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Abstract: Degraded bamboo shoots (DBS) constitute an important variable in the carbon fixation of 

bamboo forests. DBS are useful for informed decision making in bamboo forests. Despite their im-

portance, studies on DBS are limited. In this study, we aimed to develop models to describe DBS 

variations. By using DBS data from 64 plots of Yixing forest farm in Jiangsu Province, China, a 

mixed-effects model was constructed, including block-level random effects. We evaluated the po-

tential impact of several variables on DBS. The number of bamboo shoots (NBS), mean height to 

crown base (MHCB), hydrolytic nitrogen (HN), and available potassium (AK) significantly contrib-

uted to the model. By introducing the block-level random effect in the logistic model, the fitting 

statistics were significantly improved. The model showed that there were increased DBS in bamboo 

stands with decreased MHCB and AK, whereas DBS decreased with decreasing NBS and HN. The 

application of K fertilizer reduced the number of DBS during the emergence stage. By adjusting 

these factors, the number of DBS in bamboo forests can be reduced, which provides a theoretical 

basis for increasing the biomass of bamboo forests. It can also provide an important basis for stud-

ying the carbon sink characteristics of bamboo forests and help to formulate more effective bamboo 

forest management plans. 

Keywords: basic model; mixed-effects model; model validation; bamboo management 

 

1. Introduction 

Bamboo forests are important forest type. Moso bamboo (Phyllostachys edulis) is 

mainly distributed in tropical and subtropical regions [1,2]. It has economic (as food and 

wood) and ecological benefits [3,4]. Degraded bamboo shoots (DBS) are an important 

characteristic of bamboo forest dynamics. DBS are a phenomenon in which the develop-

ment of new bamboo stops after the shoots are unearthed because of insufficient nutrition 

in the soil, foreign pests and diseases, sudden cold or dry weather, competition in the 

bamboo forest (such as the number of bamboo shoots, NBS), and bamboo forest structure, 

and they then die and cannot further develop into bamboo. They are thought to play a 

role in competition and regulation of bamboo forests [5]. 

DBS are described as follows: (1) DBS taper to a large degree; the color of the shoot 

sheath is dark, dark brown, or even black; and the sheath leaves are underdeveloped; (2) 

the surface fur on the middle and upper bamboo shoot sheaths is disordered, and the 

shoot is easily damaged and can fall off when touched; there is no white powder or obvi-

ous growth in the sheath; (3) when pinching the bamboo shoot tip with your hand, it is 

hard and has no obvious elasticity; and (4) when the bamboo shoot sheath is peeled off, 

the color of the lower sheath is purple, often with cyan blue stripes, or cyan to dark yellow; 

the bamboo shoots are dark yellow, and the color of the root tip changes from purplish 

red to cyan to yellow (Figure 1). 
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Figure 1. Phenomenon of degraded bamboo shoots in a bamboo forest. 

The proportion of DBS is as high as 80% in some bamboo species, which substantially 

reduces the yield of shoots and culms and can seriously threaten the sustainability of bam-

boo forests [6–8]. In recent years, large-scale DBS have been reported in bamboo forests in 

bamboo-growing regions. Therefore, it is important to understand the impact of different 

sites and environments on DBS [6,8]. 

In bamboo forests, bamboo shoots can be divided into normal and abnormal DBS. 

Normal DBS are mainly caused by the competition of water, nutrients, and light condi-

tions in new bamboo. Abnormal DBS are mainly caused by man-made random interfer-

ence or natural disasters, such as extreme weather, forest fires, snow disasters, droughts, 

forest diseases, and insect pests [4,5]. Owing to the randomness of abnormal DBS, only 

normal DBS stands are typically studied. Therefore, we considered only the effects of nu-

trient content and stand variables on DBS. DBS consume a considerable amount of nutri-

ents from the mother bamboo, but this does not increase the yield, which could lead to a 

reduction in NBS and the production potential of bamboo stands. This can increase eco-

nomic losses caused by the return of shoots to the ground [5,8]. Thus, an accurate descrip-

tion of DBS conditions provides a theoretical basis for effective maintenance and use of 

bamboo shoots. 

DBS, a key feature in the growth and harvest of bamboo forests, are important for 

characterizing the forest structure and composition [5,9]. As mature bamboo can be har-

vested in 4–6 years, an increase in the number of DBS may have a negative impact on the 

structural stability and ecological benefits of bamboo forests, affecting forest mortality and 

impairing sustainable management of the forest [10]. Compared with other stand charac-

teristics, it is more challenging to accurately describe the pattern of DBS in a given site 

condition, as DBS have high variability in space and time [7,10]. 

Previous studies have focused more on the development stages of DBS [11–13], the 

types and causes of bamboo degradation [14,15], and the general features of DBS [5,16,17] 

rather than accurately modeling DBS. Only a few researchers have attempted to study 

normal bamboo shoots and DBS modeling [18,19]. 

DBS are the result of several factors. The degradation process of bamboo shoots is 

complex, with multifactor synergism and a considerable degree of randomness; therefore, 

the underlying mechanisms remain elusive [20], limiting its modeling capability. 

DBS may vary among different bamboo stand structures. DBS data were obtained 

from bamboo forests with different sites and environments. Therefore, the data were hi-

erarchically structured (a sample plot nested in the blocks), and observations are most 

likely to be spatially correlated. Mixed-effects modeling can effectively solve these prob-

lems [21,22]. In addition, the method considers randomness in the data and potential var-

iables caused by randomness, thus improving the accuracy of the model [21–24]. To de-

scribe variations in DBS, similar model types that describe forest mortality [4,25,26] and 

forest fires [27–29] are necessary. These model types include Poisson, negative binomial, 

zero-inflated, and hurdle models [23,24], among others [4,25]. 
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It is assumed that soil nutrient content and stand variables can affect the competitive 

relationship between moso bamboo individuals, provide a suitable environment for moso 

bamboo growth, and promote growth and development, thus impacting DBS. To resolve 

the above-mentioned issues (the effects of soil nutrient content and stand variables, hier-

archically structured data, and spatial correlations), we aimed to (1) develop a model de-

scribing variations in degraded bamboo shoots through the application of mixed-effects 

modeling, (2) evaluate the sensitivity of the DBS model to soil nutrient content, and (3) 

evaluate the effects of stand factors and soil nutrients on bamboo shoot degradation. By 

adjusting these variables, the models can provide technical support for the increase in 

carbon reserves in bamboo forests and help formulate more effective bamboo forest man-

agement plans. The presented models provide a theoretical basis for estimating bamboo 

forest growth in southeast China to maintain bamboo shoots and make full use of de-

graded shoots. 

2. Materials and Methods 

2.1. Study Site 

The experimental sample plots were set in Yixing, Jiangsu Province (31°15′1″–

31°15′40″ N, 119°43′52″–119°44′41″ E). The average precipitation is 1167 mm, the temper-

ature is 15.7 °C, and the annual evaporation is 886.8 mm. The area is mainly low moun-

tains and hills and the soil type is yellow clay (GB/T 17296-2009). The vegetation type is 

moso bamboo forest. 

The traditional manual management measures adopted in the moso bamboo forest 

include bamboo cutting, shrub cutting, grass cutting, mining winter and spring bamboo 

shoots, and tourism. All human activities were controlled in the study area. 

We established 64 temporary sample plots (TSPs) on a Yixing farm, and each sample 

plot was 20 × 3 m (Figure 2). Because the slope, aspect, and slope position may lead to 

different growth environments, we divided the sample plots into different blocks. The 

sample plots are listed in Table 1. 

Table 1. Block division and plot setting. 

Slope (°) Aspect Slope Position 
Number of Sampling 

Plots 
Block 

0–3 Southwest Downhill slope 25 Block 1 

4–7 Southwest Middle slope 17 Block 2 

8–11 Southwest Uphill slope 12 Block 3 

11–14 Northwest  Middle slope 5 Block 4 

15–18 Northwest  Middle slope 5 Block 5 
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Figure 2. Study area showing the location of the sample plots. 

2.2. Sampling and Measurement of DBS 

2.2.1. Distinguishing Degraded Bamboo Shoots (DBS) 

Moso bamboo DBS can mainly be distinguished using four characteristics: (1) from a 

distance, the tapering degree of the retreating shoot is large; the color of the shoot sheath 

is dark, dark brown, or even black; and the sheath leaves are underdeveloped; (2) when 

looking at the degradation of bamboo shoots, the surface fur on the middle and upper 

bamboo shoot sheaths is disordered, it is not tall and straight or dry, and most of the hair 

is dry; it is easily damaged and can fall off when touched; and there is no white powder 

or obvious growth in the sheath; (3) when pinching the bamboo shoot tip with your hand, 

it is hard and has no obvious elasticity; and (4) when the bamboo shoot sheath is peeled 

off, the color of the lower sheath is purple, often with cyan blue stripes, or cyan to dark 

yellow; the bamboo shoots are dark yellow, and the color of the root tip changes from 

purplish red to cyan to yellow [18]. 

2.2.2. Degraded Bamboo Shoots (DBS) Investigation 

Using these characteristics, we selected sample plots of different groups in the Yixing 

state-owned forest farm to investigate the DBS. The investigation period was from March 

to May 2019 and the investigation event lasted for 50 days. Bamboo shoots unearthed in 

the sample plot were observed daily to determine whether they survived. The TSPs cover 

a wide range of bamboo forests with varying stand structures, stand densities, bamboo 

sizes, bamboo ages, site productivity, terrain, and environment. All diameters at breast 

height (DBH ≥ 5) were measured to obtain the DBH, height to crown base (HCB), and 

number of bamboo shoots (NBS). We used the direct counting method to obtain the NB, 

NBS, and DBS. Subsequently, various measures describing bamboo stand density were 
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derived from these measurements. The distribution patterns of the DBS are shown in Fig-

ure 3. The bamboo stand variables are presented in Table 2. 

Table 2. Summary statistics of measurements of bamboo variables and soil nutrient content. DBS, 

degraded bamboo shoots; NBS, number of bamboo shoots; MD, mean diameter at breast height; 

MHCB, mean height to crown base; N, stand density of bamboo forest; NB, number of new bamboo; 

BA, basal area of all bamboo; QMD, quadratic mean DBH; SOC, soil organic carbon; TN, total nitro-

gen; TP, total phosphorus; TK, total potassium; HN, hydrolytic nitrogen; AP, available phosphorus; 

AK, available potassium. 

Variables Min Max Mean Std. 

NBS (culms/ha) 1000 4867 2373 901.75 

MD (cm) 7.42 9.82 8.97 0.42 

MHCB (m) 3.41 5.98 4.53 0.53 

N (culms/ha) 1833 8100 4507 1271.17 

DBS (culms/ha) 0 2700 611 620.20 

NB (culms/ha) 813 3400 1762 688.92 

BA (m2/ha) 13.15 49.56 29.14 7.76 

QMD (cm) 7.64 9.91 9.10 0.40 

SOC (g/kg) 13.44 43.10 33.69 5.47 

TN (g/kg) 0.84 2.34 1.74 0.27 

TP (g/kg) 0.22 0.39 0.26 0.04 

TK (g/kg) 7.84 11.76 9.63 0.77 

HN (mg/kg) 104.9 221.10 164.6 21.65 

AP (mg/kg) 0.17 2.45 1.17 0.48 

AK (mg/kg)  46.34 84.24 60.45 7.61 

 
Figure 3. Distribution patterns of degraded bamboo shoots of moso bamboo. 

2.2.3. Sample Plots Soil Sampling 

Due to the apparent aggregation of soil nutrients, studies have found that the nutri-

ent-absorbing fine roots of moso bamboo in this area are mainly distributed in the soil 

surface (0–10 cm) [30]. Therefore, we mainly focused on the contribution of soil nutrients 

in the 0–10 cm layer. 
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In March 2019, soil samples of 0–10 cm soil layer were collected from 64 TSPs (five 

samples per sample plot). The soil samples were mixed in a sample plot to form a compo-

site sample and brought to the laboratory. In total, 64 samples were collected. 

2.2.4. Determination of Soil Nutrients 

The soil samples were passed through 0.25 mm and 0.15 mm sieves to determine the 

total nitrogen, total phosphorus, and total potassium contents. Additionally, the samples 

were passed through a 1 mm sieve for the determination of alkali hydrolyzable nitrogen, 

available phosphorus, and available potassium. 

The soil organic matter content was determined using the potassium dichromate ox-

idation external heating method. See Zheng et al. for the determination method of soil 

nutrient content [31]. Table 2 shows the statistics of soil nutrient content. 

2.3. Determination of Predictor Variables 

We evaluated bamboo size, competition, and nutrient content, which significantly 

influence DBS. Predictor variables affecting DBS were selected based on their biological 

significance and logic. Fifteen variables were evaluated for their potential influence on 

DBS. Bamboo individual and stand variables were used, including MD, MHCB, NBS, N, 

and NB. The competition variables used in this study were the BA and QMD. Nutrient 

contents included SOC, TN, TP, TK, HN, AP, and AK. We explained the site by using 

block-level variables as random effects. 

Although many variables were evaluated, only a few variables that have significant 

impact on DBS and are not significantly related to each other were selected. We used the 

variance inflation factor (VIF) to control for potential collinearity effects between predictor 

variables [32]. Collinearity produces large standard errors in the parameter estimates (VIF 

> 2), which causes a large bias [33]. Therefore, only the following predictor variables with 

a VIF < 2 were retained in our final model: NBS, MHCB, AK, and HN. 

2.4. Candidate Models 

We used seven versatile mathematical functions, hereafter referred to as the basic 

models, which are commonly used for count data modeling (variables of the presence or 

absence) to develop models for describing variations in degraded bamboo shoots (Table 

3). These models are the Poisson model (PS) and negative binomial model (NB), which 

refer to the standard function, zero-inflated Poisson model (ZIP), zero-inflated negative 

binomial model (ZINB), hurdle Poisson model (HP), hurdle negative binomial model 

(HNB), and logistic regression model (Equations (1)–(7)). First, the basic models were fit-

ted using NBS, MHCB, AK, and HN as predictors, and their fitting performance was com-

pared. Second, we selected the model with the best fit to formulate a mixed-effects model 

with the inclusion of block-level random effects. 

Table 3. Summarized forms of DBS functions, which were expanded through the inclusion of four 

predictor variables. 

Mode l  Equation 
Equation 

No. 

PS 0 1 2 3 4log( ) log( ) +ij ij ij ijk ijk ijDBS NBS MHCB AK HN     = = + + +  (1) 

NB 
0 1 2 3 4

1 1

log( ) log( ) ( + )

( ) ~ ( , )

ij ij ij ij ij ijk ijk ij

ij

DBS e e NBS MHCB AK HN

Exp e Gamma

     

 − −

= + = + + +
 (2) 

ZIP 
0 1

0 1 2 3 4

log( )
1

log( ) log( / (1 )) +

ij

ij

ij

ij ij ij ij ijk ijk ij

p
AK

p

DBS p NBS MHCB AK HN

 

     


= +

−
 = − = + + +  

(3) 
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ZINB 

0 1

0 1 2 3 4

1 1

log( )
1

log( ) log(( ) / (1 )) +

( ) ~ ( , )

ij

ij

ij

ij ij ij ij ij ijk ijk ij

ij

p
AK

p

DBS e p NBS MHCB AK HN

Exp e Gamma

 

     

 − −


= +

−



= + − = + + +




 (4) 

HP 

0 1

0 1 2 3 4

log( )
1

log( ) +

(1 ) / (1 )ij

ij

ij

ij

ij ij ijk ijk ij

ij ij ij

p
AK

p

NBS MHCB AK HN

DBS p e


 

     


−


= +

−



= + + +


= − −
  

(5) 

HNB 

0 1

0 1 2 3 4

1 1

log( )
1

log( ) log(( ) / (1 )) +

( ) ~ ( , )

ij

ij

ij

ij ij ij ij ij ijk ijk ij

ij

p
AK

p

DBS e p NBS MHCB AK HN

Exp e Gamma

 

     

 − −


= +

−



= + − = + + +




 (6) 

Logistic 
0 1 2 3 4( + )

1 ij ijk ijk ij
ij NBS MHCB AK HN

a
DBS

e
    + + +

=
+  

(7) 

Notes: ijDBS
is the number of degraded bamboo shoots in the jth sample plot nested in the ith 

block; ijNBS
is the number of bamboo shoots in the jth sample plot nested in the ith block; 

ijMHCB
is the mean height to crown base in the jth sample plot nested in the ith block; ijAK

is 

the available phosphorus content in the 0–10 cm soil layer of the jth sample plot nested in the ith 

block; ijHN
 is the hydrolytic nitrogen content in the 0–10 cm soil layer of the jth sample plot 

nested in the ith block; 0 4–,a   are estimated parameters; ij
 represents the mean number of 

counts in a given period within the expected value of the model. See Zhou et al. 2021 for candidate 

model details [23,24]. 

2.5. Mixed-Effects Models 

Bamboo shoot data were collected from different bamboo forests growing under dif-

ferent growth conditions to simulate the relationship between degraded bamboo shoots, 

stands, and soil content variables. Therefore, the data were hierarchically structured (in-

vestigation of different sample plots in the same block). 

By introducing block-level random effects, seven basic models were used to develop 

a one-level nonlinear mixed-effects (NLME) DBS model. We considered the combination 

of all parameters. Models with the smallest Akaike information criterion (AIC) and largest 

log-likelihood (LL) were selected for further analysis. Figure 4 shows the distribution of 

different predictors and DBS. 
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Figure 4. Scatter plot distribution between degraded bamboo shoots (DBS) and different predictor 

variables used for modeling DBS for moso bamboo (number of bamboo shoots (NBS), mean height 

to crown base (MHCB), hydrolytic nitrogen (HN), and available potassium (AK)). 

In practice, the matrix form of the NLME is as follows. 

( , )

~ (0, ); ~ (0, )

i i i i

i i i i

i i i

y f x

Ab B

N D N R

 

 

 

= +


= +

  

(8) 

where iy
 represents the observed value of the DBS, ix

is a vector for the observed pre-

dictor variables on the ith block, ix
is the design matrix corresponding to the non-random 

effect parameter b, and iB
 is the design matrix of the random parameter i . We as-

sumed that i  follows a normal distribution with a mean of zero and variance of D , 

which is given by 

1 1 2

2 1 2

2

2

i i i

i i i

D
  

  

 

 

 
=  
  

 (9) 

Hypotheses i  and i  are independent. The residual vector is defined by 

~ (0, )i iN R
, where the variance–covariance matrix ( iR

) is calculated using the follow-

ing formula: 

2 0.5 0.5

i i i iR G G=   (10) 
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where 
2 is the residual variance common to all blocks, iG  is a diagonal matrix related 

to heteroscedasticity within the block, and iΓ  is a matrix used to explain the within-block 

autocorrelation structure of the residuals. As our residual analysis showed insignificant 

autocorrelations of the observations within the same subject (block), we reduced the iΓ  

to identity matrices. 

Three common variable stability functions (the exponential function, power function, 

and constant plus power function (Equations (11)–(13)) were applied to explain hetero-

scedasticity. After evaluating the performance of each function, the one with the best per-

formance was selected according to the AIC value. 

2( ) exp(2 )ij ijVar NBS  =
 

(11) 

2 2( )
ijijVar NBS  =

 
(12) 

222 2

1( ) ( )
ijijVar NBS
  = +

  
(13) 

2.6. Model Evaluation 

The use of an independent dataset to evaluate the DBS model was more effective. 

However, due to the limited amount of data, we were unable to implement this in our 

study. Instead, we used leave-one-out cross-validation (LOOCV), a commonly used 

method, to evaluate the model [23,24]. The data were grouped according to the sample 

plots, and only one sample plot was reserved in each complete data set. The data set with 

one sample plot removed was used to fit the model, and the resulting model was used to 

predict the number of DBS in the deleted sample plot. We repeated this 64 times. The 

difference between the predicted DBS value and the observed DBS value was used to cal-

culate R2, TRE, and RMSE, which are defined below (Equations (14)–(16)). 

2

2 1

2

1

( )
1

( )

n

i ii

n

ii

DBS DBS
R

DBS DBS



=

=

−
= −

−



   

(14) 

1 1

n n

i ii

i i

TRE DBS DBS DBS
= =

= − 
  

(15) 

2

1

1
( )

n

ii

i

RMSE DBS DBS
n =

= −
  

(16) 

where n  is the number of sample plots, iDBS
is the actual value of degraded bamboo 

shoots in the ith sample plot, iDBS


is the estimated value of degraded bamboo shoots in 

the ith sample plot, and DBS  is the average observed value of degraded bamboo shoots. 

We estimated the models using the glmmTMB package [34] and the nlme package in 

R 3.6.3 [35]. 

3. Results 

3.1. Basic Models 

Because the ZINB and HNB models did not converge, these were not considered in 

this study. Model parameter estimations (Equations (1)–(3), (5), and (7)) were significantly 

different from 0, except for β0 and β3 in the logistic model, and β2, β3, and β4 in the NB 

model (p < 0.05; Table 4). The NB, ZIP, and HP models exhibited identical fit statistics, 
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which were poorer than that of the PS model. DBS was positively correlated with NBS 

and HN but negatively correlated with MHCB and AK. Compared with the other models, 

the logistic model had better fitting statistics, the largest R2, and the smallest RMSE and 

TRE values. 

Table 4. Parameter estimates and fit statistics of seven basic models (Equations (1)–(3), (5), and 

(7)). 

Parameter  
Poisson 

(M1) 
NB (M2) ZIP (M3) HP (M5) 

Logistic 

(M7) 

 a     
1676 *** 

(216.3000) 

Zero component α0   
8.6077 * 

(4.0411) 

8.6085 * 

(4.0412) 
 

 α1   
−0.1843 * 

(0.0731) 

−0.1843 * 

(0.0732) 
 

Count component β0 
6.7810 *** 

(0.0670) 

5.4638 ** 

(1.8701) 

7.6000 *** 

(0.0644) 

7.6000 *** 

(0.0644) 

0.3075 

(3.1060) 

 β1 
0.0005 *** 

(5.81 × 10−6) 

0.0006 ** 

(0.0002) 

0.0004 *** 

(6.21 × 10−6) 

0.0004 *** 

(6.21 × 10−6) 

−0.0018 *** 

(4.87 × 10−4) 

 β2 
−0.2819 *** 

(0.0010) 

−0.1519 

(0.3404) 

−0.0076 *** 

(1.06 × 10−2) 

−0.0076 *** 

(1.06 × 10−2) 

0.1417 ** 

(5.03 × 10−2) 

 β3 
−0.0038 *** 

(0.0008) 

−0.0226 

(0.0222) 

−0.0549 *** 

(0.0008) 

−0.0548 *** 

(0.0008) 

0.7761 

(0.5046) 

 β4 
0.0103 *** 

(0.0002) 

0.0080 

(0.0073) 

0.0009 *** 

(0.0002) 

0.0008 *** 

(0.0002) 

−0.0427 ** 

(0.0149) 

R2  0.5268 0.4691 0.4861 0.4861 0.6022 

RMSE  429.9827 455.4711 448.0134 448.0134 394.1936 

TRE  30.3217 32.2449 28.7537 28.7537 25.3112 

Note: *** p < 0.0001, ** p < 0.001, * p < 0.05. Values in parentheses are standard errors. NB is the 

negative binomial model, ZIP is the zero-inflated Poisson, and HP is the hurdle Poisson. M is model. 

We evaluated the simulation effects of predictors (MHCB) and soil nutrient content 

factors (AK and HN) describing the characteristics of bamboo forests on the DBS of the 

logistic model (Figure 5). The three predictors have a significant impact on the change in 

DBS (Figure 5). DBS decreased with increasing MHCB and AK but decreased with in-

creasing HN. AK and HN contributed the most to variations in DBS, followed by MHCB. 
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Figure 5. Effects of MHCB, AK, and HN on the DBS. The curves were produced using parameter 

estimates in Table 3 (logistic model). 

3.2. NLME Models 

The estimated parameters and fit statistics for Models (17)–(21) are presented in Table 

5. The parameter estimates of the models (Equations (1)–(3), (5), and (7)) were significantly 

different from 0, except for β0 and β3 in M21, and β2, β3, and β4 in M18 (p < 0.05; Table 5). 

Compared with Models (1)–(3),(5),(7), except for M18, the TRE and RMSE of Models 

(17),(19)–(21) significantly decreased, and R2 increased, respectively. Model (21) had the 

smallest RMSE and TRE, and the highest R2. Therefore, we used the logistic NLME model 

for further analysis. 

Table 5. Parameter estimates and fit statistics of the one-level nonlinear mixed-effects DBS models 

(Equations (1)–(3), (5), and (7)). 

Parameter  Poisson (M17) 
NB 

(M18) 

ZIP 

(M19) 

HP 

(M20) 

Logistic 

(M21) 

 a     
1897.1424 *** 

(275.5338) 

Zero component α0   
8.6077 * 

(4.0361) 

8.6080 * 

(4.0126) 
 

 α1   
−0.1843 * 

(0.0731) 

−0.1944 * 

(0.0733) 
 

Count component β0 
4.7960 *** 

(0.2171) 

5.4638 ** 

(1.8701) 

5.3030 *** 

(0.2214) 

5.3027 *** 

(0.2208) 

1.4120 

(2.4835) 

 β1 
0.0007 *** 

(8.166 × 10−6) 

0.0006 ** 

(0.0002) 

0.0005 *** 

(8.512 × 10−6) 

0.0005 *** 

(8.412 × 10−6) 

−0.0015 *** 

(0.0004) 

 β2 
−0.2045 *** 

(0.0125) 

−0.1519 

(0.3404) 

−0.0311 * 

(0.0134) 

−0.0299 * 

(0.0130) 

0.1266 *** 

(0.0362) 

 β3 
−0.0538 *** 

(8.984 × 10−4) 

−0.0226 

(0.0222) 

−0.0673 *** 

(8.928 × 10−4) 

−0.0655 *** 

(8.902 × 10−4) 

0.5535 

(0.4239) 

 β4 
0.0226 *** 

(4.153 × 10−4) 

0.0080 

(0.0073) 

0.0233 *** 

(4.434 × 10−4) 

0.0212 *** 

(4.404 × 10−4) 

−0.0407 *** 

(0.0118) 

Covariance matrix of ran-

dom effects variance 
block 0.1821 4.414 × 10−9 0.1924 0.1920 0.1107 

R2  0.6183 0.4690 0.5991 0.5990 0.6596 

RMSE  386.2009 455.4711 395.6937 394.6932 364.7028 

TRE  23.9796 32.2448 22.2586 22.2183 20.8995 

Note: *** p < 0.0001, ** p < 0.001, * p < 0.05. The value (0.1107) is generated when the random effect is 

added to the coefficient of variable AK of the logistic model; other random effects were added to 

the intercept. All other parameters, symbols, and definitions are the same as those listed in Table 3. 
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Among the three tested variance functions (Equation (14)–(16)), the power function 

(Equation (15)) most effectively accounted for the variance heteroscedasticity (Table 6, 

Figure 6). The RMSE and TRE values of the NLME DBS Model (21) were (RMSE = 

364.7028; TRE = 20.8995) based on the full dataset. Therefore, we added the random effect 

to β3, which produced the largest R2 (0.6596) and was assumed to be an optimal NLME 

model to estimate DBS, that is, the final NLME model form given by 

0 1 2 3 4[ + ( ) ]
1 ij ijk ijk ij

ij ijNBS MHCB AK HN

a
DBS

e
     


+ + + +

= +
+

  

where μ is the random effect at block level for β3. 
2 0.5 0.5 2 2 2 2

1~ (0, ), ( ,... ),ij i i i i i i in i iN R G G G diag NBS NBS I    =  =  =
. The other 

parameters and variables were the same as described above. 

Table 6. Comparisons among three variance functions (exponential function, power function, and 

constant plus power function) of the NLME DBS model (LL, log-likelihood). 

Variance functions 
NLME DBS Model 

AIC LL 

Equation (11) 949.0738 −466.5369 

Equation (12) 948.1784 −465.0892 

Equation (13) 950.1784 −465.0892 

 
Figure 6. Residual distribution of Model (21). 

3.3. Parameter Estimates 

Model parameter estimations were significantly different from 0, except for β3, in the 

NLME DBS Model (21). After introducing the parameter estimates, the NLME DBS Model 

(21) is: 

0[1.8096 0.0012 +0.0677 (0.3627 ) 0.0210 ]

2146.0780

1 ij ijk ijk ij
ij ijNBS MHCB AK HN

DBS
e




− + + −
= +

+  

where 

 10

0[ ] : [0], (1.13 10 )i N   −= =  

0.5 0.5~ (0, 137382.4 )ij i i i iN R G G = 
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1.0635 1.0635

1(0.0092 ,...0.0092 )i i inG diag NBS NBS=
 

i iI =
 

Using the variance function can reduce the variance in the Model (27) to a certain 

extent, which indicates that a large part of the DBS change is explained by the block-level 

random effects. 

3.4. Model Evaluation 

We evaluated the prediction performance of the logistic NLME model, which 

showed best-fit statistics using the LOOCV method. The validation showed a large pro-

portion of variation in DBS (R2 = 0.4324, RMSE = 467.9945, and TRE = 57.4346). This result 

further shows that blocks have a large random impact on DBS, and the prediction ability 

of NLME DBS Model (21) at the block level was the best. 

4. Discussion 

We evaluated seven functions commonly used in modeling count data [23,24] and 

attempted to evaluate other model forms, such as the zero-inflated negative binomial and 

hurdle negative binomial models; however, they were not retained for subsequent anal-

yses because of their non-convergence. Collinearity between the predictor variables was 

controlled with VIF, which is a common practice, while multiple predictor variables were 

involved in fitting the models. Among the various potential predictor variables that we 

evaluated, only four, namely, NBS, MHCB, HN, and AK, showed significant contributions 

to the model. 

Other studies have also used NBS and NB to predict DBS [16,36], as these variables 

could have a remarkably strong influence on DBS variations across bamboo forests. NBS 

and NB may reflect the nutrient supply in the stand and the impact of the site quality of 

the bamboo forest [5,18]. Zhang et al. (2012) used BA in their counting model (mortality 

model) for Larix olgensis, which reflects stand DBH growth and may describe DBS caused 

by stand competition [37–39]. The random effect could account for the variability across 

forest blocks, which could be caused by the effects of site quality and other environmental 

factors, including climate. The combined effects of these factors on variations in DBS can 

be described by introducing a random effect into the model. 

In the present study, the effect of NBS was positive (Tables 4 and 5). The results of 

this study are consistent with those of Liao and Huang (1984) and Xu et al. (2008). Under 

certain growth conditions, NBS resulted in more degraded bamboo. This may be because 

the nutrient content in the sample plot was limited and could only meet the survival re-

quirements of certain bamboo shoots. 

In contrast, MHCB negatively correlated with DBS. HCB reflects the growth, vitality, 

and productivity of bamboo [40], as well as the level of competition within the bamboo 

forest stand [41,42]. The smaller the MHCB, the larger the crown and the faster the nutri-

ent metabolism, indicating that the bamboo competitiveness of the original bamboo forest 

is stronger, and the number of DBS has increased. 

DBS were significantly negatively correlated with AK (Tables 4 and 5, Figure 5). En-

zyme activation is one of the most important functions of AK in plant growth. AK is 

closely related to many metabolic processes in plants, such as photosynthesis, respiration, 

and the synthesis of carbohydrates, fats, and proteins. These processes are essential dur-

ing the early stages of shoot emergence. In the absence of K, the number of DBS can in-

crease. It has been found that AK concentrations in each organ of the growing shoots were 

higher in the younger parts than in mature organs [43]. More AK is required during the 

shooting period. Therefore, AK content is a key factor in determining the number of DBS. 

We also observed a negative correlation between DBS and HN. The utilization of nitrogen 

was mainly concentrated after the leaf development of new bamboo [44] because, at this 
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stage, the physiological metabolism of moso bamboo is vigorous, and dry matter accumu-

lates rapidly. 

Some studies have reported that other stand variables, such as arithmetic mean di-

ameter and stand density, contribute significantly to DBS prediction [18,23,24,45]. We also 

evaluated these variables, but the results were not statistically significant. Both stand 

arithmetic mean diameter and stand density were derived from DBH and thus showed 

little effect on the DBS model. 

Stand measures, such as BA and quadratic mean DBH (QMD), could be obtained 

more accurately than other measures, which are the most commonly used predictors in 

any forestry model [37–39]. However, our model showed non-significant effects for these 

variables in the DBS model. This may be due to the small DBH differences among the 

bamboo in the study area, where the density of bamboo forests fluctuates within a limited 

range. However, the stand variables NBS and NB may have a significant effect on DBS. 

The NBS was positively correlated with DBS, indicating that increased NBS also promoted 

DBS (Figure 5). Because soil nutrients are limited, they can only supply a certain amount 

of bamboo growth. When NBS increased, the number of DBS also increased. Some studies 

(e.g., [46,47]) have shown that fertilization and reclamation can reduce DBS to a certain 

extent by supplementing certain soil-available nutrients. 

As an important index of stand characteristics, DBS determine the growth and har-

vest of bamboo forests [5]. This is because bamboo grows from bamboo shoots. For culti-

vated bamboo, DBS consume much of the nutrients from the mother bamboo, but this 

does not increase yield. Therefore, studies focused on modeling DBS are of great im-

portance for bamboo forest management. 

The hierarchical data problem was solved by introducing block-level random effects 

in the β3 parameter (e.g., the correlation of observed values of different plots and clumps 

in the same block). Previous studies on forest mortality (data type was also counting form) 

also found that the mixed-effects model was better than the traditional nonlinear least-

squares model [4,23,24]. When the random effect (block) was included in the logistic 

model, the prediction accuracy of LOOCV improved to a certain extent, indicating that 

the block had an impact on degraded bamboo shoots. This also largely justifies the appli-

cation of mixed-effects modeling in our study. 

During the modeling process, by evaluating the impact of individual bamboo, stands, 

and soil nutrient content variables on the number of DBS, variables (MHCB: mean height 

to crown base, HN: hydrolytic nitrogen, AP: available potassium) that have a greater im-

pact on the number of DBS were selected, and these variables were adjusted through some 

forest management, such as applying N and P fertilizer in the growing season, or carrying 

out tending measures (pruning) in the bamboo forest to provide sufficient growth space 

and nutrients for new bamboo, to reduce the number of DBS, increase the biomass of bam-

boo forests, and maintain the stability of bamboo ecosystem. It can provide an important 

basis for investigating the carbon sink properties of bamboo forests and help formulate 

more effective bamboo forest management plans. 

In this study, we only considered the number of DBS, and not the depth of shoots or 

topographic factors, such as altitude, slope, and aspect of the sample plot. Some studies 

have pointed out that changes in nutrient levels are also key factors affecting the survival 

of bamboo shoots [5,48]. Thus, nutrient changes during DBS might also be important for 

understanding nutrient deficiencies and how to supplement the soil [49–51]. Therefore, it 

is important to study the nutritional changes associated with DBS. 

5. Conclusions 

We established a nonlinear mixed-effects model to appropriately describe the varia-

tions in DBS of moso bamboo. The stand and soil content variables used as predictors, 

such as NBS, MHCB, HN, and AK, were identified as the major factors affecting DBS. 

Introducing the block-level random effect improves the fitting effect of the model. Among 

the various model formulations (basic and mixed models), random effects for the logistic 
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model described the largest variation in DBS. Additionally, we found that DBS in bamboo 

stands increased with decreasing MHCB and AK but decreased with decreasing NBS and 

HN. Reducing the number of DBS and increasing biomass through fertilization, tending, 

and other measures can provide an important basis for investigating the carbon sink prop-

erties of bamboo forests and help formulate more effective bamboo forest management 

plans.  
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