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Abstract: The objective of this study was to evaluate the separability potential of Sentinel-2A (Multi-
Spectral Instrument, MSI) and Landsat (Operational Land Imager, OLI and Thermal Infrared Sensor,
TIRS) derived indices for detecting small-extent (<25 ha) forest fires areas and severity degrees.
Three remote sensing indices [differenced Normalized Burn Ratio (dNBR), differenced Normalized
Different Vegetation Index (dNDVI), and differenced surface temperature (dTST)] were used at three
forest fires sites located in Northern Jordan; Ajloun (total burned area 23 ha), Dibbeen (burned area
10.5), and Sakeb (burned area 15 ha). Compared to ground reference data, Sentinel-2 MSI was able
to delimit the fire perimeter more precisely than Landsat-8. The accuracy of detecting burned area
(area of coincidence) in Sentinel-2 was 7%–26% higher that Landsat-8 OLI across sites. In addition,
Sentinel-2 reduced the omission area by 28%–43% and the commission area by 6%–38% compared to
Landsat-8 sensors. Higher accuracy in Sentinel-2 was attributed to higher spatial resolution and lower
mixed pixel problem across the perimeter of burned area (mixed pixels within the fire perimeter
for Sentinel-2, 8.5%–13.5% vs. 31%–52% for Landsat OLI). In addition, dNBR had higher accuracy
(higher coincidence values and less omission and commission) than dNDVI and dTST. In terms of
fire severity degrees, dNBR (the best fire index candidate) derived from both satellites sensors were
only capable of detecting the severe spots “severely-burned” with producer accuracy >70%. In fact,
the dNBR-Sentinel-2/Landsat-8 overall accuracy and Kappa coefficient for classifying fire severity
degree were less than 70% across the studied sites, except for Sentinel-dNBR in Dibbeen (72.5%). In
conclusion, Sentinel-dNBR and Landsat promise to delimitate forest fire perimeters of small-scale
(<25 ha) areas, but further remotely-sensed techniques are require (e.g., Landsat-Sentinel data fusion)
to improve the fire severity-separability potential.

Keywords: remote sensing; thermal image; dNBR; NDVI; fire mapping; Kappa coefficient

1. Introduction

The forest is an essential variable in the ecological balance of the earth [1]. Forest fire
intensity and extent has increased globally as the human imprint continues to intrude on
natural areas and climate change effects increase the potential of extreme weather [2]. Fires
burn millions of hectares of vegetation (including in the forest) every year, and increased
fire extent has been reported in several global regions [3]. In fact, several large-scale forest
fires have been erupted recently all the world for example, Australian wildlife fires which
killed about a half-billion animals [4]. Forest fires are usually discovered after they spread
across substantial spots, making them difficult to control [1]. In addition, forest fires
are a destructive disaster, causing massive threats to human and ecological habitats and
contributing to 30% of atmospheric carbon dioxide [1,4].

Forests fire intensity affects the survival and recovery of soil, fauna, and flora, and
the pattern formation of forests, including succession and regeneration [5]. The results
of forest fires are devastating and could last for several years, especially in arid and
semi- arid regions [6]. The extent of drylands in the Mediterranean region has increased
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extremely in recent decades and will continue to expand in the future because of the
higher warming effects in this region compared to other regions [7]. In drylands, all
types of natural hazards are expected to exist, however, climate hazards have been given
greater attention in these highly dynamic environments [8]. The rural inhabitants of
drylands (~one billion people) whose livelihoods are directly dependent on the physical
environment encounter potential levels of risk from climate threats, some of which are
expected to become more frequent and intense with climate change [8]. For example, the
changing climate will have potential impact on future forest fires [9–11]. The shifts in forest
community composition are associated with fire date, intensity, and consumption of upper
soil layers, specifically organic soil horizons during recent fires [5]. Under exponential
increase in earth temperature due to climate change, forest fire departments will encounter
drier weather conditions that could push the present suppression capability beyond its
tipping point, resulting in a significant increase in fire extent [9]. The modeling of wildfire
risk in western Iran based on the integration analytic hierarchy process and geographic
information system revealed that about 65% of the region was located in the high- and very
high-risk zones [10]. Therefore, it is essential that the techniques of patrolling, detecting
and fighting forest fires are available to forestry managers and responders. In this context,
the development of integrated information systems from several sources and automated
data processing chains is essential [2].

Fire detection in forests has become a major concern and a challenge due to its severity
and extent [4]. The detection of burned area and the predictive risk of forest fires are crucial
to preventing further damage, managing burned areas, and developing early forest fire
warning systems [12–14]. A large number of applied and theoretical research studies have
been conducted to detect forest fires early on [6,11,12]. Concurrently, many biological and
environmental studies were also applied on fauna and flora that live in the forest, especially
on the endangered species [15]. The remote sensing approach has been used widely to
detect vegetation cover extent, density, and health of forests [11,16,17]. Remote sensing-
based estimation is a reliable and economic technique for detecting vegetation status over
large areas [12]. This technique can detect larger spatial extent of vegetation faster and with
a lower cost than ground measurements [18]. Spatial and spectral data from remote sensors
such as RapidEye, Sentinel-2, Landsat, PlanetScope imagery, and Google Earth Engine
can potentially detect vegetation change across the year [13,19]. Landsat series [Landsat
8 Operational Land Imager (OLI), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and
Landsat 5 Thematic Mapper (TM)] provide imagery with an outstanding optical resolution
for land cover [20–23]. Landsat sensors have a moderate revisit period (16-day), a spatial
resolution of 30 m, and a spectrum from visible to short wave near infrared (SWIR). In
addition, thermal infrared sensor (TIRS) on Landsat platform can provide land surface
temperature images which can then be used to detect forest fires. The Landsat series is
still active to this day, making Landsat (launched in 1972) the longest continuous Earth
imaging program in history [20]. Long-term series (more than 50 years) of freely Landsat
images coupled with ground surveys have been considered reliable methods to quantify
vegetation cover change, including burned areas [11,24]. Interestingly, Sentinel-2A sensors
from the European Union Copernicus program provide extraordinary images since 2015 at
spatial resolution ranging from 10 to 60 m, a revisit time of 5 days, and spectral resolution of
13 bands [25]. Remote sensing indices such as NDVI and NBR are derived from Sentinel-2
and Landsat sensors and can be used to identify forest fires areas and estimate burn
severity [11,26]. For example, NDVI is normally used to evaluate the extent of a burned
area while NBR is used to estimate the burn severity [26].

In arid and semi-arid regions including Jordan, the forests area is limited, heteroge-
neous and fragmented. The fire incidences in those dry lands have become more frequent
and severe recently. Jordan is Mediterranean country, has long hot summers, and relatively
short cold winters. The total forest area in Jordan is about 1%; dense forests 398 km2, spares
forest, 394 km2 [27]. The most popular genera are Quercus and Pinus (specifically, Pinus
halepensis Mill.). Forest fires due to hot dry climate and illegal logging are the main threats
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to Jordanian forests. In 2021, more than 200 forest fire were reported by the Forestry Depart-
ment in Jordan. Several research studies revealed a potential use of remotely-sensed data
from moderate satellite sensor images such as, Sentinel-2 and Landsat series to detect fire
burned area perimeter and severity level, especially when burned area is large (more than
100 ha) [11,12,26]. However, limited study have been assessed the usefulness of using these
moderate spatial resolution sensors (Sentinel-2, 10–20 m; Landsat, 30 m) to precisely detect
forest fire extent and severity at small-scale areas (less than 25 ha) in arid and semi-arid
environment such as, Jordan. The objective of this study was to assess the use of Sentinel-2
and Landsat sensors data to detect small-extent (<25 ha) forest fires perimeter and severity
in arid environments.

2. Materials and Methods
2.1. Study Sites

Three forest fires occurred in Northern Jordan between 2003 and 2020 were assessed
(Figure 1). The first site was in Ajloun (fire date: October 2020; total burned area, 23 ha), the
second site was at Sakeb, Jerash (Latroon Mountain, fire date: August 2003; total burned
area, 15 ha), and the third site was at Dibbeen Natural Reserve (Aqra’ Mountain, fire date:
June 2016, total burned area 10.5 ha). The dominant tree species in Sakeb and Dibbeen
Natural Reserve sites (more than 60%) is Pinus halepensis. In Ajloun site, the main species is
Quercus coccifera L. (more than 90%). Both plant species are native to Jordanian lands [28].
In fact, Dibbeen Natural Reserve has the southernmost native Pinus halepensis forest in
the world and the last remaining stand of old pine forest in Jordan [28]. Although the
fires severity degree ranged from low to severe across sites, 40%–60% of the burned sites
exposed to severe fire and consumed most of the trees.
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2.2. Landsat and Sentinel-2 Sensors Data (Acquisition and Pre-Processing)

Pre- and post-fire satellite sensors images (one month interval, two images) from
Landsat-8 (OLI and TIRS) and Sentinel-2 (Multispectral Instrument, MSI) were used to
detect vegetation cover change in Ajloun and Dibbeen sites after fire incidence. In addition,
two images from Landsat-7 sensors (ETM+ and TIR) before and after fire (July and Septem-
ber 2003) were used to detect changes in vegetation at Sakeb forest fires site (Landsat-8 and
Sentinel-2 were not lunched yet). Landsat OLI, ETM+ and Sentinel-2 (MSI) level 2 images
were used. These images are atmospherically and radiometrically corrected [11,29] and
are available for free from EarthExplorer website. Image preprocessing and calculation of
vegetation indices were conducted using Environment for Visualizing Images (ENVI) 5.0
(Research Systems, Boulder, CO, USA). Landsat thermal images were processed following
the procedures of Chander et al. [30]. Normalized Burn Ratio (NBR, Equation (1)), Nor-
malized Different Vegetation Index (NDVI, Equation (2)) and thermal surface temperature
(TST) images were used to calculate the differenced NBR (dNBR, Equation (3)), NDVI
(dNDVI, Equation (4)) and (dTST, Equation (5)), which estimated the burned area extent
and severity (Table 1) [31].

NBR =
(NIR − SWIR)
(NIR + SWIR)

(1)

NDVI =
(NIR − R)
(NIR + R)

(2)

dNBR = NBR prefire − NBR postfire (3)

dNDVI = NDVI prefire − NDVI postfire (4)

dTST = TST prefire − TST postfire (5)

Table 1. Differenced Normalized Burn Ratio (dNBR) [31], Normalized Different Vegetation Index
(dNDVI) and Thermal Surface Temperature (dTST).

Index Index Range Fire Severity Level

dNBR −0.5–0.1 Un-burned
0.1–0.25 Low
0.25–0.45 Moderate

dNBR > 0.45 High
dNDVI −1.0–0.1 Un-burned vegetation/Bare soil

0.1–0.2 Low
0.2–0.3 Moderately-burned
0.3–0.4 Moderate-severely burned

dNDVI > 0.4 Severely-Burned

dTST 0.0 ◦C ≤ dTST ≤ mean temperature of the
thermal image within the study area Un-burned

mean temperature of the thermal image for
the study area < dTST Burned

2.3. Ground Reference Data and Accuracy Assessment of Remote Sensing Data

Reference data for burned areas perimeter and severity were mapped using ground
survey one week after the fire incidence. A GPS points represent the perimeter of the fire as
well as the severity level (low, moderate and high) were also identified inside each forest fire
site by forestry experts. Then, the burnet area perimeter and severity degrees were mapped
using ArcGIS ArcMap (Version 10.2 for Windows; ESRI, Redlands, CA, USA) software.

Fire perimeter delimitation for the tested remotely sensed indices (dNBR, dNDVI,
dTST) was determined following the procedures of Llorens et al. [11]. The spectral indices
and the reference perimeters were compared to determine the fire perimeter. The spectral
indices (dNBR, dNDVI, dTST) were first classed using the unburned and burned threshold
in Table 1; dNBR = 0.1, dNDVI = 0.2, dTST = mean temperature of the thermal image within
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the study area. To determine the accuracy of pixel values, the area of coincidence, omission
and commission equations suggested by Llorens et al. [11] and Amos et al. [32] were used:

Area of coincidence (%) =
Coincidence Pixels

(Coincidence Pixels + Omission Pixels)
× 100 (6)

Area of omission (%) =
Omission Pixels

(Coincidence Pixels + Omission Pixels)
× 100 (7)

Area of commission (%) =
Commission Pixels

(Coincidence Pixels + Commission Pixels)
× 100 (8)

where area of coincidence is when the spectral indices (dNBR, dNDVI, dTST) correctly
delineation the burned area compared to the ground reference points. The area of com-
mission represents the pixels where the spectral index senses as no fire (values below
thresholds) but the ground reference data detects as fire. The area of omission counts the
pixels, where spectral index senses as fire, but the ground reference point detects as no
fire. The total number of validation points for Ajloun site was 81, Dibbeen 70 and Sakeb 82.
The best spectral index candidate for delineating the fire perimeter (from both satellites
sensors) was further explored to determine its potential for identifying the burn severity
levels. A confusion (error) matrix was developed for each site, in order to assess the User’s,
Producer’s and Overall accuracy as well as Kappa coefficient [29,33].

3. Results and Discussion
3.1. Forest Fire Burned Area (Fire Perimeter Delimitation)

The forest fire perimeter delineation analysis was applied following Equations (6)–(8)
that suggested by Llorens et al. [11] and Amos et al. [32]. The separability assessment of
the two sensors’ vegetation indices is presented in Table 2 and Figure 2. In each differenced
index (dNBR, dNDVI, dTST), the highest values of coincidence and the lowest values of
omission and commission represent the best candidate to discriminate between burned
and unburned areas [11]. In this study, Sentinel-2 had higher coincidence area and lower
omission and commission area than Landsat in both sites and indices (Table 2). In the
first site (Ajloun), the coincidence area for Sentinel-2 derived indices ranged from 78.5%
(dNDVI) to 81.3% (dNBR) while the percentage of coincidence for Landsat were between
62.0% and 64.4%. Similarly, the area of coincidence in the second site (Dibbeen forest fires)
ranged from 82.5% to 84.1% for Sentinel-2 and about 78% for Landsat-derived spectral
indices (Table 2). Sentinel-2 (MSI) data can be recommended as a key Earth observation
data source in forest resources assessment and monitoring [34]. Howe et al. [35] assess the
accuracy of Sentinel- and Landsat-derived burn indices for 26 fires that burned between
2016 and 2019 in western North America. They concluded that burn severity mapping could
significantly benefit from the integration of Sentinel imagery to Landsat-forest surveillance
data by increasing imagery availability (image every 5 days), and that Sentinel’s higher
spatial resolution can improve opportunities for inspecting finer-scale fire impact across
ecosystems. The spatial analysis of Portuguese forest fires in 2016 using Landsat 8 (OLI)
and Sentinel-2 (MSI) sensors data revealed that the difference in fire burned area extent
between Landsat-NDVI and field data was 13.3% and for Sentinel 2-NDVI was less than
7.8% [26]. They attributed the higher accuracy in Sentinel-2 data (compared to OLI) to
higher spatial resolution in MSI sensor [26]. Both satellite sensors (Landsat-8 OLI, and
Sentinel-2 MSI) have similar bands (i.e., spectral resolution) in the red, NIR and SWIR
spectral regions [12]. However, Sentinel-2 spatial resolution for those bands are 10 m for
red and NIR and 20 for SWIR but the spatial resolution for Landsat-8 OLI spectral bands is
30 m. Therefore, the higher accuracy of delimiting fire perimeter in this study in Sentinel-2
indices (compared to Landsat-8 OLI) can be partially attributed to higher spatial resolution
at Sentinel-2 MSI.
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Table 2. Fire perimeter assessment (coincidence, omission and commission) of Landsat and Sentinel-2
differenced Normalized Burn Ratio (dNBR), Normalized Different Vegetation Index (dNDVI) and
thermal surface temperature (dTST) for Ajloun, Dibbeen and Sakeb wildfires.

Satellite
Vegetation Index

dNBR dNDVI dTST

Ajloun Area of coincidence (%) Sentinel-2 81.3 78.5 na *
Landsat-8 64.4 62.0 78.7

Area of omission (%) Sentinel-2 21.5 11.9
Landsat-8 38.0 37.0 21.3

Area of commission (%) Sentinel-2 9.0 19.2 na
Landsat-8 14.5 18.5 9.2

Dibbeen Area of coincidence (%) Sentinel-2 84.1 82.5 na
Landsat-8 78.3 78.2 55.2

Area of omission (%) Sentinel-2 15.9 17.5 na
Landsat-8 21.7 21.8 44.8

Area of commission (%) Sentinel-2 1.7 11.9 na
Landsat-8 1.8 25.9 7.5

Sakeb Area of coincidence (%) Sentinel-2 - ** - -
Landsat-7 87.7 82.1 85.7

Area of omission (%) Sentinel-2 - - -
Landsat-7 12.3 17.9 14.3

Area of commission (%) Sentinel-2 - - -
Landsat-7 9.0 27.6 26.0

* na, not available. Sentinel-2 has no thermal bands; dTST cannot be derived. ** Launch date for Sentinel-2 is June
2015; no images are available for Sakeb forest fires occurred in 2003.

During the study period, three differenced vegetation indices were assessed; the
dNBR (NIR and SWIR), dNDVI (red and NIR) and dTST (thermal band) which inclusively
available in Landsat-7 (TIR) and 8 (TIRS) (Table 2, Figure 2). The dNBR index had higher
coincidence area percentage than dNDVI across the studied sites and satellite sensors.
In addition, the same index (dNBR) had lower omission and commission values at both
satellite sensors and across the sites, except for omission area percentage at Sentinel-2 in
Ajloun site (Table 2). Interestingly, this study revealed that the use of dNBR derived from
Sentinel-2 MSI sensor consistently had higher coincidence area than dTST derived from
Landsat-thermal sensors (TIR and TIRS). In Marmara region of Turkey (large-extent for-
est), the assessment of NDVI, NBR, and enhanced vegetation index (EVI) using Landsat-8
sensor data revealed that the overall accuracy of NDVI, and NBR in deciduous forests
was around 85% and 78.80% for EVI, while in coniferous forests, the overall accuracy was
between 87% to 88% for all tested vegetation indices [36]. Water-sensitive vegetation indices
(e.g., NBR) which include SWIR are more sensitive for detecting forest disturbances (specifi-
cally forest fires) while chlorophyll-sensitive indices (NDVI) represents lower accuracy [36].
The best predictive image bands (Sentinel-2, Landsat-8) for forest fires is normally the SWIR
bands [6,34]. These bands (SWIR) exhibit a gradual increase in reflectance over time as a
result of the decrease in water absorption in burned areas, in contrast to NIR and green
bands between pre- and post-fire (the absence of vegetation cover) imagery [11]. Therefore,
the index that comprises data from the NIR and SWIR spectrum regions is the candidate
that should be used to discriminate between burned and unburned areas [11].
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Figure 2. Landsat (OLI/ETM+) and Sentinel-2 (MSI) differenced Normalized Burn Ratio (dNBR),
Normalized Different Vegetation Index (dNDVI) and thermal surface temperature (dTST) for Ajloun,
Dibbeen and Sakeb wildfires, Northern Jordan.

The use of remote sensing technique for forest fire detection is not new. Several
research results revealed a potential and accurate detection of “large-scale” forest fire
perimeter using Landsat and Sentinel-2 sensors data [11,37,38]. However, limited studies
we aware of have been focused on small extent forest fires (less than 25 ha), especially in
arid environments [6]. In this study, the ground measurements of forests fire showed that
the total fire area in Ajloun forest site was 23 ha; Dibbeen was 10 ha and Sakeb burned
area extent was about 15 ha. The accuracy of dNBR (best candidate) for differentiating
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fire perimeter ranged from 64%–81% at Ajloun, 78%-84% at Dibbeen and 87% at Sakeb.
Compared to large-extent forest fire studied, the accuracy of this study in delineating fire
perimeter for small-extent forest fires is about 10%–20% lower. When investigators attempt
to extract information from satellite images which is smaller than the size of the pixel (tree
often smaller than either the 10 m resolution of the Sentinel-2 MSI or the 30 m of the Landsat
OLI), it lead to the mixed pixel problem; whether they contain (1) boundaries between
two or more objects (road + vegetation, vegetation + bare soil, etc.) or (2) linear sub-pixel
objects (a road within a dense vegetation) [39]. Therefore, the probability of mixed pixel
problem in small irregular-shape burned area is expected to be higher than the large-scale
regular-shape (e.g., rounded or squared plots) forest fires. In this study, the percentage
of total pixels located within the perimeter of burned area at Ajloun was between 13.5%
(Sentinel-2) and 52.2% (Landsat OLI), Dibbeen ranged from 8.5% (Sentinel-2) and 31.3%
(Landsat OLI) and for Sakeb was 34.1% (Landsat OLI) (Table 3). Given that the accuracy
(%) of delimitation fire perimeter at Ajloun site was lower than Dibbeen and Sakeb while
the percentage of pixels located within the perimeter of burned area in the same location
(Ajloun) was extremely higher than the other tested sites, we believe that the mixed pixel
problem significantly reduced the separability potential of remotely-sensed data.

Table 3. Total burned area (ground reference data), total number of pixels inside and within the
perimeter burned area in Ajloun, Dibbeen and Sakeb forest fires, Northern Jordan. Satellite sensor data
were from Landsat OLI (Ajloun, Dibbeen)/ETM+ (Sakeb) and Sentinel-2 MSI (Ajloun and Dibbeen).

Sensor
Site

Ajloun Dibbeen Sakeb

Total burned area (ha) Ground reference 23 10.5 15

Total number of pixels inside the burned area Landsat OLI/ETM+ 255 115 167
Sentinel-2 2321 1018 - *

Total number of pixels across the perimeter of
burned area

Landsat OLI/ETM+ 133 36 57
Sentinel-2 314 87 -

Percentage of pixels located within the
perimeter of burned area (%)

Landsat OLI/ETM+ 52.2 31.3 34.1
Sentinel-2 13.5 8.5 -

* Launch date for Sentinel-2 is June 2015; no images are available for Sakeb forest fires occurred in 2003.

3.2. Assessment of Burn Severity Levels

Forest is crucial resource that protect ecological balance on Earth [40]. Severe forest
fire negatively affect regional weather patterns, the presence of endangered flora and fauna,
global warming as well as human’s safety and their financial resources [1]. Forest fire
detection and suppression efforts have been increased recently in an attempt to mitigate
its impact. According to statistics, fires cause severe hazard to environment, industries,
and human and animal life around the world [4]. However, forest fire extent and severity
detection has become a major worry and a difficult task. In this study, a deeper analysis of
post-fire has been performed to assess if the satellite images data are able to discriminate
between burn severity levels. The assessment process included, confusion matrix, Kappa
coefficient and accuracy assessment for the best index candidate in delimitating the fire
perimeter (dNBR) for both Sentinel-2 (Table 4) and Landsat OLI/ETM+ (Table 5).
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Table 4. Confusion matrix and accuracy assessment of burn severity levels derived using Sentinel-2
differenced Normalized Burn Ratio (dNBR), for Ajloun (2020) and Dibbeen (2016) wildfires.

Reference Data
Total

Unburned Low Moderate High

Ajloun site
Unburned 30 7 4 0 41

Low 5 3 1 0 9
Moderate 0 1 8 1 10

High 0 0 4 12 16
Total 35 11 17 13 76

Producer Accuracy (%) 85.7 27.3 47.1 92.3
User Accuracy (%) 73.2 33.3 80.0 75.0

Overall Accuracy (%) 64.2
Kappa coefficient (%) 54.8

Dibbeen site
Unburned 56 8 0 0 64

Low 1 4 1 0 6
Moderate 0 1 4 0 5

High 0 0 2 14 16
Total 57 13 7 14 91

Producer Accuracy (%) 98.2 30.8 57.1 100
User Accuracy (%) 87.5 66.7 80.0 87.5

Overall Accuracy (%) 76.0
Kappa coefficient (%) 72.5

The Sentinel-dNBR results showed that the index was able to differentiate between
unburned and severely-burned regions (producer and user accuracy > 70%) (Table 4).
However, the ability of Sentinel-dNBR to identify the low and moderate burned area was
low (<70%). In addition, the overall accuracy for Sentinel-dNBR at Ajloun was 64.2% and
76.0% for Dibbeen forest fires. For dNBR-Landsat, the overall accuracy for Ajloun was
46.7%, Dibbeen was 63.5% and Sakeb was 60.1%. The producer and user accuracy were
consistently higher than 70% at unburned and severely burned classes in Dibbeen and
Sakeb sites (Table 5). Llorens et al. [11] proposed a methodology to estimate the extent
and burn severity of forest fires occurred in 2017 in Spain and Portugal using Sentinel 2
images (10 and 20 m). The comparison with the European Forest Fire Information System
(EFFIS) revealed that severity levels from Sentinel-2 and EFFIS were highly correlated the
Separability index higher >1 and Kappa statistic > 69% [11]. Quintano et al. [37] concluded
that the overall accuracy and Kappa coefficient ≥ 70% is adequate level for be used by
forest managers. In this study, the overall accuracy and Kappa coefficient were less than
70% across the studied sites (Ajloun, Dibbeen and Sakeb) and in both Satellite sensors,
except for Sentinel-dNBR at Dibbeen (72.5%). The analyses of Landsat-8, Sentinel-2, and
Terra satellites sensor images for Brazil and Bolivia forest fires in 2020 showed an overall
accuracy of 90% but kappa coefficient value was 0.65 [41]. Mashhadi and Alganci [36]
found that all vegetation indices underestimated the deforested area. Overall, in small-scale
forest fires (<25 ha), the use of dNBR is recommended only to delineate the forest fire
perimeter and “severely-burned” class.
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Table 5. Confusion matrix and accuracy assessment of burn severity levels derived using Landsat
differenced Normalized Burn Ratio (dNBR), for Ajloun (2020), Dibbeen (2016) and Sakeb (2003) wildfires.

Reference Data
Total

Unburned Low Moderate High

Ajloun site
Unburned 20 19 4 0 43

Low 4 3 1 0 8
Moderate 0 1 9 1 11

High 0 0 14 2 16
Total 24 23 28 3 78

Producer Accuracy (%) 83.3 13.0 32.1 66.7
User Accuracy (%) 46.5 37.5 81.8 12.5

Overall Accuracy (%) 46.7
Kappa coefficient (%) 23.9

Dibbeen site
Unburned 50 14 0 0 64

Low 2 2 0 0 4
Moderate 0 2 3 0 5

High 0 1 4 12 17
Total 52 19 7 12 90

Producer Accuracy (%) 96.2 10.5 42.9 100
User Accuracy (%) 78.1 50.0 60.0 70.6

Overall Accuracy (%) 63.5
Kappa coefficient (%) 53.6

Sakeb site
Unburned 54 6 0 0 60

Low 5 1 0 0 6
Moderate 0 2 3 0 5

High 0 0 5 14 19
Total 59 9 8 14 90

Producer Accuracy (%) 91.5 11.1 37.5 100
User Accuracy (%) 90.0 16.7 60.0 73.7

Overall Accuracy (%) 60.1
Kappa coefficient (%) 61.4

4. Conclusions

We explored the potential use of Sentinel-2 (MSI), Landsat (OLI, ETM+ TIR, TIRS)
for detecting small-scaled (<25 ha) forest fire perimeter and severity in Northern Jordan.
Differenced NBR (dNBR) derived from both satellite sensors had higher coincidence values
and less omission and commission than dNDVI and dTST. Compared to Landsat the use of
Sentinel-2 sensor spectral reflectance data (specifically, dNBR) had increased the coincidence
area by 7%–26% and reduced the area of omission by 28%–43% and area of commission
by 6%–38%. This is attributed partially to higher Sentinel-2 spatial resolution. However,
the separability potential of fire perimeter ranged from 81%–84% for Sentinel-dNBR and
from 64%–88% for Landsat-dNBR. This is because the percentage of total pixels located
within the perimeter of burned area was high (Sentinel 8.5%–13.5%; Landsat 31.3%–52.2%)
and resulted in a mixed pixel problem. In term of ability of Sentinel-2 and Landsat sensor
indices to classify burn severity, both satellite sources were able to detect only the “severely-
burned” area (Producer accuracy > 70%). However, both satellite sensors burn index (dNBR)
failed to detect low or moderate burned area properly (Producer and User accuracies < 70%).
In addition, the overall accuracy and Kappa coefficient were less than 70% across the studied
sites (Ajloun, Dibbeen and Sakeb) and in both Satellite sensors, except one site. Overall,
in “small-scale” burned area (<25 ha), Sentinel-2 and Landsat derived dNBR were able to
delineate the forest fire perimeter and identify the “severely-burned” area. However, the
other related forest factors, such as terrain slope, forest species, and underlying surface
might affect the accuracy level in other regions. To improve the fire severity classification
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potential for these moderate space-borne satellites, Landsat-Sentinel data fusion could be a
viable alternative to reduce relative errors (e.g., mixed pixels) and increase accuracy.
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