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Abstract: Mangrove forest in Lubuk Kertang Village, West Brandan sub-district has been converted
around 20 ha annually (1996–2016) into various non-forest land use. Rehabilitation can be a solution to
restore the condition of the ecosystem so that it can resume its ecological and economic functions. This
paper discusses the evaluation of mangrove rehabilitation carried out by planting 6000 propagules
in December 2015 and 5000 seedlings in May 2016 with Rhizophora apiculata species in abandoned
ponds. Monitoring was carried out every 6 months from 2016 to 2022. In the restored area, 11 true
mangrove species and 3 associated mangrove species were found. The percentage of plants that
survived after seven years was 69.42% for planting using propagules and 86.38% for planting
with seedlings. The total biomass carbon stocks stored by 7-year-old plants using propagules was
51.18 Mg ha−1, while the carbon stored by planting using seedlings was 56.79 Mg ha−1. Soil carbon
stocks at the planted site with propagules were 506.89 ± 250.74 MgC ha−1, and at the planted
site with seedlings were 461.85 ± 102.23 MgC ha−1. The total ecosystem carbon stocks (including
aboveground carbon) in the planted site using propagules were 558.07 MgC ha−1, while planting
using seedlings were 518.64 MgC ha−1. The dataset and findings on the carbon storage evaluation of
mangrove rehabilitation will be useful for blue carbon research community and policymakers in the
context of the climate change mitigation strategy for Indonesia.

Keywords: mangrove forest; Rhizophora apiculata; carbon storage; species diversity; restoration

1. Introduction

Mangrove forests are coastal habitats that dominate the intertidal zone in tropical and
subtropical coastal areas [1,2]. Mangroves have highly important roles for coastal ecological
functions and economic source for coastal livelihoods, and their high carbon stocks are
substantial for climate change mitigation. In this regard, although mangroves constitute
only 0.5% of the global coastal area, this ecosystem can store three to five times more carbon
than other types of terrestrial forests or about 300 Mg ha−1 to over 1023 Mg ha−1 [3–6].

In 2020, Indonesia had 2.7 Mha of mangrove forests that are spread over 34 provinces [7].
Mangrove forests in Indonesia, which are located in Sumatra, are generally found in the
areas of Asahan, Batubara, Deli Serdang, Tangjung Balai, Nias, Labuhanbatu, and Serdang
Bedagai to Langkat Regency. In 1990, the area of mangrove forests in North Sumatra was
59,645.79 ha, where the deforestation rate was 1.51% per year [8]. Recent data shows that
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the area of mangroves in North Sumatra was recorded to be 66,873 ha in 2000, to 57,010 ha
in 2022 [7]. Specifically, the mangrove forest located in Lubuk Kertang Village, Brandan
Barat District, continues to experience degradation and forest conversion. The area of the
damaged mangrove forests in this area reached 740 ha of a total of 1200 ha, with area of
critical degraded mangrove forest status was up to 528 ha.

Previous restoration studies have showed the impact of mangrove restoration on
carbon stocks; for example, in the iconic Westgate bridge restoration forest in Melbourne in
southeastern Australia, the age of the mangroves had a significant effect on carbon stocks
ranging from 30 ± 5 MgC ha−1 in the youngest stands (13 years) to 94 ± 4 MgC ha−1

in the oldest forest (35 years) [9]. In the restored mangrove forest of Hau Loc, North-
Central Vietnam, the average above and below-ground C stock of this forest ranges from
12.7 ± 2.4 Mg ha−1 to 107 ± 10.7 Mg ha−1 [10]

Carbon dioxide and methane (CH4} emissions from the conversion or degradation
of mangroves are a major contributor to global greenhouse gas emissions [11–13]. Thus,
preventing mangrove loss and restoring degraded mangroves are valuable strategies for cli-
mate change mitigation [14,15]. Most of the current mangrove restoration and rehabilitation
programs in Indonesia including in Lubuk Kertang landscape are commonly implemented
for the carbon storage benefit, despite many past restoration initiatives implemented for
coastal protection including from coastal erossion and tsunami impacts [16,17]. During and
after the 2004 tsunami, mangrove restoration received much attention in Indian Ocean
countries (Sri Lanka, Thailand and Indonesia) because of the strong link between mangrove
loss and tsunami damage [18–21].

The degradation of mangrove forests have a negative impact on the livelihoods of
fishermen around the area of Lubuk Kertang, including the decrease of fish and shellfish
stocks and water pollution increase. Therefore, efforts are needed to rehabilitate the
degraded mangroves, especially at the unproductive and abandoned ponds. Restoring the
degraded mangrove lands may become one of the potential solutions to enhance ecosystem
recovery in this landscape [22,23].

The present work was aimed to evaluate mangrove growth and to monitor the forest
structure and carbon stocks of rehabilitated mangrove forests in the abandoned ponds
in Lubuk Kertang, North Sumatra, Indonesia. Overall, our data set will be important
and assist policymakers in Indonesia via the incorporation of mangrove conservation and
restoration for climate change mitigation strategies, in particular to meet the unconditional
national carbon emission reduction target of 29% by 2030 as stated in the Contribution
Nationally Determined (NDC) as part of the Paris Agreement [24].

2. Materials and Methods
2.1. Study Area

This research was conducted in a mangrove forest rehabilitation area at the Cen-
ter of excellence for Mangrove (PUI-Pusat Unggulan Iptek Mangrove), Universitas Sumat-
era Utara, in Lubuk Kertang Village, West Brandan District, Langkat Regency, North
Sumatra Province, which is located between 4◦3′10′′–4◦3′35′′ N; 98◦15′30′′–98◦15′55′′ E
(Figures 1 and 2). Planting was carried out in two stages on abandoned pond land with
an area of 1.6 ha. The first stage was conducted in December 2015, with a direct seeding
method of 6000 propagules. The second stage was conducted in May 2016, using a total
of 5000 seedlings planted. The plant Rhizophora apiculata was chosen because around the
restored area, there is a secondary forest that is dominated by R. apiculata, making it easier
to collect propagules. R. apiculata is a pioneer species with a fairly high survival rate [25].
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Figure 1. Map of study location of mangrove restored area in Lubuk Kertang Village, West Bran-
dan District, Langkat Regency, North Sumatra, Indonesia. 
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Figure 2. The picture of mangrove growth condition in the planting location obtained from Google
Earth satellite images between 2014 and 2022.
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2.2. Data Collection

Data collection was carried out using two methods as follows: (1) making sample
plots and (2) conducting a census by taking an inventory of all restoration areas. Data
collection was conducted in eight sample plots (four plots using plants from propagules
and four plots from nurseries) of 10 × 10 m in each sample plot with a total of 800 plants.
The first measurement was carried out when the plants were 6 months old, and subsequent
measurements were carried out every six months until the plants turned 48 months old
(Figure 3). The parameters observed included diameter, which was calculated 10 cm from
the ground level for the first measurement (marked for each plant sample, so that it is
consistent every time the next diameter measurement is taken); height; leaf thickness, which
was measured using a caliper by measuring the first 3 leaves on each branch; number of
leaves, percentage of life; pests; and diseases. In the fourth, sixth, and seventh years
(2019–2022), the census method was employed by measuring all plants in the rehabilitation
area, and the parameters observed were the plant species, diameter at breast height (DBH),
and height. Individual characteristics were classified into seedling (1.5 m height), sapling
(height > 1.5 m, DBH < 5.0 cm), and tree (DBH > 5 cm) [26]. However, in 2021, census
measurements could not be carried out due to an increase in the cases of the Delta COVID-19
variant in Indonesia, including in North Sumatra.
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800 planting); (A). Planting using seedlings, (B). Planting using propagules. The green circle represent
health mangroves, the yellow are pest-affected mangroves, while the red were indicated mortality.

2.3. Vegetation Structure
2.3.1. Diversity Index (H′)

To show structural diversity, the Shannon–Wiener diversity index (H′) was used:

H′ = −∑s
i=1 Pi ln Pi (1)

where, Pi is ni/N (Ni is the number of individuals of a species, and N is the total number
of individuals of a species). When the value of H′ is 0–1, it indicates low/little species
diversity. When the value of H′ is 1–3, it indicates medium species diversity, and when
the value of H′ is greater than 3, it indicates high species diversity. According to Shannon
Wiener, the higher the value of diversity indicates higher quality and functionally of the
ecosystem [27].

2.3.2. Evenness Index (E)

Evenness is the composition of the number of individuals of each genus in the com-
munity. The Evenness index used in this study is based on the Shannon-Wiener function,
which to obtain the distribution of macrozoobenthos species in the plantation area [27].
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To uniformity index (E) was calculated by using the following formula:

E =
H′

H max
(2)

where E is the number of types; H′ is the Shannon–Wiener diversity index; and Ln is the
experience logarithms. The value of Evenness in the population ranges from 0 to 1 with
the following criteria [16]: E > 0.6 indicates high Evenness; 0.4 < E < 0.6 indicates medium
Evenness; and E < 0.4 indicates low Evenness.

2.3.3. Dominance Index (D)

The dominance index is used to obtain information about the dominant family in a
community, and it is calculated using Simpson’s formula as follows [27]:

D =∑s
i=1

(ni

N

)
2 (3)

where, ni is the number of individuals of a species, and N is the number of individuals of
all species. The criteria for this index are as follows [24]: when the value of D is close to
0, it indicates that no type is dominant, and when the value of D is close to 1, there is a
dominant type.

2.4. Survival and Mortality Plants

To determine the level of damage to mangrove stands, the calculation of the intensity
of attacks was carried out as follows:

Attack intensity =
∑(ni ×Vj)

NZ
100% (4)

where, ni is the number of infected plant seeds in a certain classification, Vj is the value in a
certain classification, N is the number of plant seeds observed in one sample plot, and Z is
the highest classification. The criteria for damage to mangrove plants are divided into five
classifications, namely: namely: namely: a value of 0 (healthy) is given if the tree planting is
not damaged or 100% live; a value of 1 (mild) if small parts (0–25%) of the tree planting are
died from pest attack; a value of 2 (moderate) if 26–50% of the tree planting are died from
pest attack; a value of 3 (heavy) if 51–76% of the tree planting are died from pest attack; a
value of 4 (very heavy) if 76–100% of the tree planting are died from pest attack [28].

2.5. Soil Sampling

Soil sampling was carried out to test the texture and chemical properties of the soil (pH,
N-total, Na, K, Mg, Ca, CEC, and salinity) using a purposive sampling method by taking a
soil sample of 0.5 kg each in 3 plots representing mangrove rehabilitation soils based on
planting method: propagule and seedling. Soil sampling for organic carbon content was
carried out by collecting sub-samples of 5 cm from the midpoint of the extracted core at
0–15 cm, 20–30 cm, 30– 50 cm, 50–100 cm, and 100–200 cm using a Russian peat corer [29].
Soil samples were carefully dried at 70 ◦C until constant weight and grounded before being
sent to the laboratory for organic carbon concentration analysis. Soil carbon stock (MgC
ha−1) was the product of bulk density (g cm−3), soil thickness (cm), and carbon content (%).

2.6. Biomass Assessment

Measurement of tree biomass was performed non-destructively using the 2019–2022
tree census dataset (planted mangrove at 4, 5, and 7 years old, respectively). We only
included with ≥5 cm DBH for total biomass estimation (Table 1, [30–38]). Biomass carbon
stock (MgC ha−1) was the product of biomass (Mg), carbon content of biomass of 50%, and
divided by the the area of the sampling plot [30].
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Table 1. Allometric equations for calculating mangrove tree biomass used in this study [30].

Above-Ground Tree Weight (Wtop in kg) Below-Ground Tree Weight (WR in kg)

Avicennia marina
Wtop = 0.308 DBH2.11 r2 = 0.97, n = 22, Dmax = 35 cm, [31]
Rhizophora apiculata
Wtop = 0.235 DBH2.42 r2 = 0.98, n = 57, Dmax = 28 cm, [32]
Rhizophora spp.
Wtop = 0.128 DBH2.60 r2 = 0.92, n = 9, Dmax = 32 cm, [33]
Wtop = 0.105 DBH2.68 r2 = 0.99, n = 23, Dmax = 25 cm, [34]
Xylocarpus granatum
Wtop = 0.0823 DBH2.59 r2 =0.99, n = 15, Dmax = 25 cm, [34]
Common equation
Wtop = 0.251 p D2.46 r2 = 0.98, n = 104, Dmax = 49 cm, [35]
Wtop = 0.168 pDBH2.47 r2 = 0.99, n = 84, Dmax = 50 cm, [36]

Avicennia marina
WR = 1.28 DBH1.17 r2 = 0.80, n = 14, Dmax =35 cm, [31]
Bruguiera spp.
WR = 0.261 DBH1.86; r2= 0.92, n = 5, Dmax = 15 cm, [31]
WR = 0.0188 (D2H)0.909 r2: unknown, n = 11, Dmax = 33 cm, [37]
Rhizophora spp.
WR = 0.00974 (D2H)1.05 r2: unknown, n = 16, Dmax = 40 cm, [37]
Common equation
WR = 0.199 p 0.899 D2.22 r2 = 0.95, n = 26, Dmax = 45 cm, [35]
Xylocarpus granatum
WR = 0.145 DBH2.55 r2 = 0.99, n = 6, Dmax = 8 cm, [38]

2.7. Data Analysis

Data were expressed in mean± standard deviation (SD). Regression analysis was used
to assess the relationship between height, diameter, above-ground biomass, below-ground
biomass, number of leaves, and leaf thickness. The statistical significance of carbon stocks
between planting treatments was evaluated by performing Tukey test comparison. The
p-value < 0.05 was selected as a limit of statistical significance.

Statistical analysis was performed by using Microsoft Excel and the R statistical
software [39].

3. Results
3.1. Vegetation Structure

A total of 14 mangrove species were found in the restored forest; the dominant species
were Rizophora apiculata, Sonneratia alba, and Rhizophora stylosa. Three minor species were
also found, namely Acrostichum aureum, Finlaysonia maritimea, and Sesuvium portulacastrum
(Tables 2 and 3).

Table 2. Species found in the Lubuk Kertang restored area in 2016–2022 planted with propagules.

Year Observation Method Species

2016–2019 Sampling Rhizophora apiculata

2019 Census
(13 species)

Acrostichum aureum, Avicennia marina, Bruguiera gymnorrhiza, Excoecaria agallocha,
Finlaysonia maritima, Nypa frutican, Rhizophora apiculata, Rhizophora mukronata,
Rhizophora stylosa, Scyphiphora hydrophylacea, Sesuvium portulacastrum, Sonneratia alba,
and Sonneratia caseolaris

2020 Census
(14 species)

Acrostichum aureum, Avicennia marina, Aegiceras corniculatum, Bruguiera gymnorrhiza,
Excoecaria agallocha, Finlaysonia maritima, Nypa frutican, Rhizophora apiculata,
Rhizophora mukronata, Rhizophora stylosa, Scyphiphora hydrophylacea,
Sesuvium portulacastrum, Sonneratia alba, and Sonneratia caseolaris

2022 Census
(14 species)

Acrostichum aureum, Avicennia marina, Aegiceras corniculatum, Bruguiera gymnorrhiza,
Ceriops tagal, Excoecaria agallocha, Finlaysonia maritima, Nypa frutican, Rhizophora apiculata,
Rhizophora mukronata, Rhizophora stylosa, Scyphiphora hydrophylacea,
Sesuvium portulacastrum, and Sonneratia alba

Tree diameter, height, and number of leaves were increased at both propagules and
seedlings planting method along the age gradient of the plantation from 6 to 48 months
old (Table 4). After 6 and 12 months of planting, the average height of propagule planting
trees was taller than the height of the seedling planting trees. However, when the plants
were 30–48 months old, the average seedling height at seedling planting was taller than the
propagule planting’s height. However, this pattern was not much observed for diameter,
number and thickness of leaves (Table 4).
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Table 3. Types of species found in the Lubuk Kertang restored area 2016–2022 planted with seedlings.

Year Observation Method Species

2016–2019 Sampling Rhizophora apiculata

2019 Census
(12 species)

Acrostichum aureum, Avicennia marina, Bruguiera gymnorrhiza, Excoecaria agallocha,
Finlaysonia maritima, Nypa frutican, Rhizophora apiculata, Rhizophora mukronata, Rhizophora
stylosa, Scyphiphora hydrophylacea, Sesuvium portulacastrum, and Sonneratia alba

2020 Census
(12 species)

Acrostichum aureum, Avicennia marina, Bruguiera gymnorrhiza, Excoecaria agallocha,
Finlaysonia maritima, Nypa frutican, Rhizophora apiculata, Rhizophora mukronata, Rhizophora
stylosa, Scyphiphora hydrophylacea, Sesuvium portulacastrum, and Sonneratia alba

2022 Census
(12 species)

Acrostichum aureum, Avicennia marina, Bruguiera gymnorrhiza, Excoecaria agallocha,
Finlaysonia maritima, Nypa frutican, Rhizophora apiculata, Rhizophora mukronata, Rhizophora
stylosa, Scyphiphora hydrophylacea, Sesuvium portulacastrum, and Sonneratia alba

Table 4. Comparison of height, diameter, number of leaves, and leaf thickness between the propagules
and seedlings planting methods from 6 to 48 months after planting.

Month Height (cm) Diameter (cm) Number of Leaves Leaf Thickness (mm)

Propagules planting

6 50.65 ± 13.28 0.62 ± 0.12 19.93 ± 9.50 0.54 ± 0.11
12 69.86 ± 14.99 0.86 ± 0.19 37.66 ± 16.34 0.71 ± 0.09
18 92.09 ± 20.74 1.62 ± 0.39 107.80 ± 58.55 0.64 ± 0.10
24 105.72 ± 20.96 1.89 ± 0.42 125.27 ±57.93 0.84 ± 0.41
30 123.53 ± 24.62 2.12 ± 0.46 144.48 ± 65.60 1.02 ± 0.42
36 141.14 ± 24.91 2.42 ± 0.52 165.74 ± 66.01 1.25 ± 0.44
42 157.36 ± 26.06 2.82 ± 0.46 188.77 ± 65.61 1.41 ± 0.56
48 171.44 ± 23.78 2.98 ± 0.48 205.81 ± 64.10 1.64 ± 0.19

Seedlings planting

6 38.19 ± 6.76 0.48 ± 0.07 19.93 ± 9.40 0.60 ± 0.13
12 45.17 ± 7.74 0.60 ± 0.08 26.25 ± 10.57 0.80 ± 0.09
18 58.10 ± 13.60 1.33 ± 0.36 104.55 ± 55.27 0.50 ± 0.07
24 67.03 ± 14.85 1.50 ± 0.37 120.67 ± 53.64 0.72 ± 0.13
30 158.40 ± 51.91 1.81 ± 0.37 139.63 ± 52.82 1.15 ± 0.27
36 170.36 ± 51.68 2.02 ± 0.37 158.61 ± 52.30 1.41 ±0.31
42 184.40 ± 50.73 2.48 ± 0.34 228.70 ± 59.43 0.55 ± 0.05
48 190.03 ± 50.95 2.87 ± 0.42 288.59 ± 52.43 1.05 ± 0.05

After monitoring for 3 consecutive years, in 2020, 15 species of mangrove plants were
found across sampling plots, and in 2022, 14 species were found as a result of Sonneratia
caseolaris logging. In our 2022 observations, there were 5506 individuals at the restoration
site that was planted with propagules; these were divided into 117 seedlings, 1714 saplings,
and 3675 individual trees (Table 5).

Meanwhile, at the planting location using seedlings, 13 species of mangrove plants
were found, and there were 4482 individuals divided into 147 individual seeds, 1141 indi-
vidual saplings, and 3194 individual trees (Table 6).

The H′ value at the location that was restored by planting using propagules was in
the low-medium category (Table 7). At the seedling level, it was included in the medium
category with an H′ value of 1–2. Meanwhile, the sapling level was in the low category
with a value of H′ > 1, and the tree level in 2019 was also in the low category. In 2020 and
2022, it was in the medium category with an H′ value of 1–2.
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Table 5. Number of individuals observed in the restored areas planted with propagules using the
census method from 2019–2022.

No Species
Seedling Sapling Tree

2019 2020 2022 2019 2020 2022 2019 2020 2022

1 Acrostichum aureum 101 180 187 - - - - - -
2 Aegiceras corniculatum - 1 - - - 1 -
3 Avicennia marina 4 1 6 5 17 6 - 5 21
4 Bruguiera gymnorrhiza 11 12 50 2 13 8 - 2 18
5 Ceriops tagal - - 5 - - - - - -
6 Excoecaria agallocha 7 5 4 9 2 - - 8 12
7 Finlaysonia maritima 77 90 160 - - - - - -
8 Nypa frutican - - 4 3 3 3 - 3 3
9 Rhizophora apiculata 891 227 322 2334 2945 2293 71 960 1871

10 Rhizophora mucronata 8 1 15 8 21 15 - 3 21
11 Rhizophora stylosa 241 237 98 316 252 206 1 266 252
12 Scyphiphora hydrophyllacea 6 7 70 17 20 12 - - 11
13 Sesuvium portulacastrum 78 139 120 - - - - - -
14 Sonneratia alba 858 160 998 802 1433 969 43 465 1433
15 Sonneratia caseolaris - - - 2 - - 2 2

Total 2282 1060 2039 3495 4814 3527 117 1714 3675

Table 6. Number of individuals observed in restored areas planted with seedlings using the census
method from 2019–2022.

No Species
Seedling Sapling Tree

2019 2020 2022 2019 2020 2022 2019 2020 2022

1 Acrostichum aureum 21 26 41 - - - - - -
2 Avicennia marina 10 2 8 9 16 14 1 2 2
3 Bruguiera gymnorrhiza 15 18 61 2 24 18 - 1 -
4 Ceriops tagal - - 2 - - - - - -
5 Excoecaria agallocha - - - 13 13 11 - - 2
6 Finlaysonia maritima 9 25 39 - - - - - -
7 Nypa frutican - - 3 - - - 11 11 11
8 Rhizophora apiculata 621 714 339 3259 3040 2061 10 449 1996
9 Rhizophora mucronata 10 1 - 25 19 19 - 4 4

10 Rhizophora stylosa 62 66 115 271 387 262 1 79 118
11 Scyphiphora hydrophyllacea 13 11 27 77 65 31 1 1 34
12 Sesuvium portulacastrum 10 28 40 - - - - - -
13 Sonneratia alba 745 133 234 880 1252 769 121 592 1026

Total 1516 1024 909 4541 4816 3185 147 1141 3194

Table 7. Diversity (H′) observed in the restored areas planted with propagules surveyed between
2019–2022.

No Species
Seedling Sapling Tree

2019 2020 2022 2019 2020 2022 2019 2020 2022

1 Acrostichum aureum 0.14 0.30 0.22 - - - - - -
2 Aegiceras corniculatum - 0.01 - - - 0.01 -
3 Avicennia marina 0.01 0.01 0.02 0.01 0.02 0.00 - 0.02 0.03
4 Bruguiera gymnorrhiza 0.03 - 0.09 0.00 0.02 0.01 - 0.01 0.03
5 Ceriops tagal - 0.05 0.01 - - - - - -
6 Excoecaria agallocha 0.02 0.03 0.01 0.02 0.01 - - 0.03 0.02
7 Finlaysonia maritima 0.11 - 0.20 - - - - - -
8 Nypa frutican - 0.21 0.01 0.00 0.00 0.00 - 0.01 0.01
9 Rhizophora apiculata 0.37 0.33 0.29 0.27 0.29 0.28 0.30 0.32 0.34

10 Rhizophora mucronata 0.02 0.1 0.04 0.01 0.02 0.02 - 0.01 0.02
11 Rhizophora stylosa 0.24 0.33 0.15 0.22 0.15 0.17 0.04 0.29 0.29
12 Scyphiphora hydrophyllacea 0.02 0.03 0.12 0.03 0.03 0.04 - - 0.03
13 Sesuvium portulacastrum 0.12 0.27 0.17 - - 0.35 - - -
14 Sonneratia alba 0.37 0.29 0.35 0.34 0.36 0.35 0.37 0.35 0.36
15 Sonneratia caseolaris - - - 0.00 - - 0.07 0.01 -

Total 1.43 1.86 1.67 0.90 0.90 0.89 0.78 1.05 1.13
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The H′ value at the location that was restored by planting using seedlings was in
the low-medium category (Table 8). At the seedling level, it was included in the medium
category with an H′ value of 1.1–1.7. Further, sapling and tree classes had H′ value < 1 or
categorized as low diversity.

Table 8. Diversity (H′) observed in the restored areas planted with seedling surveyed between
2019–2022.

No Species
Seedling Sapling Tree

2019 2020 2022 2019 2020 2022 2019 2020 2022

1 Acrostichum aureum 0.06 0.09 0.14 - - - - - -
2 Avicennia marina 0.03 0.01 0.04 0.00 0.02 0.02 0.02 0.01 0.00
3 Bruguiera gymnorrhiza 0.05 0.07 0.18 0.02 0.03 0.03 - 0.01 -
4 Ceriops tagal - - 0.01 - - - - - -
5 Excoecaria agallocha - - - 0.02 0.02 0.02 - - 0.00
6 Finlaysonia maritima 0.03 0.09 0.14 - - - - - -
7 Nypa frutican - - 0.02 - - - 0.14 0.04 0.02
8 Rhizophora apiculata 0.37 0.25 0.37 0.24 0.29 0.28 0.13 0.37 0.29
9 Rhizophora mucronata 0.03 0.01 - 0.03 0.02 0.03 - 0.02 0.1

10 Rhizophora stylosa 0.13 0.18 0.26 0.17 0.20 0.21 0.02 0.19 0.12
11 Scyphiphora hydrophyllacea 0.04 0.05 0.10 0.07 0.06 0.05 0.02 0.01 0.05
12 Sesuvium portulacastrum 0.03 0.01 0.14 - - - - - -
13 Sonneratia alba 0.35 0.27 0.35 0.32 0.35 0.34 0.09 0.34 0.36

Total 1.12 1.11 1.75 0.86 0.98 0.99 0.43 0.98 0.86

The Evenness index value (E) of propagules planting was classified between low-high
(Table 9). For seedling class, E value was >0.6 (high), and subsequently sapling class
was low to medium (0.39–0.43), and tree class had medium Evenness index with E value
between 0.4–0.6. In addition, the Dominance index value for planting using propagules is
the absence of dominant species in the rehabilitation area (Table 10).

Table 9. Index of evenness and dominance of vegetation planting with propagules.

Indexes
Seedling Sapling Tree

2019 2020 2022 2019 2020 2022 2019 2020 2022

Evenness (E) 0.60 0.75 0.67 0.41 0.39 0.43 0.56 0.48 0.51
Dominance (D) 0.31 0.17 0.29 0.51 0.49 0.50 0.50 0.41 0.38

Table 10. Index of evenness and dominance of vegetation planting with seedlings.

Indexes
Seedling Sapling Tree

2019 2020 2022 2019 2020 2022 2019 2020 2022

Evenness (E) 0.48 0.48 0.76 0.41 0.47 0.47 0.24 0.47 0.48
Dominance (D) 0.41 0.50 0.23 0.55 0.47 0.48 0.81 0.43 0.50

The Evenness index value (E) of Seedlings planting was classified between low-high
(Table 10). For seedling class, E value was >0.6 (high), and subsequently sapling class
was low to medium (0.39–0.56), and tree class had medium Evenness index with E value
between 0.4–0.6. In addition, the Dominance index value for planting using propagules is
the absence of dominant species in the rehabilitation area (Table 10).

3.2. Survival and Mortality Plants

Table 11 shows that the percentage of planting survival in the rehabilitation area
surveyed every six months over 2016 to 2022. Our monitoring showed that after 48 months
old, plant survival rates were 87.75% and 92% for respectively planting using propagules
and seedlings. However, in 2022 plant survival rates were decreased for both treatments to
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only 69.42% and 86.38% for planting using propagules and seedlings, respectively. Higher
plant survival rates at 48 months old (2019 monitoring) compared to 2022 monitoring were
due to low pest attack intensity, with only 7.54% in propagules planting plot and 4.43% in
seedlings planting plot (Table 12). We observed that weaver ants (Oecophylla smaragdina)
were the main pest in the study site (Supplementary Figure S1).

Table 11. Percentage of plant survival and mortality between 6–48 months (2016–2019) of individual
observation and followed by plant census for the remaining period up to 2022 or 7 years old.

Years Month % Survival % of Mortality

Planting with Propagules

2016 6 92.50 7.50
2016 12 91.00 9.00
2017 18 89.75 10.25
2017 24 88.75 11.25
2018 30 88.50 11.50
2018 36 88.25 11.75
2019 42 88.25 11.75
2019 48 87.75 12.25
2019 48 (census) 71.60 28.40
2020 60 (census) 71.83 28.17
2022 72 (census) 69.42 30.58

Planting with seedlings

2016 6 93.25 6.75
2016 12 92.50 7.50
2017 18 92.25 7.75
2017 24 92.00 8.00
2018 30 92.00 8.00
2018 36 92.00 8.00
2019 42 92.00 8.00
2019 48 92.00 8.00
2019 48 (census) 79.80 20.20
2020 60 (census) 84.88 15.12
2022 72 (census) 86.38 13.62

Note: Observations when the plants are 6–48 months old; a sample of 800 seeds is used.

Table 12. Intensity of pest attacks on mangrove stands.

Planting with Plot Number of Plants Pest Attack Intensity (%) Category

Propagules

1 92 6.52 mild
2 83 7.23 mild
3 94 11.70 mild
4 85 4.70 mild

Seedlings

1 93 2.15 mild
2 90 5.55 mild
3 88 6.81 mild
4 94 3.19 mild

3.3. Physical and Chemical Properties of Soil

When the plants were 48 months old, soil condition in the study site was dominated by
clay (>80%), and followed by silt and sand fractions (Supplementary Table S1). dominated by
clay (>80%), and followed by silt and sand fractions (Supplementary Table S1). The pH level
at the two planting treatments was similar, ranged between 4.8–5 and classified as acidic.
The total N content was low at 0.1%, while the Na content was high (8.5–10.7 me/100 g),
above >8 me/100 g, the Ca content was also very low at <2 me/100 g. for the K content at
planting using medium propagules, whereas with very high seedlings. The salinity level at
both planting locations was very high namely >20 Ppm (Tables 13 and 14).
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Table 13. Analysis of soil chemical properties for planting rehabilitation using propagules.

Parameters Unit Standard Value Rehabilitation Land Description

pH 4.5–5.5 4.850 Acidic
N-total % 0.10–0.20 0.107 Low

Na me/100 g >1.0 8.540 Very high
K me/100 g 0.3–0.5 0.540 Medium

Mg me/100 g 2.1–8.0 3.310 High
Ca me/100 g <2 1.140 Very low

KTK me/100 g 5–16 8.200 Low
Salinity Ppm 20–45 21.260 Very high

Table 14. Analysis of soil chemical properties for planting rehabilitation using seedlings.

Parameters Unit Standard Value Rehabilitation Land Description

Ph 4.5–5.5 5.000 Acidic
N-total % 0.10–0.20 0.110 Low

Na me/100 g >1.0 10.700 Very high
K me/100 g 0.6–1 0.690 Very high

Mg me/100 g 2.1–8.0 3.790 High
Ca me/100 g <2 1.580 Very low

KTK me/100 g 17–24 11.060 Medium
Salinity Ppm 20–45 28.670 Very high

3.4. Carbon Stored in Restored Forests

The aboveground biomass carbon stocks at the four years planting age were
2.13 Mg ha−1 and belowground root biomass carbon stocks were 1.00 Mg ha−1

(Figure 4). Both above- and below-ground biomass were increased significantly after
five years old, specifically in the seedling planting plots, to 15.81 Mg ha−1 (for AGC) and
3.98 Mg ha−1 (for BGC). After seven years old, the above-ground carbon stocks at plant-
ing using propagules plots were 41.00 Mg ha−1, while at planting using seedling were
46.53 Mg ha−1. The below-ground carbon stocks at planting using propagules plots were
10.18 Mg ha−1, while at planting using seedling plots were 10.26 Mg ha−1. The mean
annual increment (MAI) carbon in this restoration area was 6.15 Mg ha−1 for planting using
propagules and 3.35 Mg ha−1 for planting using seedlings (Figure 4). Overall, we observed
a significant increase in carbon stocks from 2019 to 2022 at both planting using propagules
and using seedlings (Figure 4, Supplementary Figures S2 and S3).

Soil carbon stocks at the planted site with propagules were 506.89 ± 250.74 MgC ha−1,
and planted site with seedlings were 461.85± 102.23 MgC ha−1 (Figure 5). The total ecosystem
carbon stocks (including biomass carbon pool) in the planted site using propagules were
558.07 MgC ha−1, while that in the planted site using seedlings were 518.64 MgC ha−1.

3.5. Growth Correlation

The planting growth relationship between measured parameters at two planting
approach sites are summarized in Figure 6. For example, at propagules planting plots
(Figure 6A), the correlation between height and diameter was 0.85, and the correlation
between height and aboveground biomass was 0.79. At the seedlings planting, we observed
tree height and diameter correlation of 0.84, and tree height and above-ground biomass of
0.80 (Figure 6B).
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4. Discussion
4.1. Vegetation Structure

At the initial stage of planting in 2016, there was only one species introduced at the
study site of abandoned aquaculture pond, namely Rhizophora apiculata. After 7 years,
14 species of mangrove plants were encountered at the restoration site, where the results
were not much different from previous research conducted by [40] located near our study
site in Lubuk Kertang Village and they recorded 15 mangrove species in secondary man-
grove forests. The presence of other species in the restored area was most likely due
to propagules movement and being carried by water through the river at high tide, as
the rehabilitated aquaculture ponds in this study was located near the river channel and
surrounded by secondary forest (Figure 1). According to Balke et al. [41], tidal and river
systems within the same catchment are closely connected and have the same WoO (Win-
dows of Opportunity), which is essential for the restoration of coastal vegetation. Seedlings
planting plots in general have higher adaptability to cumulative disturbances, such as
sediment erosion that causes the uprooting of plant roots, water movement, and inundation
stress. Lowering the frequency of disturbances allows more time for plants to acclimate to
local condition and is therefore expected to increase growth [42].

The plants that grew from seedlings had higher shoots and larger shoot diameters
compared with plants from propagules (Supplementary Figure S2). Therefore, it is sug-
gested that the use of Rhizophora apiculata through seedlings introduction may enhance the
success rates of a restoration program rather than propagules. This findings are consistent
with previous study by Miyakawa et al. [24] who recommends similar approach for reha-
bilitation programs on ex-pond land. Furthermore, the mortality percentage of planting
using propagules was higher than using seedlings. Therefore, the seedling selection dur-
ing first planting must also be considered for an improved survival rates can be seen in
Supplementary Figures S3–S5.

The high number of S. alba found in the restored areas may be due to similar required
environmental condition and suitability of this species with introduced R. apiculata [43].
The increase and decrease in the number of plants at the restoration site over monitor-
ing period was caused by various factors. For example, there was a few number of
logging activities in the site with quite significant number of individuals were removed
(Supplementary Figure S6A). We also observed that some mature trees have produced new
propagules and facilitated new plant establishement after seven years since first planting
(Supplementary Figure S6B).

4.2. Survival and Mortality Plants

Overall it is observed that seven years mangrove rehabilitation in aquaculture ponds
in this study has high plant survival rates, low mortality rates and pest attacks. Biotic,
abiotic, and anthropogenic disturbances affect forest diversity index values, some species
may tolerate and adapt with disturbance, while others may fail to survive. The increase in
the number of individuals found in our study site was quite high, and due to various factors
including the suitability of the habitat for mangrove growth. Although it was formerly an
aquaculture pond, the the water exchange of the site was maintained due to its location
near the main river and surrounded by a secondary forest that serves as a natural source of
seeds for new seedling establishment.

Based on the results of field observations and identification of pests, several types
of pests found that attack plants in large numbers, belong to the order of Lepidoptera
such as bagworms (Pteroma sp.), green hornworms (Polyura schreiber), and white cocoons
(Supplementary Figure S1). Lepidoptera is one of pests that can caused high number of plant
mortality especially for young plant establishement [44].

According to Kalshoven [45], other damage observed on the leaves is also caused
by the gastropod family, namely the herbivore snail. Root damage is caused by a type
of Grapsid crabs that eat roots and stems when they are still propagules, seedlings, and
tillers [46] in this mangrove species. Generally, young stems and roots in mangroves attract
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several types of crabs because they are still quite soft and quite sweet. The worst result
of crab attacks is that the stems and roots become hollow and porous [47]. Weaver ants
influence the behavior of flower visitors and the reproductive success of their host plants;
they have the potential to influence the structure of the pollination network [48].

4.3. Physical and Chemical Properties of Soil

The soil condition of mangrove rehabilitation site in this study has mostly low pH,
which may associate with a decrease in the availability of nutrients for plants and the
development of microorganisms [49,50]. Soil organic matter including C-organic content
plays a very important role in the ability of the soil to maintain soil fertility and productivity
through the activity of soil microorganisms [51,52]. Compared to mud or clay dominated
sediments, sand sediments contain less organic matter because they have a larger grain
structure, low density, and high permeability and are easily washed away, making it
difficult to store dissolved organic matter.

Nitrogen is one of the main macronutrients that is very important for plant growth.
However, although rehabilitated mangrove land in our study has low nitrogen content,
the planting still has high survival rates. However, the the potassium content obtained
in the study site was high. According to Tisdale [53], the availability of potassium for
plants depends on soil aspects and climatic parameters and is essential to support vegeta-
tion growth.

The cation exchange capacity in the rehabilitated land using propagules is lower than
the rehabilitated land using seedlings, which indicates that this land has a higher nutrient
binding capacity than the land planted with propagules. The Na content in the rehabilitated
mangrove area was considered high concentration because it may be influenced by the
higher salinity of sea water during high tide water exchange.

4.4. Carbon Stored in Restored Forests

The increase of mangrove biomass carbon stocks can be seen following the increase
number of individuals, diameter, height and density of wood, stand type and age, history
of vegetation development, composition and structure of the stand [29,54,55]. If this
restored forest is left undisturbed and allowed to self-regenerate for more than 25 years, it
may achieve the same level of biomass carbon as undisturbed forests [56]. Regeneration
efforts (restoration, rehabilitation, and reforestation) can lead to biomass recovery after
40 years [57]. Regeneration can help restore aboveground carbon stocks back to their
previous levels in just a few decades, with a faster rate of biomass recovery than in soil
carbon stocks [58]. Therefore, the management of mangrove ecosystems can be improved
by preventing further land use and cover changes. Promoting rehabilitation is therefore
very important and effective for climate change mitigation policies [57].

Mangroves can store carbon per hectare more than three times the average terrestrial
tropical forest, indicating that the optimal function of carbon absorption by mangroves
reaches 77.9%, where the carbon absorbed is stored in mangrove biomass in tree trunks [6].
The increase in organic matter in trees is positively correlated with tree diameter and height;
in this regard, the carbon content of trees especially in the trunk, is high because carbon is
the organic material that makes up the trunk cell wall [59–61].

Mangrove ecosystems store more carbon in the belowground carbon pool. Mangrove
organic carbon is mainly stored in the soil, which contains more than two-thirds of the total
carbon stock of mangrove ecosystems [57]. According to Aminudin [54], the rate of increase
in tree biomass such as stand age, history of vegetation development, stand composition,
and vegetation structure affects forest stand biomass. These results are in line with research
conducted by Sasmito et al (2020) [59] in the mangrove forest of Bintuni that the top 100 cm
soil carbon stock was not significantly different between post-harvest stands, only varying
between 354 ± 71 Mg C ha−1 in 10 year old stands and 442 ± 57 Mg C ha−1 in 15 year
old stands.
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Mangroves store large stocks of organic carbon (C) in their soil which are important in
the global C cycle, the belowground mangrove tree biomass is the main contributor to this
organic C stock. Another factor affecting C-organic reserves is the density of soil contents
(BD), where the BD of planting using propagules ranges from 0.29–0.76 g/cm3 with an
average of 0.63 g/cm3, the BD value of planting using seedlings ranges from 0.44–0.73 g/cm3

with an average of 0.58 g/cm3. Soil BD affects mangrove root growth with dense patches
tending to have increased root growth and organic C uptake potential compared to less
dense soil patches [62]. Soil C concentration with forest age showed consistent and positive
changes, even in the youngest forests (<5 years), this is in line with our observation that
soil C content increased over time after 7 years of mangrove reforestation [63]. Based on
this finding, this study has limitation to present carbon vegetation and soil for the whole
restoration site and not based on species.

5. Conclusions

Overall, it can be concluded that the restoration in this area is classified as successful
with a high survival rate of plants, low death rates and pest attacks, large enough carbon
stores up to 600–700 Mg h−1. Selection of the right location and type of vegetation is a
key factor in carrying out restoration activities. This study also provides important data
that is expected to be used by decision makers regarding the promotion of climate change
mitigation strategies in Indonesia.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/f14010158/s1, Figure S1. Pests in 2015 and 2016 plots: (A) green
hornworm, (B) bagworm, (C) weaver ant, (D) cocoons of Family Lepidoptera, (E) Family of gas-
tropods, (F) Crab; Figure S2. Condition of the land for rehabilitation after 7 years. (A) Planting with
seedlings; (B) Planting with propagules; Figure S3. Plant development in the rehabilitation area where
planting with propagules was carried out. (A) When planting was carried out in 2015, (B) monitoring
in 2016, (C) monitoring in 2017, (D) monitoring in 2018, (E) monitoring in 2019, (F) monitoring in
2020; Figure S4. Plant development in the rehabilitation area where planting using seedlings was
carried out. (A) When planting was carried out in 2016, (B) monitoring in 2016, (C) monitoring in
2017, (D) monitoring in 2018, (E) monitoring in 2019, (F) monitoring in 2020; Figure S5. Condition of
restored land from initial planting to 2022. (A) planting with propagules in 2015, (B) team members
participating in planting propagules, (C) planting using seeds, (D) team members participating in
planting with seedlings, (E) monitoring in 2017, (F) monitoring in 2018, (G) monitoring in 2019,
(H) monitoring in 2020 using drones, (I) monitoring in 2022 using drones; Figure S6. The current
condition of the restoration site. (A) Sonneratia alba was logged, (B) Rhizophora apiculata was logged,
(C) R. apiculata planted had produced propagules, (D) S. alba had new seedlings; Table S1. Soil texture
of mangrove rehabilitation land in Lubuk Kertang Village.
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