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Abstract: Riparian tree species are thought to be sensitive to the more frequent and intensive drought
and heat events that are projected to occur in the future. However, compared to waterlogging,
information about the responses of these tree species to water limitation and heat is still scare. Black
alder (Alnus glutinosa L.) is a riparian tree species with significant ecological and economic importance
in Europe. In the present study, we investigated the physiological responses of black alder (Alnus
glutinosa L.) to different water availabilities growing at neighboring sites. Compared to trees with
unlimited water source, trees with a limited water source had 20% lower leaf hydration, 39% less
H2O2 contents, and 34% lower dehydroascorbate reductase activities. Concurrent with dramatically
accumulated glutathione and phenolic compounds, leaf glutathione contents were two times higher
in trees with limited water than in trees with sufficient water. Limited water availability also resulted
in increased abundances of sugars, sugar acids, and polyols. Serine, alanine, as well as soluble protein
related to nitrogen metabolism were also accumulated under limited water conditions. In contrast
to sulfate, leaf phosphate contents were significantly increased under limited water. No significant
effects of water conditions on malondialdehyde and ascorbate contents and fatty acid abundances
were observed. The present study improves our understanding of the physiological responses of black
alder to different water conditions. Our findings highlight this riparian species is at least to some
extent resistant to future drought with a well-regulated system including antioxidative and metabolic
processes and its potential as an admixture candidate for afforestation in either water-logged or dry
areas, particularly in nitrogen limited habitats.

Keywords: black alder (Alnus glutinosa L.); drought; flooding; antioxidants; carbohydrates; amino
acids; metabolic regulation; nitrogen fixation tree species

1. Introduction

Riparian forest ecosystems are extremely important corridors due to their high pro-
ductivity, biodiversity, and ecological services [1,2]. Nowadays, they are under threat from
projected global climate change and changes of land-use by exacerbating aridification and
altering hydrological regimes [3]. Dioecious riparian trees are usually waterlogging-tolerant
species but sensitive to water shortage [4,5]; therefore, they may be particularly vulnerable
to the projected warming climate and altered precipitation [6]. Steadily increased green-
house gas emissions have significantly changed the global climate, and will continue to
do so in the future, with more frequent and intensive climate extremes such as heat and
drought events projected [7]. These extreme climate events could fundamentally alter the
composition, structure, and biogeography of forests in many regions [8,9]. Apparently, the
complex physiological process will be impacted by fluctuated soil water availability as well

Forests 2023, 14, 151. https://doi.org/10.3390/f14010151 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f14010151
https://doi.org/10.3390/f14010151
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0002-4805-7458
https://doi.org/10.3390/f14010151
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f14010151?type=check_update&version=1


Forests 2023, 14, 151 2 of 16

as high temperatures, for instance reducing transpiration and photosynthesis, invoking
antioxidative and osmoprotective system, regulating metabolic pathways, adjusting carbo-
hydrates and amino compounds partitioning and allocation, and consequently impairing
growth and causing mortality [10–14]. Increased tree mortality and die-offs triggered by
drought and/or heat have been well documented in some locations, e.g., southern Europe,
western North America, and northern Australia [15–17]. Moreover, significant expansion of
drought-tolerant taxa in riparian ecosystems in semi-arid to arid regions around the world
is expected [8]. Compared to intensively addressed responses of trees to waterlogging, less
is known about the physiological effects of water shortage on riparian species, which are
vulnerable to hydrogeomorphological changes [8,18–20].

In summer 2018, central and northern Europe were stricken by extreme drought and
heat [21]. Germany had never experienced such hot and dry conditions from March to
November as in 2018 [22]. The negatively impacted areas of the 2018 summer drought
are 1.5 times larger and significantly stronger compared to August 2003 [23], not only in
terms of crop production, but also for the forest ecosystems [21,24,25]. These disasters
again highlight the emerging climate change risks for forests. On the other hand, each of
the recent extreme drought and heat events also provide a unique opportunity to study
the response of tree species to heat and drought waves and evaluate its fate under such a
changing climate [21]. Alnus glutinosa L., also known as black alder, naturally distributes
in most of Europe, from central Scandinavia to the southern coast of the Mediterranean
Sea, and is often found growing in wetlands, as well as near ponds, lakes, and rivers.
It represents about 5% of the forest area and forms large highly productive stands in
north and south parts of Central Europe [26]. It is not only an economically important
species for timber production, but also frequently used as a potential tree for brackish
and saline habitats [27], and as a valuable admixture species for improving soil properties
due to its robust root system and promising nitrogen fixation ability [26,28]. Unlike most
hygrophilous tree species, black alders are often found in drier environments as a pioneer
species [29], although they are sensitive to drought [4,5,30]. Previous studies have shown
alder had much weaker stomatal regulation than European beech (Fagus sylvatica L.) and
oak (Quercus petraea L.) in response to limited soil water content [31,32], and its leaf level
water relations were hardly influenced by in situ water conditions [33]. Little information
is available regarding the leaf level physiological responses of black alder to different water
conditions.

In the present study, to explore the leaf metabolic responses of black alder to different
water conditions, we compared the hydration, reactive oxygen species (ROS) levels and
antioxidants characteristics, profiles of carbohydrates, nitrogen compounds, as well as
other low molecular weight water soluble metabolites and anions in leaves of black alder
trees grown at neighboring sites with different water availability. Specifically, we tested
the following hypotheses: (1) trees with limited water supply have lower leaf hydration,
and consequently higher ROS levels and upregulated antioxidants contents; (2) water
limitation also induced accumulation of osmoprotectants as well as altered carbon and
nitrogen metabolic pathways. The study will help to unfold the physiological responses
of black alder to limited water availability, and provide valuable information for forest
management in the future with projected warmer and drier conditions.

2. Materials and Methods
2.1. Experimental Conditions and Plant Material

The experimental site is located at the Moosweiher lake of Freiburg, Baden-Württemberg,
Germany (7◦48′16.484′′ E, 48◦1′43.828′′ N) (Figure 1). The mean annual temperature is
11.4 ◦C and mean annual rainfall is 662.1 mm (Deutscher Wetterdienst, DWD). The total
area of the lake is ca. 7.6 ha with a maximum depth of 8 m and elevation of 272 m
asl. Water conductivity was between 337 and 299 µS cm−1 [34]. The surrounding tree
species are mostly black alder, with some scattered Tilia cordata and F. sylvatica. In the
present study, 10 adult Alnus glutinosa trees were selected: 5 trees along the lake shore
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with unlimited water availability were selected as control (SW) group, while the other
5 trees > 20 m away from the lake (which is farther than the roots distribution limit of the
trees [35,36]) served as the limited water availability (LW) group. The diameters at breast
height (DBH) were measured before sampling. DBH were 27.4 ± 1.9 cm and 26.8 ± 2.1 cm
for control and low water availability groups, respectively. Data of air temperature and
precipitation (Figure 2) of the study area were obtained from the Deutscher Wetterdienst
(https://www.dwd.de/EN/Home/home_node.html (accessed on 16 September 2021)).
Sampling took place on 31th August 2018 between 12:00 to 14:00 during the extreme
summer drought event across Europe [21,23]. Twigs from the southwest side of the middle
crown of the 10 alder trees were cut, leaves were immediately harvested and frozen in
liquid nitrogen and transported to lab, then stored in −80 ◦C until homogenized in liquid
nitrogen for further analysis.
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2.2. Leaf Hydration Determination

Leaf hydration (g H2O g−1 DW) was determined as (FW-DW)/DW, where FW is the
fresh weight and DW is the dry weight. DW was obtained by drying the samples in an
oven at 60 ◦C to constant weight [37].

2.3. Determination of Hydrogen Peroxide (H2O2), Malondialdehyde (MDA) Contents, and In Vitro
Activities of Glutathione Reductase (GR) and Dehydroascorbate Reductase (DHAR)

Leaf H2O2 was extracted and determined as described in [37]. Frozen leaf powder
was extracted in 0.1% (w/v) trichloroacetic acid (TCA). After centrifugation at 120,000× g
for 15 min, aliquots of 300 µL supernatant were combined with 300 µL of 10 mM potassium
phosphate buffer (pH 7.0) and 600 µL of 1 M KI. The absorbance of H2O2 was measured at

https://www.dwd.de/EN/Home/home_node.html


Forests 2023, 14, 151 4 of 16

390 nm (UV-DU650 spectrophotometer, Beckman Coulter Inc., Fullerton, CA, USA). H2O2
concentration was quantified using a standard curve ranging from 0 to 200 µM H2O2.

The malondialdehyde content was determined as described by Tariq et al. [5]. Briefly,
50 mg frozen leaf powder was extracted with 1.5 mL 10% (w/v) trichloroacetic acid (TCA)
in 95 ◦C water bath for 30 min. After centrifugation at 120,000× g for 5 min, 0.75 mL
supernatant was mixed with 0.75 mL 0.6% thiobarbituric acid solution, and the mixture
was again incubated at 95 ◦C for 30 min. The mixture was then cooled in an ice bath, and its
absorbance (OD) at 450, 532, and 600 nm were read with a UV-DU650 spectrophotometer
(Beckman Coulter Inc.). The MDA concentration was calculated using the following equa-
tion:

MDA(mol g−1) = 6.45 × (OD532 − OD600) − 0.56 × OD450

In vitro GR (EC 1.8.1.7) and DHAR (EC 1.8.5.1) activities of leaves were determined as
described previously [38]. GR activity was quantified by monitoring glutathione depen-
dent oxidation of 1.25 mM NADPH at 340 nm; DHAR activity was analyzed directly by
following the increase in absorbance at 265 nm, resulting from GSH-dependent production
of ascorbate [39].

2.4. Thiols and Ascorbate Measurement

Thiols, i.e., total and oxidized glutathione (GSH), cysteine, and γ-glutamylcysteine
were extracted with 1 mL 0.1 M HCl containing polyvinylpoly-pyrrolidone (PVP 6755,
Sigma-Aldrich Chemie GmbH, Steinheim, Germany) as previously described by Schupp
and Rennenberg [40]. Quantification of oxidized glutathione (GSSG) was based on the
irreversible alkylation of the free thiol groups of the GSH present with N-ethylmaleimide
(NEM) and the subsequent reduction of GSSG with dithiothreitol (DTT) [41]. Reduced
thiols were derivatized with monobromobimane and separated on an ACQUITY UPLC®

HSS (Waters GmbH, Eschborn, Germany) with a C-18 column (2.1 × 50 mm; 1.18 µm mesh
size, Agilent Technologies, Palo Alto, CA, USA), applying a solution of potassium acetate
(100 mM, pH 5.3) in methanol (100%) for elution. Concentrations of thiols were quantified
according to a mixed standard solution consisting of GSH, cysteine, and γ-glutamylcysteine
subjected to the same procedure [42].

Leaf total and reduced ascorbate were determined using a colorimetric method pre-
viously described [37]. Concentrations of total and reduced ascorbate were calculated
according to a standard curve using dilutions of 1.5 mg ml−1 L-ascorbic acid (Sigma-
Aldrich, Steinheim, Germany).

2.5. Soluble Protein and Sugar Determination

Total soluble protein contents were determined as previously described [43]. Ab-
sorbance at 595 nm was measured by a Sunrise Microplate Reader (Tecan Austria GmbH,
Groedig, Austria). Contents were quantified according to a standard curve using bovine
serum albumin standards (BSA; Sigma-Aldrich Chemie GmbH, Schnelldorf, Germany).

Soluble sugar was extracted and determined as previously described [37]. Fifty mg
frozen leaf powder was extracted with 1.5 mL of milliQ water at 95 ◦C for 5 min. After
centrifugation, 200 mL of 10 times diluted supernatants were mixed with 1 mL anthrone
reagent (50 mg anthrone and 1 g thiourea in 100 mL 70% H2SO4). The reaction was boiled
for 15 min and the absorbance was measured at 578 nm after cooling down [44]. Sucrose
(Sigma-Aldrich Chemie GmbH) was used as a standard for quantification.

2.6. Determination of Anions

Anions of phosphate (PO4
3−) and sulphate (SO4

2−) were determined in aqueous ex-
tracts from homogenized frozen material by automated anion chromatography as described
previously [45]. Separation of anions was achieved on an ion exchange column (AS12A,
4 mm, Dionex, Idstein, Germany) with 2.7 mM Na2CO3 and 0.3 mM NaHCO3 as the mobile
phases. Detection and quantification were performed with a pulsed amperometric detector
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(Electrochemical detector ED 40 Dionex). Sodium salts of phosphate and sulphate were
used as standards.

2.7. Low Molecular Weight Soluble Metabolites Analyzed by Gas Chromatography-Mass
Spectrometry (GC-MS)

Relative abundances of water soluble low-molecular-weight metabolites in leaves
were analyzed by a gas chromatography–mass spectrometry system (GC-MS, Agilent
GC 6890N coupled to a 5975C quadrupole MS detector; Agilent Technologies, Palo Alto,
CA, USA). Metabolites were extracted, derivatized, and separated according to a method
previously described [37]. Peak identification and deconvolution of chromatograms were
performed using the quantitative analysis module of the MASSHUNTER software (Agilent
Technologies). For metabolite identification, the Golm metabolome database [46] were used.
Peak areas were normalized using the peak area of the internal standards ribitol (Sigma-
Aldrich) and the dry weight of the samples. Abundance of metabolites was indicated
by normalized peak areas. Artefact peaks and common contaminants were identified by
analysis of ”blank” samples prepared in the same manner as biological samples. Signals
corresponding to these artefacts were omitted from interpretation.

2.8. Statistical Analysis

Significant differences of trees between SW (trees with sufficient water) and LW (trees
with limited water availability) groups were examined by t-test using SigmaPlot 12.0 (Systat
Software GmbH, Erkrath, Germany). To have an overview of the water condition effects,
partial least square discriminant analysis (PLS-DA) was conducted using a public web tool
(MetaboAnalyst 5.0, http://www.metaboanalyst.ca/ (accessed on 7 January 2023)) [47]
after log10 transformation and mean-centering. Missing values were replaced by half the
minimum abundance of respective compounds, assuming that their concentrations were
below detection limit. Data shown in figures and tables represent means ± standard error
(n = 5) on a dry weight basis.

3. Results

Compared to trees under sufficient water condition (SW), trees grown under limited
water condition (LW) had 20% lower leaf hydration (p = 0.002) and 39% decreased leaf
hydrogen peroxide contents (p = 0.03) (Figure 3a,b), but similar malondialdehyde content
(Figure 3c). Trees with LW had 37% and 59% higher leaf soluble sugar (p = 0.02) and soluble
protein contents (p = 0.03), respectively (Figure 4a,b). Leaf sulfate content of LW trees was
25% lower (p = 0.02) than SW trees, whereas, phosphate content was 46% higher (p = 0.007)
(Figure 4c,d).

Water availability had no significant effects on leaf total, reduced ascorbate, dehy-
droascorbate (DHA), as well as the ratio between reduced ascorbate and DHA (Figure 5).
Leaf cysteine and γ-glutamylcysteine (γ-EC) contents did not change between SW and
LW conditions (Figure 6a,b). Whereas, total and oxidized GSH were dramatically accu-
mulated in leaves of alder trees at LW, i.e., 5.3 and 5.0 folds higher than SW, respectively
(Figure 6c,d), compared to SW trees, LW trees had 34% lower dehydroascorbate reductase
(DHAR) activity (p < 0.05), but similar glutathione reductase activity (Figure 7).

http://www.metaboanalyst.ca/
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Figure 7. Activities of glutathione reductase (GR) (a) and dehydroascorbate reductase (DHAR) (b) in
leaves of Alnus glutinosa grown under sufficient (+ water, blank bars) and limited water conditions
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Generally, abundances of sugars, e.g., β-D-allose and lyxose, D-xylobiose, and ara-
binose; sugar acids, e.g., ribonic acid, gluconic acid, glyceric acid, and gulonic acid; as
well as polyols of sorbitol, arabitol, and cellobiitol were higher in LW trees than in SW
trees (Figure 8). Similarly, higher abundances of amino acids were also documented un-
der LW, particularly for serine, alanine derived from 3-phosphoglycerate and pyruvate,
respectively. Limited water availability also resulted in accumulation of most phenolic
compounds, i.e., catechin, tyrosol, 4-methylcatechol, piceatannol, cis-4-hydroxy-cinnamic
acid, hydroquinone, and their precursors of quinic acid, shikimic acid, and phenylalanine
derivatives. Abundances of sugar alcohols of galactinol and viburnitol, two proline deriva-
tives of N-methyl cis-4-hydroxymethyl-L-proline and N-methyl trans-4-hydroxy-L-proline
2S,4R-4-hydroxy-1-methyl pyrrolidine-2-carboxylic acid (R002953), two phenolics of 4-
hydroxy-benzoic acid and threo-guaiacylglycerol, as well as fumarate, were significantly
(p < 0.05) declined under limited water conditions (Figure 8).

To have an overall view of the drought effects, a PLS-DA analysis based on the 46 pa-
rameters with significant differences (Table S1) in the present study was performed. A
significant separation between LW and SW plants (R2 = 0.974, Q2 = 0.849) were presented
in the scores plot, and component 1 explained 67.8% of variance (Figure 9). The sugars of
D-Xylobiose, β-D-allose, lyxose and dihydroxyacetone, GSSG and total GSH, phenolics of
dihydroxyphenylalanine, tyrosol and piceatannol, and galactinol were the top 10 impor-
tant compounds of component 1 according to their VIP scores (Variable Importance for
Projection) (Figure 9b). These compounds were significantly (p < 0.01) increased under LW
except for galactinol (Figures 8 and 9b).
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of Alnus glutinosa grown under sufficient (+ water) and limited (− water) water conditions. *, **, and
*** indicate significant differences between trees with sufficient and limited water supply at p < 0.05,
0.01, and 0.001, respectively. R002953 and D155405 are codes of N-methyl trans-4-hydroxy-L-proline
(2S,4R)-4-hydroxy-1-methyl pyrrolidine-2-carboxylic acid and an unknown metabolite, respectively,
in Golm library.
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4. Discussion
4.1. Leaf Hydration and Antioxidative Systems at Different Water Conditions

Drought is a misfortune for both forest and agriculture since water is crucial for plant
survival and growth [48]. Plants have strategies to cope with water limitation. In addition
to the fastest processes of the abscisic acid (ABA)-mediated stomatal closure to reduce
water loss, under prolonged drought stress or increased stress intensity, plants can also
increase root water uptake from the deeper soil, adjust osmotic processes, and activate
the antioxidative systems [12,48]. The latter are fundamentally important to protect the
photosynthetic apparatus from photo-oxidative destruction [12,49,50]. Plenty of studies
have demonstrated that the ascorbate-glutathione pathway plays a vital role in detoxifying
ROS in many plant species [51]. In the present study, although we could not determine
and exclude the ground level soil water supply, compared to trees with sufficient water,
significantly decreased leaf hydration in LW trees may indicate water shortage [52] and/or
a possible signal for longer-term acclimation processes [53] during a long term drought and
heat event [21,23]. However, severe damage of plant cells was not speculated as indicated
by the stable MDA contents and lowered H2O2 contents (Figure 3) [5,50].

Ascorbate and glutathione are differentially influenced by environmental factors [51].
In the present study, leaf total and oxidized glutathione contents were increased in LW
trees compared to SW trees. Similarly, increased leaf glutathione contents have been
documented in drought treated apple (Malus domestica), European beech, and poplar
(Populus nigra × deltoides) [54–56]. The enhanced glutathione concentrations are thought
to provide better protection under abiotic stresses [50,52]. The relatively low capacity of
oxidized glutathione reducing systems as seen from the dramatically accumulated GSSG
contents could be partly attributed to changes in NADP(H) redox status as well as the stable
glutathione reductase (GR) activity [50]. Feasibility of DHA reductase activity and DHA
pool size as indication of oxidative stress is still under debate [57], although many studies
have shown increased DHAR activity in concert with enhanced ascorbate contents under
drought conditions [58,59]. In the present study, little effects of water conditions were
observed in both reduced and total ascorbate contents (Figure 5), but a 34% declined DHAR
activity was observed under drought (Figure 7b). Similarly, declined DHAR activities
were also observed in apple (Malus prunifolia and M. hupehensis) [60] and Pinus densata [61]
leaves after long term drought treatment. Conserved leaf total and reduced ascorbate
contents were also observed in date palm (Phoenix dactylifera L.) seedlings, even though
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DHAR activities were significantly increased under drought [38]. The regeneration of
ascorbate in the plant takes place in two ways: the Mehler APX reaction mainly reducing
monodehydroascorbate (MDHA) to ascorbate, and the Halliwell-Foyer-Asada cycle mainly
reducing DHA to ascorbate [62]. The contribution to the reduction of oxidized ascorbate of
the latter is estimated to be much lower than that of the Mehler APX reaction [63]. In the
present study, DHAR activity was significantly decreased in LW trees (Figure 7); however,
the decreased DHAR activity had little effects on different forms of ascorbate contents
(Figure 5), which was probably due to either the enhanced biosynthesis of ascorbate or the
stimulated reduction via the Mehler APX reaction. Moreover, recent studies in Arabidopsis
thaliana found that both DHAR activities and glutathione contents determine the ascorbate
accumulation, and GSH itself can reduce DHA nonenzymatically [64]. Compared to trees
with sufficient water supply, lower leaf H2O2 contents in trees with less water availability
probably indicated to some extent drought resistance of A. glutinosa, and, apart from
the ascorbate-glutathione cycle [50,51,65], other protective mechanisms may exist, most
likely from the significantly increased abundances of secondary metabolites, i.e., tyrosol,
catechin, hydroquinone, as well as 4-methylcatechol and piceatannol with antioxidant
activity (Figure 8) [66]. Therefore, our first hypothesis was only partly supported because
trees with limited water availability and lower leaf hydration did not translate to higher
ROS levels and apparently upregulated antioxidants contents.

4.2. Compatible Solutes at Different Water Conditions

Soluble sugars, sugar alcohols, protein, and amino acids are notable osmolytes play-
ing crucial roles in maintaining osmotic equilibrium and protecting macromolecules, as
well as membranes, thereby providing resistance against drought and cellular dehydra-
tion [65]. Tariq et al. [5] found soluble sugars were accumulated, whereas the soluble
proteins was decreased in drought-stressed 2-year-old A. cremastogyne seedlings. In the
present study, consistent with our second hypothesis, monosaccharide of lyxose, β-D-allose,
arabinose, and disaccharides of D-xylobiose were significantly increased under LW con-
ditions (Figure 8) and total sugar content was 17% higher than trees with sufficient water,
but not statistically significant (p = 0.16, Figure 4a). On the contrary, leaf soluble protein
contents were significantly accumulated in trees with limited water supply (1.6 folds of
SW trees). Abundances of sugar alcohols and sugar acids were largely increased under
drought, particularly for sorbitol, arabitol, and cellobiitol of sugar alcohols, as well as ri-
bonic acid, glyceric acid, and gluconic acid of sugar acids [65]. Instead of drought-induced
higher proline contents [5], we found proline derivates were significantly decreased in LW
trees. However, abundances of alanine, serine, and 2-piperidinecarboxylic acid, as well
as dihydroxyphenylalanine, the precursor of dopamine, were significantly enhanced in
the present study (Figure 8). Together with significantly accumulated soluble protein, an
altered nitrogen metabolism is speculated. Similar effects were also reported in other plant
species in response to abiotic stresses [67–70].

Galactinol and raffinose function as antioxidants and/or osmoprotectants, which may
lead to the increased tolerance of oxidative damage caused by drought [66], as observed
previously in date palm, A. thaliana, and Zea mays leaves [68,71–73]. However, in the present
study, abundance of galactinol was significantly decreased in LW trees (Figure 8), which was
probably due to the concurrent high temperature [72], as also observed in Betula pendula [74].
Similar effects of water shortage on foliar galactinol contents were also observed in Douglas
fir (Pseudotsuga menziesii) needles [67], which could be the effects of enhanced consumption
for the synthesis of osmolytes of the raffinose family, and function as antioxidants [75]. The
latter has been identified as an endogenous mediator of defense amplification and priming
in Arabidopsis thaliana, and its accumulation was critical for systemic acquired and local
resistance to bacterial pathogens [76]. Like drought-treated Douglas fir and date palm,
European beech, cork oak (Quercus suber) [67,68,77,78], as well as anoxia exposed Sebastiania
commersoniana, Erythrina speciosa, and Sesbania virgate [79], and pathogen-infected silver
birch [80], no significant effects of water conditions were observed in fatty acid composition
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and concentration, probably indicating stable membrane structures, as also indicated by
the conserved MDA contents [81]. Although we observed significantly decreased leaf
hydration, we could not conclude the LW trees were stressed, since we did not determine
the plant and soil water potential.

4.3. Responses of Anions to Water Availability

Studies have proved that sulfate can trigger ABA production and regulate stomatal
closure in Arabidopsis (A. thaliana) [82,83]. Moreover, it was the only macronutrient that
increases in the xylem sap of maize (Zea mays) in a drought [84]. The declined leaf sulfate
contents of LW trees may reflect drought-induced declined roots uptake and xylem trans-
port and higher demand of sulfate for synthesis of the ROS scavenger glutathione, as well
as a result of the regulatory function of ABA signaling to maintain stomatal conductance at
a certain level [82,83,85], therefore, to prevent carbon starvation [86]. Moreover, the foliar
phosphate concentration was also significantly increased in LW trees (Figure 4d), which has
been shown to significantly improve the drought resistance of A. cremastogyne seedlings [5].

5. Conclusions

In conclusion, although the black alder is often observed in humid habitats and was
thought to be drought sensitive, our study suggests that it has at least to some extent toler-
ance to water shortage, partially due to the protection from the accumulated nonenzymatic
antioxidants and compatible solutes including sugars, sugar alcohols, sugar acids, and
nitrogen compounds. The current study also highlights the potential of black alder as a
pioneer tree species in forestation and as an intercropping species in soil improvement
due to its prominent ability of drought resistance and nitrogen fixation. In the future,
more detailed experiments under well controlled conditions as well as long-term field
investigations are recommended to have a deep understanding of the effects of projected
drought and heat events on this tree species.
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