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Abstract: For the monitoring and management of forest resources, the main index is the stand volume,
which is determined on the basis of the tree diameter, height, and number of trees per hectare of
three-dimensional distribution. The development of trees in the forest stand is dynamic and is driven
by random phenomena. In this study, the tree diameter, the potentially available area, and the height
are described by the mixed-effect parameters of the Gompertz-type diffusion process. A normal
copula function is used to connect a three-dimensional distribution to its one-dimensional margins.
The newly developed model was illustrated using empirical data from 53 permanent experimental
plots (measured for seven cycles), which were characterized as follows: pine forests (Pinus sylvestris),
63.8%; spruce (Picea abies), 30.2%; silver birch (Betula pendula Roth and Betula pubescens Ehrh.), 5.8%;
and others, 0.2%. An analysis of the tree diameter and height of growth, including current and mean
increments and inflection points, is presented. The models for the change in the number of trees per
hectare with age are presented on the basis of the probabilistic density functions of the solutions of
stochastic differential equations and the copula function. The dynamics of the number of trees per
hectare are visualized graphically, and the goodness of fit of the newly developed models is evaluated
using standard statistical measures.

Keywords: diameter; height; potentially available area; stochastic differential equation; copula
function; number of trees per hectare

1. Introduction
1.1. Background

Most often, tree species in the forest develop from generation to generation. The
progressive changes in the size, shape, and function of the trees in a stand during their
lifetimes, which transform the stand’s genetic potential into a living mature stand, define
the dynamism of the stand and are referred to as stand growth. The development of trees
in a forest stand can be understood as the interrelationship of the different tree sizes, which
allows a particular tree to overcome the chaotic behavior of nature and proves that the
stand exists as an integrated system, where changes in one tree size ultimately cause a
corresponding change in the size of another. Trees in a forest stand do not live in isolation,
as they are shaped in accordance with their interactions with their environment. The
growth equation mathematically combines the two dependent variables of age and size
to explain the continuous process of the two hidden forces of body expansion and size
limitation [1]. As the size of a tree is determined by several components (for example,
diameter, height, crown width, etc.), there exists a specific relationship between these
size components during the entire growth process. Therefore, it is appropriate to expand
the interpretation of the growth process of a particular size component by additionally
introducing other size components and clarifying the extent of the dependencies between
the response and the explanatory variables [2,3].
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1.2. Research Motivation

Complex forest systems are characterized by important data features, such as dy-
namism, uncertainty, stochasticity, deviation of variables from the normal distribution,
multicollinearity, and false correlations, which complicate the modeling and prediction
of these systems. An approach is required that, under the conditions of the described
data features, is able to adequately identify the processes in such systems, ensuring a
high level of accuracy and efficiency. To assess the level of productivity of forest stands
and to formalize their dynamics, it is appropriate to determine the link between the main
components of the stand size, namely the number of trees per hectare, the average diameter
of the trees at breast height (or average square diameter), and the average height of the
trees using univariate or multivariate diffusion process models. The growth processes of
forest stands evolve under the influence of random noise, which is mostly expressed by
Brownian motion. Traditionally, special types of stochastic differential equations have been
used to model random phenomena in forestry on the basis of the statistical properties of
the observed data or on the basis of the researcher’s experience in stochastic calculus since
the stochastic differential equations governing random phenomena are generally unknown.
In stochastic, stand-level growth models, the transition probability density functions were
pioneered by Suzuki [4], Sloboda [5], Garcia [6], Tanaka [7], and Rennolls [8] to describe the
movement of individual trees with respect to the diameter or height classes. The parametric
identification of the developed stochastic differential equations [4–8] required unrealistic
information storage and computing resources that were difficult to satisfy at that time.
Naturally, this methodology was not applied in practice due to its theoretical complexity
for foresters and the large volume of computer calculations required. Stochastic differential
equations can simultaneously capture the known sigmoidal or exponential deterministic
dynamics of underlying variables of interest, such as tree height [9], tree diameter [10],
tree potentially available area [11], tree crown width, crown base height [12,13], and the
others [14,15], while enabling the researcher to capture the unknown random dynamics
in a stochastic setting. In the long run, as age approaches infinity, the (unconditional)
stationary approximations hold for the Gompertz- [16] and Vasicek-type [17] stochastic
growth models.

1.3. Research Objectives

In this paper, we propose a copula technique [18] that provides methodological support
for multi-dimensional data analysis with the aim of uncovering the hidden dependencies
between size components and the responses to changing behavior in time and identifying
the non-obvious regularities in forestry data using machine learning techniques. Copula
functions have been used in forestry applications since 2000 [19], as have the references
therein. The applications of multivariate diffusion processes in forestry have shown that
the multivariate diffusion process is suitable for modeling the multivariate distribution
of tree size components, but the implementation of the maximum likelihood method for
finding the parameter estimates of such a model requires a lot of computer calculation
time and memory. Copula models are based on Sklar’s theorem [20], which states that
every multivariate cumulative distribution function can be expressed as a copula func-
tion depending on the univariate marginal distributions that capture the structure of the
dependencies between the marginal components.

Previously published works have presented the cases of two-dimensional [21], three-
dimensional [22], and four-dimensional [23] stochastic differential equations that relate
singular stochastic differential equations using the covariance matrix between the indi-
vidual variables, thus revealing the dependency structure. The growth model defined by
the multi-dimensional stochastic differential equations had drawbacks in that, firstly, the
discrete variable measurements for each observed variable need to have the same amount
of measurements, and, secondly, the large number of unknown parameters characterizing
the multi-dimensional system necessitates computer calculations that require a very long
time before reaching an appropriate level of convergence. In this study, we focused on a
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trivariate normal copula that is defined by a trivariate normal probability density function
with a corresponding correlation matrix and with marginal distributions defined by asym-
metric lognormal distributions. Theoretical studies of tree growth have confirmed that tree
size distribution is inverted J-shaped, with many small trees and few larger trees due to
asymmetric competition [24].

The main objective of this study is to improve the estimates of the growth and yield
capacity in Lithuanian stands of uneven-aged, mixed-species forests and to reveal the main
moments of stand age, which are of special importance in the growth process. The func-
tional relationships between the number of trees per hectare were modeled using stochastic
differential equations and copula methods. In this paper, we propose a copula technique
that provides methodological support for multivariate data analysis using stochastic dif-
ferential equations, making it possible to reveal the degree of hidden dependencies and
to identify implicit patterns in the forest growth data using machine learning methods.
The proposed technique makes it possible, firstly, to carry out a systematic analysis of
the growth of uneven-aged, mixed-species forest stands, taking into account the uncer-
tainty of the internal and external environment, based on quantitative statistical analysis
tools supported by univariate and multivariate density functions. Secondly, it builds a
theoretically acceptable model of the observed forest stand and creates machine learning
algorithms that enable the implementation of the modeled object in practice. Thirdly, it
can serve as the basis of a decision-support system for the management of uneven-aged,
mixed-species forest stands. Fourthly, the random effect scenario mode accounts for the
unobserved ecological factors such as species composition, temperature, solar radiation,
precipitation, nutrient condition, and much more. We illustrate the potential of this new
framework using the example of longitudinal measurements (up to seven times) in the
Kazlų Rūda district in Lithuania on the basis of the measurements of 53 stands, recording
the tree’s age, diameter, height (approximately every fifth tree), and the coordinates of the
tree’s position.

2. Materials and Methods

In this section, we introduce a stochastic four-parameter Gompertz-type model that
describes the dynamics of the tree diameter at breast height (henceforth: diameter), the
potentially available area, and the height over time (age). In the subsequent analysis, the
potentially available area of a tree will be expressed by the corresponding area of the
polygon of the Voronoi diagram since the coordinates of the position of each tree in the
plot were recorded during the measurements (see Figure 1, rectangular plot 50 m × 100 m,
0.5 ha, 751 trees).
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Figure 1. Tree potentially available area for randomly selected plot: 1983rd year cycle of measure-
ment (mean age, 50.38 years); red—Scots pine trees; green—Norway spruce trees; yellow—birch 
trees; circles—tree position. 
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Figure 1. Tree potentially available area for randomly selected plot: 1983rd year cycle of measurement
(mean age, 50.38 years); red—Scots pine trees; green—Norway spruce trees; yellow—birch trees;
circles—tree position.
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2.1. Stochastic Differential Equation Framework

The mixed-effect parameters of the Gompertz-type one-dimensional stochastic differ-
ential equations for the tree diameter, Xi

d(t), potentially available area, Xi
p(t), and height,

Xi
h(t), take the following forms, respectively:

dXi
d(t) =

((
αd + φi

d
)
− βdln

(
Xi

d(t)−
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h(t),
P
(
Xi

d(t0) = h0
)
= 1, i = 1, . . . , M,

(3)

where M is the number of observed plots; αd, αp, αh and βd, βp, βh are the birth and death
rate fixed-effect parameters αj > 0, β j > 0, j = d, p, h); σd, σp, σh are the volatility fixed-
effect parameters;
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h are the threshold fixed-effect parameters; δ is the fixed-effect
parameter; the random effects φi

d, φi
p, φi

h are the independent and normally distributed
random variables with zero mean and constant variances τ2

j , respectively, φi
j ∼ N(0; τ2

j ),

j = d, p, h; and dWi
j (t), j = d, p, h, represent the Brownian motion increments, which are

considered to be independent across all the stands. The unknown fixed-effect parameters,
θ = {αj,β j,
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j,σj, τj, δ; j = d, p, h}, must be estimated.

Transforming Equations (1)–(3) by eβ jtln
(
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j(t)
)

i = 1, . . . , M, j = d, p, h, and using
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j(t)
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j(t0) = xj0
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j
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The newly derived probability density functions prove themselves for the quantitative
assessment of tree and stand growth using mathematical–statistical methods and form a
useful basis for research in forestry. In the analysis based on stochastic growth processes,
any repeated surveys provide data for the fitting of stochastic differential Equations (1)–(3),
and the various attributes and characteristics of growth, such as current annual increment,
etc., are calculated from the fitted probability density functions rather than directly from
the observed data.

In our study, the dynamics of the state (diameter, potentially available area and height)
of a tree’s statistical growth characteristics at time t, e.g., the mean, mi

j(t); median, mei
j(t);

mode, moi
j(t); qth quantile (0 < q < 1), qmi

j(t); and variance, wi
j(t), i = 1, . . . , M, j = d, p, h,

using the properties of the lognormal distribution, take the following expressions:

mi
j(t) =
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𝑓 𝑥 , 𝑡 Ɵ, 𝜙  ɣ 𝑒𝑥𝑝 ɣ
. (6)

j + exp
(

µi
j(t) +

√
vj(t)Φ−1

q (0; 1)
)

, (10)

wi
j(t) = exp

(
2µi

j(t)(t) + vj(t)
)
· (exp(v(t))− 1). (11)

Using a three-dimensional normal distribution, we define a three-dimensional nor-
mal copula cumulative distribution function C that would relate all three tree state vari-
ables (diameter, potentially available space, height) by defining the corresponding three-
dimensional copula-type distribution (see Appendix A), as follows:

C(u1, u2, u3; t) = Ht

(
F−1

1 (u1, t), F−1
2 (u2, t), F−1

3 (u3, t)
)

,
F1(x1, t) = P(X1(t) ≤ x1), F2(x2, t) = P(X2(t) ≤ x2), F3(x3, t) = P(X3(t) ≤ x3).

(12)

This three-dimensional distribution function enables us to formalize the relationships
of one of the tree state variables with the others. Using the integration operation and the
copula-type conditional probability density functions f i

j|k
(
xj, t

∣∣xk
)
, i = 1, . . . , M, j = d, p, h;

k 6= j, and f i
j|k,l

(
xj, t

∣∣xk, xl
)
, i = 1, . . . , M, j = d, p, h; k, l 6= j (see Appendix A), we are able

to express the relationships of the mean trend of one of the state variables with the others,
including the dependences of the state variables, in the following form:

mi
j|k(xk, t) =

∫ +∞
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∫ +∞
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An analogy with the solution of mechanical problems makes it possible to define the
current annual and mean increments and their confidence intervals, relative increment,
growth inflection point, etc., as follows, i = 1, . . . , M, j = d, p, h; k, l 6= j:

The current annual increment:

cmi
j(t) =

∂mi
j(t)

t
or cmi

j|k(xk, t) =
∂mi

j|k(xk, t)

∂t
, cmi

j|k,l(xk, xl , t) =
∂mi

j|k,l(xk, xl , t)

∂t
, (15)

The mean annual increment:

mmi
j(t) =

mi
j(t)

t
or mmi

j|k(xk, t) =
mi

j|k(xk, t)

t
, mmi

j|k,l(xk, xl , t) =
mi

j|k,l(xk, xl , t)

t
, (16)

The 95% confidence limits for the current annual increment:

lcqmi
j(t, 0.025) =

∂qmi
j(t, 0.025)

∂t
, ucqmi

j(t, 0.975) =
∂qmi

j(t, 0.975)

∂t
, (17)

The 95% confidence limits for the mean annual increment:

lmqmi
j(t, 0.025) =

qmi
j(t, 0.025)

t
, umqmi

j(t, 0.975) =
qmi

j(t, 0.975)

t
, (18)

The relative increment:

rmi
j(t) =

1
mi

j(t)

∂mi
j(t)

∂t
or rmi

j|k(xk, t) =
1

mi
j|k(xk, t)

∂mi
j|k(xk, t)

∂t
, rmi

j|k,l(xk, xl , t) =
1

mi
j|k,l(xk, xl , t)

∂mi
j|k,l(xk, xl , t)

∂t
, (19)
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The growth inflection point, a, is obtained by solving the following equation:

∂2mi
j(a)

∂t2 = 0 or
∂2mi

j|k(xk, a)

∂t2 = 0,
∂2mi

j|k,l(xk, xl , a)

∂t2 = 0, (20)

where
∂2mi

j(t)

∂t2 < 0 and
∂2mi

j(t)

∂t2 > 0 are satisfied on the increasing and decreasing sides
of point a.

2.2. Study Area and Data

Pine (Pinus sylvestris), spruce (Picea abies), and silver birch (Betula pendula Roth and
Betula pubescens Ehrh.) tree stands dominate Lithuanian forests (Lithuanian Statistical
Yearbook of Forestry, 2009) and grow at the Arenosol and Podzol forest sites. All the data
were collected between 1983 and 2020 across the municipality of Kazlų Rūda in Lithuania.
The mean temperatures vary from −16.4 ◦C in winter to +22◦ in summer. Precipitation is
distributed throughout the year, although it is predominantly in the summer, averaging
approximately 680 mm a year. From 1983 to 1987, 53 permanent experimental plots were
installed in the forests of the Kazlų Rūda region [11]. Each sample plot consisted of about
0.16–0.72 ha and was remeasured several times, from 1 to 6, at 2- to 37-year intervals. In
terms of the regeneration regime, all the plots vary between being naturally regenerated
and artificially regenerated and are located in pure or mixed stands. The distribution of the
permanent experimental plots can be characterized as follows: pine forests (Pinus sylvestris),
63.8%; spruce (Picea abies), 30.2%; silver birch (Betula pendula Roth and Betula pubescens
Ehrh.), 5.8%; and others, 0.2 percent. The age of the ith tree (ranging from all trees to
the 10th) in the first measurement cycle was recorded by counting its growth rings in the
growth core (for even-aged stands, from the documented records), and the ages of the
remaining trees were obtained using the arithmetic mean. The position accuracy of the
plane coordinates was 1 dcm, and the diameter measurements were performed by rounding
to the nearest 1 mm. The height of approximately every 5th tree was measured, and the
height measurements were performed with an accuracy of approximately 1 dcm. Given
the two-level measurements, two different datasets were used to obtain the parameter
estimates: the first (48 plots; 39,437 mixed-species trees) was used to estimate the fixed-
effect parameters for the tree diameter and the potentially available area; see Equations
(1) and (2). The second (48 plots; 8604 mixed-species trees) was used to estimate the fixed-
effect parameters for the tree height (Equation (3)) to calibrate the random effects (Equation
(A2)) and to estimate the correlation matrix of the three-dimensional normal copula by
maximizing the pseudo maximum likelihood function defined by Equation (A22). The
validation set consisted of 15 plots with 5- and 15-year remeasurement cycles (a total of
2329 tree measurements), in which age, diameter, potentially available area, and height
were determined for each measured tree. First of all, a set of validation data was created
using only plots with three remeasurement cycles where the time difference between the
first and second remeasurement cycles is 5 years and that between the first and third
remeasurement cycles is 15 years. If more remeasurement cycles were performed in these
validation plots, then the remaining remeasurement cycles of the plot were directed to the
evaluation set. The summary of the measurements is presented in Table 1.

Table 1. Tree age, diameter, potentially available area, and height summary statistics for model
estimation and validation datasets *.

Species Data Number of Trees Min Max Mean St. Dev. Number of Trees Min Max Mean St. Dev.

Estimation Validation

Pine

t (year) 24,176 12.0 211.0 56.49 26.75 1531 25.0 119.0 51.88 20.73
d (cm) 24,176 0.1 61.0 19.30 10.32 1531 5.50 52.80 19.60 7.53
p (m2) 24,176 0.09 124.19 10.50 8.98 1531 1.20 46.81 9.98 6.48
h (m) 5346 0.20 37.90 17.29 9.12 1531 6.20 37.50 19.38 5.39
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Table 1. Cont.

Species Data Number of Trees Min Max Mean St. Dev. Number of Trees Min Max Mean St. Dev.

Estimation Validation

Spruce

t (year) 13,360 12.0 207.0 64.42 25.27 664 7.0 101.0 49.89 16.90
d (cm) 13,360 0.20 72.20 12.93 8.70 664 3.60 44.80 10.93 5.58
p (m2) 13,360 0.11 160.24 10.16 8.94 664 0.61 31.15 7.37 5.24
h (m) 2843 0.50 38.0 12.56 8.52 664 1.0 31.00 11.84 5.34

Birch

t (year) 1761 12.0 127.82 57,49 23.22 133 25.0 75.0 43.24 10.32
d (cm) 1761 0.90 50.0 15.17 9.42 133 5.10 35.10 16.12 6.59
p (m2) 1761 0.33 173.82 10.37 8.87 133 1.51 32.55 7.59 4.87
h (m) 388 0.50 31.90 14.85 8.43 133 7.80 31.0 18.69 5.19

All

t (year) 39,437 12.0 211.0 59.25 26.36 2329 7.0 119.0 50.81 19.35
d (cm) 39,437 0.1 72.20 16.95 10.22 2329 3.6 52.8 16.93 7.98
p (m2) 39,437 0.09 173.82 10.37 8.95 2329 0.61 46.81 9.10 6.19
h (m) 8604 0.20 38.00 15.62 9.16 2329 1.0 37.50 17.19 6.34

* t—age, d—diameter, p—potentially available area (the area of the polygon formed by the Voronoi diagram [3]),
h—tree height.

3. Results and Discussion
3.1. Parameter Estimates

The fixed-effect parameters of the joint copula-type three-dimensional growth model de-
fined by the cumulative distribution function (A4) are estimated using the pseudo maximum
likelihood procedure. In the first step, the fixed-effect parameter vectorθwas estimated separately
for diameter, the potentially available area, and the height by maximizing an approximated maxi-
mum log-likelihood function and using discrete measurements of the tree diameter (x1), the poten-
tially available area (x2), and the height (x3)

{(
xi

11, xi
21, xi

31
)
,
(
xi

12, xi
22, xi

32
)
, . . . ,

(
xi

1ni
, xi

2ni
, xi

3ni

)}
at discrete times (ages)

{
ti
1, ti

2, . . . , ti
ni

}
[9]. The measurements of all the observed trees were used

to estimate the parameters of the stochastic differential Equations (1) and (2), which determine the
growth of the tree diameter and potentially available area, while the parameters of the tree height
(Equation (3)) were estimated using a smaller part of the trees that had height measurements
(see Table 1). The correlation matrix P of the three-dimensional normal copula-type probability
density function defined by (A12) was estimated by maximizing the pseudo maximum likeli-
hood function (A22). The parameter estimates of the stochastic differential Equations (1)–(3) and
their standard errors and the parameters of the dependencies for the copula-type probability
density function are presented in Tables 2 and 3, respectively. All the parameter estimates are
significant (p < 0.05).

Table 2. Parameter estimates for mixed-effect mode of the stochastic differential Equations (1)–(3).
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The fixed-effect parameters of the joint copula-type three-dimensional growth model 
defined by the cumulative distribution function (A4) are estimated using the pseudo max-
imum likelihood procedure. In the first step, the fixed-effect parameter vector Ɵθ was es-
timated separately for diameter, the potentially available area, and the height by maxim-
izing an approximated maximum log-likelihood function and using discrete measure-
ments of the tree diameter (x1), the potentially available area (x2), and the height (x3) 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , … , 𝑥 , 𝑥 , 𝑥  at discrete times (ages) 𝑡 , 𝑡 , … , 𝑡  [9]. 
The measurements of all the observed trees were used to estimate the parameters of the 
stochastic differential Equations (1) and (2), which determine the growth of the tree diam-
eter and potentially available area, while the parameters of the tree height (Equation (3)) 
were estimated using a smaller part of the trees that had height measurements (see Table 
1). The correlation matrix P of the three-dimensional normal copula-type probability den-
sity function defined by (A12) was estimated by maximizing the pseudo maximum likeli-
hood function (A22). The parameter estimates of the stochastic differential Equations (1)–
(3) and their standard errors and the parameters of the dependencies for the copula-type 
probability density function are presented in Tables 2 and 3, respectively. All the param-
eter estimates are significant (p < 0.05). 

Table 2. Parameter estimates for mixed-effect mode of the stochastic differential Equations (1)–(3). 

Species  Α Β 
ɣ 
 σ δ τj 

 Diameter 
Pine  0.0878 0.0169 −23.5098 0.0006 - 0.0162

Spruce  0.0926 0.0291 −1.5524 0.0102 - 0.0146
Birch  0.2725 0.1060 −0.2137 0.0337 - 0.0679

σ δ τj

Diameter

Pine 0.0878 0.0169 −23.5098 0.0006 - 0.0162
Spruce 0.0926 0.0291 −1.5524 0.0102 - 0.0146
Birch 0.2725 0.1060 −0.2137 0.0337 - 0.0679
All 0.0850 0.0226 −7.1108 0.0042 - 0.0069

Potentially available area

Pine 0.0538 0.0157 −1.8435 0.0071 1.5478 0.0076
Spruce 0.0696 0.0230 −0.7630 0.0160 1.7467 0.0125
Birch 0.0669 0.0207 −2.3395 0.0088 1.6375 0.0099
All 0.0617 0.0186 −1.3260 0.0102 1.6151 0.0094

Height

Pine 0.0903 0.0213 −36.7486 0.0001 - 0.0021
Spruce 0.0914 0.0264 −2.1743 0.0062 - 0.0085
Birch 0.2025 0.0577 −12.0370 0.0032 - 0.0147
All 0.0827 0.0213 −13.3459 0.0013 - 0.0043
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Table 3. Parameter estimates for copula probability density function (19).

Species ρ12 ρ13 ρ23

Pine 0.1476 0.6964 0.0446
Spruce 0.2083 0.8786 0.1512
Birch 0.1612 0.7854 0.1261
All 0.1513 0.8528 0.0877

3.2. Analysis of Tree Growth

The foundational aspects of the stochastic differential equation framework of tree
growth in a given forest stand can be viewed through the diffusion processes, establishing
the one-dimensional probability density functions of the corresponding tree size component
and their dependency structure. The functions defined in Equation (7) represent the mean
cumulative growth in diameter, the potentially available area, and the height achieved
by a tree of a given species at any age in the particular forest stand with growth affecting
factors such as artificial thinning, site conditions, changes in temperature, precipitation, or
atmospheric CO2, which are included in the form of random effects. Environmental change
has a decisive effect on the growth of the diameter, height, and density (potentially available
area), and all these variables also affect each other in the complex form of feedback.

The functions defined in Equations (13) and (14) represent the mean cumulative growth
in diameter, the potentially available area, and the height reached by trees of a given species,
depending on the values of age and other tree size components in a given forest stand. In
this study, we examined in detail the interaction of the components of tree size using the
fixed-effect parameter mode (random effects set to zero) (shown in Figure 2), representing
three tree species: pine, spruce, and birch. As shown in Figure 2(p1,p2,s1,s2,b1,b2), tree
diameter growth is marginally affected by tree potentially available area, but in contrast,
diameter growth is significantly affected by height changes. Changes in the height of all
tree species are strongly affected by changes in diameter (see Figure 2(p5,s5,b5)), but the
potentially available area has a small influence on changes in height (see Figure 2(p6,s6,b6)).
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The forestry literature has established that the growth curves of fast-growing forests
do not have an inflection point (apparently due to sustained growth) and express a convex
shape [26]. Equation (7) has a sigmoidal or convex form and asymptotes. Unfortunately,
the growth equation (Equation (7)) does not necessarily have an inflection point, and due to
accelerated growth, the inflection point disappears and the growth process takes the form
of a convex curve. Forest statisticians have frequently used sigmoidal functions such as
logistic, Gompertz, Richards, etc. [27,28]. Graphically, the inflection point can be represented
by plotting the second derivative of the diameter, potentially available area, and height growth
(Equation (7) (growth acceleration)). The point at which the acceleration curve crosses the
abscissa axis indicates the inflection point. Figure 3 illustrates that the growth acceleration
curves of the tree diameter, potentially occupied area, and height cross the x-axis when both
the fixed- and the mixed-effect modes are used, and the random effects are calibrated using
Equation (A2) for all the plots in the validation dataset (among them, 15 plots have pine
species trees, 9 have spruce species trees, and 13 have birch species trees).

The forms of the acceleration versus the time equations for both the fixed- and the
mixed-effect modes in Figure 3 are in perfect agreement. From the Figure 3(pf1,pm3), it can
be seen that the acceleration in the growth of the diameter and height of the pine trees is
negative everywhere, meaning that the growth curve is convex and that an inflection point
does not exist. The remaining two Figure 3(pm1,pf1), represent the growth acceleration
curves of diameter (mixed effect) and height (fixed effect), respectively, of the pine species,
showing that the inflection point occurs at a young age and not necessarily in all plots. It
would be reasonable to assert that the soils and other environmental conditions in the Kazlų
Rūda district are the most suitable for the growth of pine trees. Figure 3(sf1,sf3,sm1,sm3),
for spruce trees, show that the diameter and height growth curves have a single inflection
point. Additionally, the diameter and height growth acceleration curves for the spruce
trees show that there exist two points at which the third derivative of the growth curves
is equal to zero; these are referred to as the maximum acceleration point and maximum
deceleration point. The maximum acceleration point occurs at a very young age. The
diameter growth acceleration curves for the birch trees in Figure 3(pf1,pm1) show that
there is a single inflection point, and maximum acceleration and deceleration points. For
the birch trees, the height growth acceleration curves presented in Figure 3(pf3,pm3) show
that there is no tipping point, and the height growth curve is influenced only by the point
of maximum deceleration. The growth acceleration curves of the potentially available area
for all the species of trees shown in Figure 3(pf2,sf2,bf2,pm2,sm2,bm2) show that there is
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an inflection point, and the height growth curve is influenced by the points of maximum
acceleration and deceleration.

Figure 3. Acceleration of tree diameter, potentially available area, and height growth for both the fixed-
and the mixed-effect modes via age: (pf1–pf3,sf1–sf3,bf1–bf3) fixed-effect mode; (pm1–pm3,sm1–
sm3,bm1–bm3) mixed-effect mode; (pf1–pf3,pm1–pm3) pine trees; (sf1–sf3,sm1–sm3) spruce trees;
(bf1–bf3,bm1–bm3) birch trees; first column—diameter; second column—potentially available area;
third column—height.

The relationships between the current and mean annual increments of the tree diameter
and the height against the age of the forest stand are illustrated in Figure 4. As seen in
Figure 4, the age of a stand exerts a strong influence on the current and mean annual
diameter and height increments. From Figure 4, it can be seen that the peaks of the mean
annual diameter and height increments are reached even later than those of the current
annual increments. The highest current annual increment in tree diameter is reached at
about 20–30 years for pine trees (see Figure 4(pf1,pm1)), 30–40 years for spruce trees (see



Forests 2023, 14, 12 11 of 23

Figure 4(sf1,sm1)), and 10–20 years for birch trees (see Figure 4(bf1,bm1)). The highest
current annual increment in tree height occurs until the age of 10 years for pine trees (see
Figure 4(pf2,pm2)) 30–40 years for spruce trees (see Figure 4(sf2,sm2)), and until the age of
10 years for birch trees (see Figure 4(bf2,bm2)), respectively. The current annual diameter
increment becomes equal to the mean annual increment at 30–50 years of age for pine trees
(see Figure 4(pf1,pm1)), 50–70 years of age for spruce trees (see Figure 4(sf1,sm1)), and
20–30 years of age for birch trees (see Figure 4(bf1,bm1)). The increments in diameter and
height for birch trees show the highest values for the current annual increment at 1.2 cm
(see Figure 4(bf1,bm1)) and 89 cm (see Figure 4(bf2,bm2)), respectively, and at the peak
ages of 20 years and 10 years, respectively.
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Figure 4. Current and mean annual increments of tree diameter and height growth for
both the fixed- and the mixed-effect modes via age: (pf1,pf2,sf1,sf2,bf1,bf2) fixed-effect mode;
(pm1,pm2,sm1,sm2,bm1,bm2) mixed-effect mode; (pf1,pf2,pm1,pm2) pine trees; (sf1,sf2,sm1,sm2)
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first stand; blue—second stand; red—third stand; solid line—current annual increment; dotted
line—mean annual increments.

The age at which mean annual increment reaches its peak can be obtained by modify-
ing the relative increment (Equation (19)) by multiplying it by time, t; then, the peak point
can be visualized by the point at which this modified curve crosses the line y = 1. Figure 5
visualizes the curve of the relative increment defined by Equation (19) multiplied by time, t,
together with the signal line y = 1 for the mixed-effect mode. As can be seen from Figure 5,
trees of the pine and birch species reach their peaks of mean annual increment in diameter
and height at almost the same age in all the plots in the validation set (see Figure 4(bm2)
and Figure 5(pm1,bm1,pm2)). Thus, for the pine trees, the peak of mean annual increment
in diameter is reached at approximately 50 years (see Figure 4(pm1)), and in height at
approximately 40 years (see Figure 4(pm2)), while for the birch trees, the peak of the mean
annual increment in diameter is reached at approximately 27 years (see Figure 4(bm1)),
and in height at approximately 30 years (see Figure 4(bm2)). For the spruce trees, the peak
of mean annual increment in diameter and height in the investigated plots had values in
the intervals of 60–70 and 50–65 (see Figure 4(sm1,sm2)), respectively. The differences in
the peaks of the mean annual increment between the plots can be explained by the fact
that the conditions of the growing region are unfavorable for the growth of spruce trees,
as demonstrated previously in Figures 2 and 4. It should be noted that trees of all species
reach their peak mean annual increment in height earlier than in diameter.

It makes sense to link the current annual increment in the tree diameter or height
growth (see Equation (15)) to the growth of the diameter or height (see Equations (7),
(13) and (14)). Figure 6 shows the linkage of the tree diameter or height with the current
increment in the diameter and height growth. Figure 6(p1,s1,b1) show that the current
increment in the pine tree diameter reaches its growth peak when the tree diameter reaches
10 cm, and the diameters of the spruce and birch trees reach their current increment peaks
when the tree diameter is in the range of 5–15 cm. Likewise, from Figure 6(p2,s2,b2), it can
be observed that the current height increments of the pine and spruce trees reach their peak
when the tree height reaches 5 m, and the height of the birch tree reaches its current height
increment peak when the height of the tree is in the range of 5–15 m.
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In this study, using the stochastic differential Equations (1)–(3) and the three-dimensional
copula-type distribution function, the three curves for diameter, the potentially available
area, and the height were newly derived; for the first curve, the independent variable was
only time (see Equation (7)); for the second curve, the independent variables were time and
another tree size variable (see Equation (13)); finally, for the third curve, the independent
variables were time and the other two remaining tree size variables (see Equation (14)). The
goodness of fit of the three presented curves discussed above for modeling the tree diameter,
potentially available area, and height is evaluated using statistical measures, and the results
are presented in Table 4 using a validation dataset. The statistical measures presented
in Table 4 show that the proposed models best corresponded to the observed validation
dataset of the pine trees in uneven-aged mixed-species stands. The predictions of the pine
tree heights showed stable and high statistical measures; for example, the mean bias did
not exceed 0.02 m (−1.03%); the absolute mean bias did not exceed 1.36 m (7.52%); the
root mean square error did not exceed 1.85 m (9.57%); and the coefficient of determination
reached to as high as 88.2%. The pine tree diameter predictions showed slightly lower
statistical measures, and the tree potentially occupied area predictions showed a lower
performance on the statistical measures compared to the tree height predictions. It should be
noted that the predictions of the diameter, height, and potentially available area for spruce
trees generated the lowest statistical measures among the tree species. Additionally, it can
be stated that the statistical measures of the predictions of the potentially available area
were the lowest compared to the predictions of the height and diameter, and the additional
variable diameter or height increased the statistical measures slightly. Furthermore, with
the introduction of an additional independent variable, the tree potentially available area,
into the tree height or diameter curve, the increase in the statistical measures is negligible,
and in contrast, the inclusion of the tree diameter and height in the relationship of the
potentially available area does not show a significant effect.
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Table 5 summarizes the statistical measures of the stand mean diameter, potentially
available area, and height curves (7), (13), and (14). All of the mean diameter, potentially
available area, and height models of a stand used, as defined by Equations (7), (13), and
(14), produced predictions that showed a significantly higher level of statistical measures
compared to the accuracy of individual-tree predictions assessed by the same statistical
measures and presented in Table 4. The best statistical measures were demonstrated by
model (14), defining the mean height of the pine trees in the stand as a function of the
average age of the stand, the average diameter of the pine trees in the stand, and the average
potentially available area of the pine trees in the stand. The predictions for the mean height
of the pine trees in the stand demonstrated that the statistical measure for mean bias did
not exceed −0.17 m (−0.86%), absolute mean bias did not exceed 0.39 m (1.83%), root mean
square error did not exceed 0.58 m (2.72%), and the coefficient of determination reached as
high as 98.2%.
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Table 4. Results of statistical measures * and p-values of Student’s t-test for the individual-tree
predictions using the mixed-effect mode.

Curve
(Variables)

B
(%)

AB
(%)

RMSE
(%) R2 T

p-Value
Curve

(Variables)
B

(%)
AB
(%)

RMSE
(%) R2 T

p-Value

Pine Tree Diameter Pine Tree Height

Equation
(7)
(t)

−0.0523
(−6.76)

3.7676
(21.31)

4.8276
(24.63) 0.5891 0.6716

Equation
(7)
(t)

0.0094
(−2.28)

2.0417
(11.65)

2.7259
(14.06) 0.7441 0.8921

Equation
(13)

(t, p)

−0.0525
(−6.72)

3.7081
(20.99)

4.8127
(24.56) 0.5916 0.6693

Equation
(13)

(t, d)

0.0201
(−1.07)

1.3732
(7.59)

1.8684
(9.64) 0.8798 0.6733

Equation
(13)

(t, h)

−0.0586
(−3.08)

2.4951
(13.16)

3.3515
(17.10) 0.8019 0.4941

Equation
(13)

(t, p)

0.0081
(−2.30)

2.0428
(11.67)

2.7290
(14.08) 0.7435 0.9040

Equation
(13)

(t, p, h)

−0.0598
(−3.07)

2.4439
(12.84)

3.3119
(16.90) 0.8066 0.4866

Equation
(13)

(t, d, p)

0.0214
(−1.03)

1.3647
(7.52)

1.8553
(9.57) 0.8815 0.6508

Pine Tree Potentially Available Area Spruce Tree Diameter

Equation
(7)
(t)

−0.1330
(−27.75)

3.6345
(49.64)

4.8685
(48.79) 0.4358 0.2852

Equation
(7)
(t)

−0.7109
(−14.84)

3.1111
(32.20)

4.3715
(39.97) 0.3702 0.0001

Equation
(13)

(t, d)

−0.1270
(−27.22)

3.6019
(49.05)

4.8270
(48.37) 0.4454 0.3034

Equation
(13)

(t, p)

−0.5898
(−13.70)

2.8473
(29.85)

4.0189
(36.75) 0.4702 0.0002

Equation
(13)

(t, h)

−0.0864
(−36.59)

3.8832
(60.09)

5.9846
(63.67) 0.4445 0.1800

Equation
(13)

(t, h)

−0.2101
(−3.12)

1.4505
(14.29)

2.1234
(19.42) 0.8538 0.0110

Equation
(13)

(t, d, h)

−0.0775
(−35.72)

3.8191
(59.12)

5.9044
(62.82) 0.4593 0.2229

Equation
(13)

(t, p, h)

−0.2032
(−3.05)

1.3917
(13.77)

2.0059
(18.34) 0.8695 0.0092

Spruce Tree Height Spruce Tree Potentially Available Area

Equation
(7)
(t)

−0.4554
(−13.65)

3.0009
(31.30)

4.0033
(33.82) 0.4309 0.0035

Equation
(7)
(t)

−0.0902
(−50.87)

3.6998
(5.0414)

5.0114
(68.39) 0.0737 0.6448

Equation
(13)

(t, d)

0.0029
(−4.52)

1.4286
(15.20)

1.8768
(15.85) 0.8765 0.9682

Equation
(13)

(t, d)

−0.0370
(−47.16)

3.5327
(73.93)

4.7696
(64.70) 0.1711 0.8416

Equation
(13)

(t, p)

−0.3581
(−13.11)

2.8746
(30.40)

3.8185
(32.26) 0.4844 0.0160

Equation
(13)

(t, h)

−0.0558
(−49.12)

3.6247
(76.41)

4.9000
(66.47) 0.1251 0.7691

Equation
(13)

(t, d, p)

0.0024
(−4.49)

1.4145
(15.07)

1.8656
(15.76) 0.8780 0.9732

Equation
(13)

(t, d, h)

−0.0366
(−46.64)

3.5100
(73.27)

4.7422
(64.33) 0.1806 0.8425

Birch Tree Diameter Birch Tree Height

Equation
(7)
(t)

−0.1782
(−13.61)

3.91.9
(31.24)

4.8552
(30.11) 0.4568 0.6739

Equation
(7)
(t)

−0.0788
(−5.45)

2.7530
(17.44)

3.5389
(18.93) 0.5293 0.7984

Equation
(13)

(t, p)

−0.1535
(−13.27)

3.8440
(30.73)

4.8083
(29.79) 0.4683 0.7140

Equation
(13)

(t, d)

−0.1668
(−1.93)

1.3747
(7.92)

1.7571
(9.40) 0.8830 0.2772

Equation
(13)

(t, h)

0.0969
(−3.92)

2.1346
(14.93)

2.7308
(16.93) 0.8282 0.6839

Equation
(13)

(t, p)

−0.0735
(−5.42)

2.7269
(17.33)

3.5634
(19.06) 0.5228 0.8129

Equation
(13)

(t, p, h)

0.1013
(−3.87)

2.1098
(14.76)

2.7082
(16.79) 0.8310 0.6679

Equation
(13)

(t, d, p)

−0.1668
(−1.93)

1.3745
(7.92)

1.7569
(9.40) 0.8830 0.2771

* Statistical measures: the mean bias, B (the percentage mean bias, %B); the absolute mean bias, AB (the percentage
absolute mean bias, %AB); the root mean square error, RMSE (the percentage root mean square error, %RMSE);
and the coefficient of determination, R2, defined by Equations (21)–(24).



Forests 2023, 14, 12 16 of 23

Table 5. Results of statistical measures and p-values of Student’s t-test for whole-stand predictions
using the mixed-effect model.

Curve
(Variables)

B
(%)

AB
(%)

RMSE
(%) R2 T

p-Value
Curve

(Variables)
B

(%)
AB
(%)

RMSE
(%) R2 T

p-Value

Pine Tree Diameter Pine Tree Height

Equation
(7)
(t)

0.0137
(0.02)

0.9450
(4.23)

1.4187
(6.38) 0.9318 0.9489

Equation
(7)
(t)

−0.1262
(−0.52)

0.5926
(2.76)

0.8655
(4.08) 0.9620 0.3385

Equation
(13)

(t, p)

−0.1319
(−0.63)

0.9479
(4.18)

1.3652
(6.14) 0.9363 0.5247

Equation
(13)

(t, d)

−0.2203
(−1.02)

0.3980
(1.85)

0.5834
(2.75) 0.9807 0.0160

Equation
(13)

(t, h)

0.2499
(1.00)

0.5783
(2.61)

0.8827
(3.97) 0.9715 0.0669

Equation
(13)

(t, p)

−0.1513
(−0.64)

0.5889
(2.73)

0.8621
(4.07) 0.9620 0.2505

Equation
(13)

(t, p, h)

0.1306
(0.46)

0.5367
(2.47)

0.8347
(3.75) 0. 9758 0.3051

Equation
(13)

(t, d, p)

−0.1879
(−0.86)

0.3918
(1.83)

0.5776
(2.72) 0.9817 0.0364

Pine Tree Potentially Available Area Spruce Tree Diameter

Equation
(7)
(t)

−0.1371
(−1.43)

0.8767
(8.01)

1.2111
(11.03) 0.9265 0.4567

Equation
(7)
(t)

−0.7202
(−5.74)

1.1156
(9.56)

1.1587
(9.20) 0.8837 0.0047

Equation
(13)

(t, d)

−0.1622
(−1.62)

0.8050
(7.43)

1.1211
(10.21) 0.9365 0.3423

Equation
(13)

(t, p)

−0.9502
(−7.81)

1.3568
(11.19)

1.2785
(10.15) 0.8415 0.0010

Equation
(13)

(t, h)

−0.1294
(−1.36)

0.8629
(7.91)

1.1905
(10.85) 0.9290 0.4745

Equation
(13)

(t, h)

−0.0306
(−0.14)

0.8023
(6.40)

1.0270
(8.15) 0.9340 0.8713

Equation
(13)

(t, d, h)

−0.1906
(−35.72)

0.7973
(7.32)

1.1201
(10.20) 0.9361 0.2650

Equation
(13)

(t, p, h)

−0.1389
(−1.02) 0.8442(6.61) 1.0505

(8.34) 0.9299 0.5145

Spruce Tree Height Spruce Tree Potentially Available Area

Equation
(7)
(t)

−0.6456
(−5.18)

1.0927
(8.50)

1.4656
(11.56) 0.7857 0.0371

Equation
(7)
(t)

0.1726
(−1.81)

1.3916
(13.67)

1.9892
(19.75) 0.8789 0.6689

Equation
(13)

(t, d)

−0.3298
(−3.01)

0.7273
(5.79)

0.9914
(7.82) 0.9089 0.1086

Equation
(13)

(t, d)

0.1667
(−2.07)

1.3726
(13.52)

1.9766
(19.63) 0.8803 0.6767

Equation
(13)

(t, p)

−0.8052
(−9.57)

1.1729
(9.19)

1.5147
(11.94) 0.7541 0.0135

Equation
(13)

(t, h)

0.1931
(−1.77)

1.4267
(14.02)

2.0112
(19.98) 0.8758 0.6353

Equation
(13)

(t, d, p)

−0.2877
(−2.66)

0.7246
(5.73)

0.9878
(7.79) 0.9116 0.1577

Equation
(13)

(t, d, h)

0.1511
(−2.24)

1.3364
(13.15)

1.9744
(19.61) 0.8807 0.7051

Birch Tree Diameter Birch Tree Height

Equation
(7)
(t)

0.3437
(1.72)

1.1631
(6.86)

1.4458
(8.03) 0.8958 0.2556

Equation
(7)
(t)

0.1826
(0.61)

0.8385
(4.53)

0.9437
(4.90) 0.9412 0.3526

Equation
(13)

(t, p)

0.0591
(0.03)

1.2562
(7.27)

1.4959
(8.31) 0.8943 0.8481

Equation
(13)

(t, d)

−0.5721
(−3.38)

0.7000
(3.94)

0.6981
(3.63) 0.9476 0.0004

Equation
(13)

(t, h)

0.5554
(3.24)

0.9046
(5.14)

1.0379
(5.77) 0.9344 0.0151

Equation
(13)

(t, p)

0.0041
(−0.42)

0.8570
(4.67)

0.9856
(5.12) 0.9382 0.9836

Equation
(13)

(t, p, h)

0.4326
(2.54)

0.8625
(4.87)

1.0415
(5.78) 0.9400 0.0530

Equation
(13)

(t, d, p)

−0.5783
(−3.37)

0.6992
(3.94)

0.6980
(3.63) 0.9477 0.0001

3.3. Evolution of the Number of Trees

Environmental resources can only satisfy a limited number of trees in a stand; there-
fore, the number of trees gradually decreases with increasing tree diameter and height,
depending on the intensity of interspecific competition. To model the number of trees per
hectare during the development of a stand, the link between the number of trees per hectare
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and the mean potentially available area, diameter, and height was determined using the
mean trend Equations (7), (13), and (14), as follows:

Ni
(

t
∣∣∣tin, x2 in, θ̂, φ̂i

p

)
=
∫ +∞
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𝑣 𝑡 𝜎 , (5)

𝑓 𝑥 , 𝑡 Ɵ, 𝜙  ɣ 𝑒𝑥𝑝 ɣ
. (6)

p

ki
s
10, 000.

xp
f i
p

(
xp, t

∣∣∣tin, x2 in, θ̂, φ̂i
p

)
dxp, i = 1, 2, . . . , K, (25)

Ni
(

t, xd

∣∣∣tin, xd in, xp in, θ̂, φ̂i
d, φ̂i

p, ρ̂dp

)
=
∫ +∞
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where K is the number of observed plots in the validation dataset; kl
sis the part of the

stand occupied by the tree species concerned (kl
all = 1, 0 ≤ kl

pine ≤ 1, 0 ≤ kl
spruce ≤ 1,

0 ≤ kl
birch ≤ 1); the estimates of the fixed-effect parameters θ̂ are taken from Table 2;

the estimates of the dependency parameters P̂ , ρ̂dp, and ρ̂ph are taken from Table 3; the

random effects φ̂i
d, φ̂i

p, φ̂i
h are calibrated by Equation (A2) using the validation dataset; for

the prediction mode, tin = 4, xd in = 0.1, xp in = δ̂ , xh in = 0.4 (where δ̂ was taken from
Table 2); and for the forecast mode, tin, xd in, xp in , xh in are the average values of the first
cycle measurements of age, diameter, potentially available area, and height. The evolution
of the number of trees per hectare of a particular stand against age for all species and
pine, spruce, and birch trees and four different stands is shown in Figure 7. The results
of the statistical measures of the number of trees per hectare predictions are presented
in Table 6. The statistical measures of the number of trees per hectare for the forecast
mode are presented in Table 7. Figure 7 shows that the model curve of the number of trees
per hectare defined by Equation (25) corresponds well to the measurement data from the
validation dataset. The best fitness of the predictions of the number of trees per hectare
was confirmed by all the statistical measures for the trees of the pine species, while the
aforementioned statistical measures were the worst for the trees of the spruce species.
Tables 6 and 7 demonstrate the higher goodness-of-fit statistical measures compared to
those achieved using the generalized algebraic difference approach, which is the one used
traditionally [29]. The statistical measures computed in Tables 6 and 7 for the number of
trees per hectare models, with the additional explanatory variables for diameter and height,
indicated a slight improvement in prediction accuracy, with a lower performance of the first
model, as expected. Therefore, as demonstrated in Tables 6 and 7, the maximum impact on
the tree density dynamics demonstrated the tree potentially available area and age.

The number of trees per hectare varies with the mean diameter, height, and volume
of the stand. Stands of small mean diameter, height, or volume have a large number of
trees, while stands of large mean diameter, height, or volume have relatively few [30]. The
relationship between the mean diameter, height, and volume (increasing over age) and
the number of live trees per hectare (decreasing over age) can been described by means
of a “limiting relationship” [31]. The intensity of competition between trees varies with
the initial number of trees per hectare, as shown in Figure 7. The process of self-thinning
(decay) in the different stands shown in Figure 7 indicates that the stands formed with
different initial densities do not thin to the same final number of trees per hectare (see
Figure 7a–d). The process of the current rate of the decay of the number of trees per hectare,
expressed as the ratio of the current annual decay (Equation (15)) to the number of trees
per hectare (Equation (25)), is shown in Figure 8. From Figure 8a–d, we can state that the
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decay process drops to 1% for the pine species trees at approximately 100 years; for the
spruce species trees at 80 years; and finally at 70 years for the birch species trees. It should
be noted that the soil characteristics of this region are not favorable for spruce trees.

Forests 2022, 13, x FOR PEER REVIEW 18 of 25 
 

 

spruce, and birch trees and four different stands is shown in Figure 7. The results of the 
statistical measures of the number of trees per hectare predictions are presented in Table 
6. The statistical measures of the number of trees per hectare for the forecast mode are 
presented in Table 7. Figure 7 shows that the model curve of the number of trees per hec-
tare defined by Equation (25) corresponds well to the measurement data from the valida-
tion dataset. The best fitness of the predictions of the number of trees per hectare was 
confirmed by all the statistical measures for the trees of the pine species, while the afore-
mentioned statistical measures were the worst for the trees of the spruce species. Tables 6 
and 7 demonstrate the higher goodness-of-fit statistical measures compared to those 
achieved using the generalized algebraic difference approach, which is the one used tra-
ditionally [29]. The statistical measures computed in Tables 6 and 7 for the number of trees 
per hectare models, with the additional explanatory variables for diameter and height, 
indicated a slight improvement in prediction accuracy, with a lower performance of the 
first model, as expected. Therefore, as demonstrated in Tables 6 and 7, the maximum im-
pact on the tree density dynamics demonstrated the tree potentially available area and 
age. 

The number of trees per hectare varies with the mean diameter, height, and volume 
of the stand. Stands of small mean diameter, height, or volume have a large number of 
trees, while stands of large mean diameter, height, or volume have relatively few [30]. The 
relationship between the mean diameter, height, and volume (increasing over age) and 
the number of live trees per hectare (decreasing over age) can been described by means of 
a “limiting relationship” [31]. The intensity of competition between trees varies with the 
initial number of trees per hectare, as shown in Figure 7. The process of self-thinning (de-
cay) in the different stands shown in Figure 7 indicates that the stands formed with dif-
ferent initial densities do not thin to the same final number of trees per hectare (see Figures 
7-a, 7-b, 7-c and 7-d). The process of the current rate of the decay of the number of trees 
per hectare, expressed as the ratio of the current annual decay (Equation (15)) to the num-
ber of trees per hectare (Equation (25)), is shown in Figure 8. From Figures 8-a, 8-b, 8-c 
and 8-d, we can state that the decay process drops to 1% for the pine species trees at ap-
proximately 100 years; for the spruce species trees at 80 years; and finally at 70 years for 
the birch species trees. It should be noted that the soil characteristics of this region are not 
favorable for spruce trees. 

 
Figure 7. Evolution of the number of trees per hectare for three randomly selected stands: black—
first stand; blue—second stand; red—third stand; (a) all trees; (b) pine trees (𝑘𝑘𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒1 = 0.97 in black, 
𝑘𝑘𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒2 = 0.25 in blue; 𝑘𝑘𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒3 = 0.73 in red); (c) spruce trees (𝑘𝑘𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒1 = 0.05 in black, 𝑘𝑘𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒2 = 0.72 

Figure 7. Evolution of the number of trees per hectare for three randomly selected stands: black—
first stand; blue—second stand; red—third stand; (a) all trees; (b) pine trees (k1

pine = 0.97 in black,

k2
pine = 0.25 in blue; k3

pine = 0.73 in red); (c) spruce trees (k1
spruce = 0.05 in black, k2

spruce = 0.72 in blue;

k3
spruce = 0.31 in red); (d) birch tree (k1

birch = 0.22 in black, k2
birch = 0.16 in blue; k3

birch = 0.05 in red).

Table 6. Results of statistical measures and p-values of Student’s t-test for predictions of the number
of trees per hectare using the mixed-effect mode.

Curve
(Variables)

B
(%)

AB
(%)

RMSE
(%) R2 T

p-Value
Curve

(Variables)
B

(%)
AB
(%)

RMSE
(%) R2 T

p-Value

Number of All Trees per ha Number of Pine Trees per ha

Equation
(25)
(t)

25.21
(2.48)

83.19
(7.78)

103.01
(9.09) 0.9423 0.1116

Equation
(25)
(t)

25.40
(4.97)

65.95
(9.80)

84.40
(11.80) 0.9468 0.0521

Equation
(26)

(t, d)

37.91
(3.42)

80.13
(7.48)

94.71
(8.36) 0.9466 0.0110

Equation
(26)

(t, d)

30.50
(5.50)

66.09
(9.81)

80.97
(11.32) 0.9487 0.0163

Equation
(27)

(t, h)

29.56
(2.75)

81.77
(7.65)

99.30
(8.76) 0.9450 0.0545

Equation
(27)

(t, h)

26.66
(5.07)

66.04
(9.82)

83.15
(11.62) 0.9477 0.0391

Equation
(28)

(t, d, h)

44.49
(3.99)

81.81
(7.59)

94.53
(8.34)

0.
9440 0.0032

Equation
(28)

(t, d, h)

32.89
(5.88)

67.03
(9.94)

81.76
(11.43) 0.9468 0.0106

Number of Spruce Trees per ha Number of Birch Trees per ha

Equation
(25)
(t)

−25.09
(−7.19)

69.48
(14.45)

108.44
(19.03) 0.9367 0.2581

Equation
(25)
(t)

1.50
(−5.47)

17.22
(18.27)

22.27
(15.80) 0.9684 0.7437

Equation
(26)

(t, d)

−22.97
(−6.69)

61.56
(13.31)

94.47
(16.58) 0.9517 0.2353

Equation
(26)

(t, d)

4.46
(−3.58)

18.06
(17.94)

23.59
(16.74) 0.9634 0.3635

Equation
(27)

(t, h)

−25.57
(−7.16)

65.93
(13.95)

99.81
(17.52) 0.9458 0.2118

Equation
(27)

(t, h)

2.17
(−4.89)

17.10
(18.0)

22.25
(15.79) 0.9683 0.6369

Equation
(28)

(t, d, h)

−21.39
(−6.49)

62.38
(13.35)

95.09
(16.69) 0.9515 0.2714

Equation
(28)

(t, d, h)

4.47
(−3.57)

18.07
(17.94)

23.60
(16.75) 0.9634 0.3624
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Table 7. Results of statistical measures and p-values of Student’s t-test for forecasts of the number of
trees per hectare using the mixed-effect mode and Equation (25).

Curve
(Variables)

B
(%)

AB
(%)

RMSE
(%) R2 T

p-Value
Curve

(Variables)
B

(%)
AB
(%)

RMSE
(%) R2 T

p-Value

5-Year Forecast Period 15-Year Forecast Period

Equation
(25)
(t)

25.21
(2.48)

83.19
(7.78)

103.01
(9.09) 0.9423 0.1116

Equation
(25)
(t)

25.40
(4.97)

65.95
(9.80)

84.40
(11.80) 0.9468 0.0521

Equation
(26)

(t, d)

37.91
(3.42)

80.13
(7.48)

94.71
(8.36) 0.9466 0.0110

Equation
(26)

(t, d)

30.50
(5.50)

66.09
(9.81)

80.97
(11.32) 0.9487 0.0163

Equation
(27)

(t, h)

29.56
(2.75)

81.77
(7.65)

99.30
(8.76) 0.9450 0.0545

Equation
(27)

(t, h)

26.66
(5.07)

66.04
(9.82)

83.15
(11.62) 0.9477 0.0391

Equation
(28)

(t, d, h)

44.49
(3.99)

81.81
(7.59)

94.53
(8.34)

0.
9440 0.0032

Equation
(28)

(t, d, h)

32.89
(5.88)

67.03
(9.94)

81.76
(11.43) 0.9468 0.0106
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4. Conclusions 
Forest system data are characterized by important features such as dynamism, un-

certainty, stochasticity, deviation of variables from the normal distribution, multicolline-
arity, and false correlations, which complicate the modeling and prediction of forest sys-
tems. Generally, forestry researchers treat probabilistic modeling as the mathematical 
study of an observed random variable, such as tree diameter, height, etc. The theory of 
stochastic processes enables the description of the evolution of random variables with re-
spect to time, which plays an important role in the study of various growth processes in a 
forest stand. Stochastic processes, in a sense, could be referred to as the dynamic part of 
probability theory. Our previous works used the multi-dimensional stochastic process 
paradigm, where for parameter estimates a lot of computing resources are consumed. 
Linking one-dimensional stochastic processes according to the copula function reduced 
the volume of computer calculations and made it possible to analyze the growth processes 
of various trees, stands and their connections in the form of nonlinear equations. 
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Figure 8. Evolution of the relative annual decay process of the number of trees per hectare for
three randomly selected stands: black—first stand; blue—second stand; red—third stand; (a) all
trees; (b) pine trees (k1

pine = 0.97 in black, k2
pine = 0.25 in blue; k3

pine = 0.73 in red); (c) spruce trees

(k1
spruce = 0.05 in black, k2

spruce = 0.72 in blue; k3
spruce = 0.31 in red); (d) birch tree (k1

birch = 0.22 in
black, k2

birch = 0.16 in blue; k3
birch = 0.05 in red).

4. Conclusions

Forest system data are characterized by important features such as dynamism, uncer-
tainty, stochasticity, deviation of variables from the normal distribution, multicollinearity,
and false correlations, which complicate the modeling and prediction of forest systems.
Generally, forestry researchers treat probabilistic modeling as the mathematical study of
an observed random variable, such as tree diameter, height, etc. The theory of stochastic
processes enables the description of the evolution of random variables with respect to time,
which plays an important role in the study of various growth processes in a forest stand.
Stochastic processes, in a sense, could be referred to as the dynamic part of probability
theory. Our previous works used the multi-dimensional stochastic process paradigm,
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where for parameter estimates a lot of computing resources are consumed. Linking one-
dimensional stochastic processes according to the copula function reduced the volume of
computer calculations and made it possible to analyze the growth processes of various
trees, stands and their connections in the form of nonlinear equations.
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Appendix A

Let F̂i
j
(

xj, t
)
, j = d, p, h (diameter, potentially available area, height), and i = 1, . . . , K

(where K is the number of the plots from the validation dataset) denote the cumulative
distribution function of the Gompertz-type diffusion processes, defined by Equations
(1)–(3), which take the following forms:

F̂i
j
(

xj, t
)
=
∫ +∞

̂
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where M is the number of observed plots; 𝛼 , 𝛼 , 𝛼  and 𝛽 , 𝛽 , 𝛽  are the birth and death 
rate fixed-effect parameters (𝛼  > 0, 𝛽  > 0, j = d, p, h); 𝜎 , 𝜎 , 𝜎  are the volatility fixed-
effect parameters; ɣ , ɣ , ɣ  are the threshold fixed-effect parameters; δ is the fixed-effect 
parameter; the random effects 𝜙 , 𝜙 , 𝜙  are the independent and normally distributed 
random variables with zero mean and constant variances 𝜏 , respectively, 𝜙 ~𝑁 0; 𝜏𝑗2 , j 
= d, p, h; and 𝑑𝑊 𝑡 , j = d, p, h, represent the Brownian motion increments, which are 
considered to be independent across all the stands. The unknown fixed-effect parameters, Ɵ = {𝛼 ,𝛽 ,ɣ ,𝜎 , 𝜏 , 𝛿; 𝑗 𝑑, 𝑝, ℎ}, must be estimated. 

Transforming Equations (1)–(3) by 𝑒 𝑙𝑛 𝑋 𝑡  i = 1, …, M, j = d, p, h, and using Itô’s 
lemma [25], it can be determined that 𝑋 𝑡 |𝑋 𝑡 𝑥  conforms to a lognormal dis-
tribution 𝐿𝑁 𝜇 𝑡 ; 𝑣 𝑡 , with the mean 𝜇 𝑡 , variance 𝑣 𝑡  and probability density 
function 𝑓 𝑥 , 𝑡 Ɵ, 𝜙  in the following form:θ 𝜇 𝑡 𝑙𝑛 𝑥 ɣ 𝑒 1 𝑒 , (4)

𝑣 𝑡 𝜎 , (5)

𝑓 𝑥 , 𝑡 Ɵ, 𝜙  ɣ 𝑒𝑥𝑝 ɣ
. (6)

j

f̂ i
j
(
xj, t

)
dxj. (A1)

It should be noted that in Equation (A1), the probability density functions f̂ i
j
(

xj, t
)

j =

d, p, h; i = 1, . . . , K incorporate the values of the fixed-effect parameter θ̂ estimated using
the approximated maximum likelihood procedure (see Table 2), and the random effects for
each validation plot are calibrated in the form [32,33]:

φ̂i
j = argmax

(φi
j)

(
mi

∑
j=1

ln
(

f i
j

(
xj, t

∣∣∣θ̂, φi
j

))
+

4

∑
k=1

ln
(

p
(

φi
j

∣∣∣σ̂2
j

)))
, (A2)

where mi is the number of observed trees in the ith validation plot, p
(

φi
j

∣∣∣τ̂2
j

)
is the normal

probability density function with 0 mean and variance τ2
j , and, finally,

f̂ i
j
(
xj, t

)
= f i

j

(
xj, t

∣∣∣θ̂, φ̂i
j

)
. (A3)

The three-dimensional normal copula cumulative distribution functions i = 1, . . . , K
with correlation matrix P are defined by

Ci
3(u1, u2, u3; P, t) = Φ3

(
Φ−1(u1), Φ−1(u2), Φ−1(u3); P

)
, (A4)

where
u1 = F̂i

d(xd, t), u2 = F̂i
p
(

xp, t
)
, and u3 = F̂i

h(xh, t) (A5)
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Φ3
(

xd, xp, xh; P
)
=
∫ xd

−∞

∫ xp

−∞

∫ xh

−∞
ϕ3(z1, z2, z3; P)dz1dz2dz3, (A6)

ϕ3
(

xd, xp, xh; P
)
=

e
− w

2(ρ2
12+ρ2

13±ρ2
23−2ρ12ρ13ρ23)

2π
3
2

√
1−

(
ρ2

12 + ρ2
13 + ρ2

23
)
+ 2ρ12ρ13ρ23

, (A7)

w = x2
d
(
ρ2

23 − 1
)
+ x2

p
(
ρ2

13 − 1
)
+ x2

h
(
ρ2

12 − 1
)

+2
(

xdxp(ρ12 − ρ13ρ23) + xdxh(ρ13 − ρ12ρ23) + xpxh(ρ23 − ρ12ρ13)
)
,

(A8)

Φ(x) =
∫ x

−∞
ϕ(z)dz, (A9)

ϕ(x) =
1√
2π

e−
x2
2 , (A10)

P =

 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

. (A11)

The three-dimensional normal copula probability density functions ci
3(u1, u2, u3; P, t)

i = 1, . . . , K take the following forms:

ci
3(u1, u2, u3; P, t) = ∂3

∂u1∂u2∂u3
Ci

3(u1, u2, u3; P, t) =
ϕ3(Φ−1(u1),Φ−1(u2),Φ−1(u3);P)

ϕ(Φ−1(u1))ϕ(Φ−1(u1))ϕ(Φ−1(u1))

= 1√
1−(ρ2

12+ρ2
13+ρ2

23)+2ρ12ρ13ρ23
e
− w

2(ρ2
12+ρ2

13±ρ2
23−2ρ12ρ13ρ23−1) ,

w = x2
1
(
2ρ12ρ13ρ23 − ρ2

12 − ρ2
13
)
+ x2

2
(
2ρ12ρ13ρ23 − ρ2

12 − ρ2
23
)
+ x2

3
(
2ρ12ρ13ρ23 − ρ2

13 − ρ2
23
)

+2(x1x2(ρ12 − ρ13ρ23) + x1x3(ρ13 − ρ12ρ23) + x2x3(ρ23 − ρ12ρ13)),

(A12)

where x1 = Φ−1(u1), x2 = Φ−1(u2), and x3 = Φ−1(u3).
The joint three-dimensional copula-type probability density functions f i

3c
(
xd, xp, xh, t

)
i = 1, . . . , K are given as

f i
3c
(

xd, xp, xh : P, t
)
= ci

3

(
F̂i

d(xd, t), F̂i
p
(

xp, t
)
, F̂i

h(xh, t); P, t
)

f̂ i
d(xd, t) f̂ i

p
(
xp, t

)
f̂ i
h(xh, t). (A13)

The two-dimensional normal copula cumulative distribution functions Ci
2

(
uj, uk; ρjk, t

)
,

j 6= k; j, k ∈ {d, p, h}; i = 1, . . . , K with correlation coefficient ρjk are defined analogously:

Ci
2

(
uj, uk; ρjk, t

)
= Φ2

(
Φ−1(uj

)
, Φ−1(uk); ρjk

)
(A14)

where
uj = F̂i

j
(
xj, t

)
, and uk = F̂i

k(xk, t), (A15)

Φ2
(

xj, xk, P
)
=
∫ xj

−∞

∫ xk

−∞
ϕ2

(
z1, z2; ρjk

)
dz1dz2, (A16)

ϕ2

(
xj, xk; ρjk

)
=

1

2π
√

1− ρ2
jk

e
−

x2
j −2ρjk xj xk+x2

k
2(1−ρ2

jk) . (A17)

The two-dimensional normal copula probability density functions ci
2

(
uj, uk; ρjk, t

)
,

j 6= k; j, k ∈ {d, p, h}; i = 1, . . . , K take the following form:

ci
2

(
uj, uk; ρjk, t

)
=

∂2

∂uj∂uk
Ci

2

(
uj, uk; ρjk, t

)
=

ϕ2

(
Φ−1(uj

)
, Φ−1(uk); ρjk

)
ϕ
(
Φ−1

(
uj
))

ϕ(Φ−1(uk))
. (A18)
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The joint two-dimensional copula-type probability density functions f i
2c

(
xj, xk; ρjk, t

)
,

j 6= k; j, k ∈ {d, p, h}; i = 1, . . . , K are given as

f i
2c

(
xj, xk; ρjk, t

)
= ci

2

(
uj, uk; ρjk, t

)
f̂ i
j
(

xj, t
)

f̂ i
k(xk, t). (A19)

Therefore, the conditional probability density functions of Xi
l(t), i = 1, . . . , K; l = 1, 2,

3 at a given
(
Xj(t) = xj, Xk(t) = xk

)
, j, k 6= l, are defined as

f i
d|p,h

(
xd, t

∣∣xp, xh
)
=

f i
3c(xd ,xp ,xh ;P̂,t)
f i
2c(xp ,xh ;ρ̂ph ,t)

,

f i
p|d,h

(
xp, t

∣∣xd, xh
)
=

f i
3c(xd ,xp ,xh ;P̂,t)
f i
2c(xd ,xh ;ρ̂dh ,t)

,

f i
h|d,p

(
xh, t

∣∣xd, xp
)
=

f i
3c(xd ,xp ,xh ;P̂,t)
f i
2c(xd ,xp ;ρ̂dp ,t)

.

(A20)

The conditional probability density functions of Xi
j(t), i = 1, . . . , K; j = d, p, h at a

given (Xk(t) = xk), k 6= j, are defined as:

fd|p
(

xd, t
∣∣xp
)
=

f i
2c(xd ,xp ;ρ̂dp ,t)

f̂ i
p(xp ,t)

,

fd|h(xd, t|xh) =
f i
2c(xd ,xh ;ρ̂dh ,t)

f̂ i
h(xh ,t)

,

fp|d
(

xp, t
∣∣xd
)
=

f i
2c(xd ,xp ;ρ̂dp ,t)

f̂ i
d(xd ,t)

,

fp|h
(

xp, t
∣∣xh
)
=

f i
2c(xp ,xh ;ρ̂ph ,t)

f̂ i
h(xh ,t)

,

fh|d(xh, t|xd) =
f i
2c(xd ,xh ;ρ̂dh ,t)

f̂ i
d(xd ,t)

,

fh|p
(

xh, t
∣∣xp
)
=

f i
2c(xp ,xh ;ρ̂ph ,t)

f̂ i
p(xp ,t)

.

(A21)

The pseudo maximum log-likelihood function for the copula-type probability density
function ci

3 is represented as

LL(ρ12, ρ13, ρ23) =
M

∑
i=1

ni

∑
j=1

ln
(

ci
3

(
Φ−1

(
F̂i

d

(
xi

1j, ti
j

))
, Φ−1

(
F̂i

p

(
xi

1j, ti
j

))
, Φ−1

(
F̂i

h

(
xi

1j, ti
j

))∣∣∣(ρ12, ρ13, ρ23), ti
j

))
(A22)
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