet50 is improved by 14.2% over
ToS + ResNet50 to 98.3% of ToT + ResNet50. The results are consistent with the conjecture
made when setting up the baselines, indicating that DSAN can improve the recognition
performance in the FD-dataset by domain adaptation. Secondly, DSAN is substantially
better than traditional methods based on handcrafted features. We can see that even ToS,
regarded as the lower bound of UDA, shows significant improvements in all metrics except
for recall. The accuracy is 85.7% for ToS + AlexNet and 83.9% for ToS + ResNet50, which
improved by 19.5% and 17.0% over the best result in [58]. However, the accuracy of ToS is
not sufficient for practical applications. As for DSAN, all metrics are increased, with DSAN
+ AlexNet and DSAN + ResNet50 achieving 92.8% and 95.8% accuracy, which is 29.4% and
33.6% better than the best result in [58], respectively. Even though [57] has a higher
recall than DSAN with 99.9%, it has the lowest accuracy with only 53.9%. The reasons
for the improvement are: 1. CNNs have stronger feature extraction and representation
learning capabilities than the handcrafted feature-based methods; 2. due to the similarity
in distribution between the Fire-DA and FD-dataset, ToS trained on Fire-DA achieves a
decent performance on the FD-dataset; 3. DSAN transfers knowledge from Fire-DA to FD-
dataset through domain adaptation, leading to a good performance on FD-dataset. Lastly,
DSAN achieves better performance compared to supervised CNNs on the FD-dataset.
Considering that [18,19,21,30] use lightweight network structures, we compare DSAN +
AlexNet with [16] since they are all based on AlexNet, and DSAN + ResNet50 with [17],
since they are all based on ResNet50, for the sake of fairness. In terms of accuracy, precision,
and F1 score, DSAN + AlexNet outperforms [16] by 6.4%, 10.9%, and 5.7%, respectively,
and DSAN + ResNet50 exceeds [17] by 6.4%, 15.6%, and 5.5%, respectively. Regarding
recall, DSAN + AlexNet is 0.3% superior to [16], but DSAN + ResNet50 is 4.1% inferior
to [17]. We should note that [21] yields the best result of the supervised CNN-based
methods by extending the multiscale feature extraction, implicit deep supervision, and
channel attention mechanisms to AlexNet for fire recognition. Compared with [21], DSAN
+ AlexNet achieves poorer but close results on all metrics. In contrast, DSAN + ResNet50
achieves better accuracy, precision, and Fl-score results, improving by 0.5%, 4.8%, and
0.3%, respectively, but its recall is 3.9% lower than [21].

The average results of evaluation metrics on the challenging testing set of FD-dataset
are shown in Table 6. The metrics of all methods degrade since the challenging testing set
contains more strong-interference fire-like images, but the findings are similar to those of
the testing set, except for the F1 score of DSAN + ResNet50. Considering the limitation of
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the page in this section, we expand on this, in detail, in Appendix A. As a result, DSAN
achieves competitive performance with the supervised CNNs on this challenging testing
set. It also demonstrates that DSAN is robust to different and challenging datasets.

Table 5. Quantitative results of traditional handcraft feature-based methods, supervised CNNs, and
DSAN on the testing set of FD-dataset.

Method Recall  Precision Accuracy F1-Score
[57] 99.9 52.0 53.9 0.684
Traditional [3] 90.0 63.9 69.6 0.747
[58] 73.2 71.1 71.7 0.721
[16] 93.2 83.3 87.2 0.879
[18] 98.0 88.0 92.3 0.928
[19] 91.3 84.6 87.3 0.879
. [30] 98.7 88.3 92.8 0.932
Supervised CNNs [17] 97.6 84.8 90.0 0.907
[21] 974 93.5 95.3 0.954
ToT + AlexNet (Upper bound) 97.2 92.3 94.6 0.947
ToT + ResNet50 (Upper bound) 98.8 96.3 97.5 0.976
ToS + AlexNet (Lower bound) 75.1 95.3 85.7 0.840
Unsupervised DSAN ToS + ResNet50 (Lower bound) 69.2 98.1 83.9 0.812
(Ours) DSAN + AlexNet 93.5 924 92.8 0.929
DSAN + ResNet50 93.6 98.0 95.8 0.957

Table 6. Quantitative results of supervised CNNs and DSAN on the challenging testing set of
FD-dataset.

Method Recall ~ Precision Accuracy F1-Score
[16] 82.8 57.7 61.0 0.680
[18] 84.8 72.9 76.6 0.784
[19] 87.6 62.0 67.0 0.726
. [30] 85.2 75.8 79.0 0.802
Supervised CNNs [17] 89.6 72.7 78.0 0.803
[21] 86.4 78.5 81.4 0.823
ToT+ AlexNet (Upper bound) 89.6 78.4 82.5 0.836
ToT + ResNet50 (Upper bound) 92.1 88.2 89.9 0.901
ToS + AlexNet (Lower bound) 30.0 75.0 60.0 0.428
Unsupervised DSAN ToS + ResNet50 (Lower bound) 30.3 92.3 63.9 0.456
(Ours) DSAN + AlexNet 773 78.2 77.7 0.777
DSAN + ResNet50 72.8 92.7 83.5 0.815

To verify the effectiveness of DSAN on the transfer task Fire-DA—FD-dataset, we
visualize the learned feature representations using t-SNE on Fire-DA and the testing set of
the FD-dataset. Figure 6a,b illustrate the learned feature representations of Fire-DA and
the testing set of FD-dataset, without domain adaptation and with domain adaptation,
respectively. As shown in Figure 6a, ToS performs poorly on the testing set of FD-dataset
as there are many misclassified samples according to the classification boundary trained on
Fire-DA. As for Figure 6b, the feature distributions of both domains are confused by DSAN,
resulting in the classification boundary performing well on both datasets. Figure 6c presents
the A-distance between Fire-DA and the testing set of the FD-dataset. The distribution
discrepancy of the two datasets is decreased by DSAN, allowing DSAN to obtain good
performance on the FD-dataset in an unsupervised way.

As a result, DSAN achieves an impressive performance on FLAME and a new state of
the art on the FD-dataset in an unsupervised way, a trade-off between recognition accuracy
and the cost of labeling.
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ToS

DSAN

A-distance
(b) DSAN (c) Distribution discrepancy

Figure 6. Visualizations of the learned feature representation using t-SNE on Fire-DA and the testing
set of FD-dataset, (a) w/o0 domain adaptation, and (b) w/ domain adaptation. The red and yellow
circles represent fire samples in Fire-DA and the testing set of FD-dataset, respectively. The blue and
green circles represent non-fire samples in Fire-DA and the testing set of FD-dataset, respectively. The
grey dashed lines indicate possible classification boundaries. (¢) Distribution discrepancy between
Fire-DA and the testing set of FD-dataset measured by A-distance.

5. Conclusions

Recently, the capabilities of DNNs have shown promising results in fire detection
tasks. However, DNNs rely on large-scale datasets for supervised training, but labeling fire
samples is often cumbersome. First, we apply UDA to transfer the knowledge learned from
publicly available fire datasets to fire recognition tasks in practical application scenarios,
such as forests. Then, Fire-DA is proposed as a benchmark dataset for future transfer
learning research in fire recognition, and the benchmark result is obtained via DSAN and
DAAN. Finally, DSAN achieves a better trade-off between the performance and the labeling
cost for forest fire recognition than the existing handcrafted feature-based and supervised
CNN-based methods, which will drive forest fire recognition and monitoring in a more
intelligent direction. Future work will focus on unsupervised forest fire recognition in
the following three areas: improving UDA to enhance performance, investigating model
selection for UDA, and building a transfer learning pipeline from virtual to real fires.
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Appendix A. Discussion of Table 6

As shown in Table 6, DSAN is better than ToS and close to ToT in terms of overall
metrics. Specifically, the accuracy of DSAN + AlexNet is improved by 29.5% over ToS +
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AlexNet to 94.2% of ToT + AlexNet, while the accuracy of DSAN + ResNet50 is enhanced
by 30.7% over ToS + ResNet50 to 92.9% of ToT + ResNet50. The results of ToS show that the
domain shift between Fire-DA and the challenging testing set of FD-dataset are significant.
However, DSAN still achieves a vast improvement, indicating that DSAN can handle the
case with a significant domain shift. Moreover, DSAN fulfills competitive performance
with supervised CNNs on the challenging testing set of FD-dataset. In terms of accuracy,
precision, and F1 score, DSAN + AlexNet outperforms [16] by 27.4%, 35.5%, and 14.3%,
respectively, and DSAN + ResNet50 exceeds [17] by 7.1%, 27.5%, and 1.5%, respectively.
Regarding recall, DSAN + AlexNet is inferior to [16] by 6.6% and DSAN + ResNet50 is
to [17] by 18.8%. Compared with [21], DSAN + AlexNet achieves poorer but close results on
all metrics. In contrast, DSAN + ResNet50 achieves better accuracy and precision than [21],
with a 2.6% and 18.1% improvement, respectively, but lower recall and F1 score, with a
15.7% and 1.0% decrease, respectively.
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