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Abstract: Growth models of uneven-aged forests on the diameter class level can support silvicul-
tural decision making. Machine learning brings added value to the modeling of dynamics at the
stand or individual tree level based on data from permanent plots. The objective of this study is to
explore the potential of machine learning for modeling growth dynamics in uneven-aged forests at
the diameter class level based on inventory data from practice. Two main modeling approaches are
conducted and compared: (i) fine-tuned linear models differentiated per diameter class, (ii) an arti-
ficial neural network (multilayer perceptron) trained on all diameter classes. The models are trained
on the inventory data of the Canton of Neuchatel (Switzerland), which are area-wide data without
individual tree-level growth monitoring. Both approaches produce convincing results for predicting
future diameter distributions. The linear models perform better at the individual diameter class
level with test R? typically between 50% and 70% for predicting increments in the numbers of stems
at the diameter class level. From a methodological perspective, the multilayer perceptron imple-
mentation is much simpler than the fine-tuning of linear models. The linear models developed in
this study achieve sufficient performance for practical decision support.

Keywords: uneven-aged forest management; forest growth modeling; machine learning;
diameter distribution; silvicultural decision support

1. Introduction

Uneven-aged forests are generally defined as forests whose stands contain several
cohorts of trees of different ages, which results in a relative structural heterogeneity of
these stands. Despite the diversity of uneven-aged management methods, the manage-
ment of these stands is often associated with the maintenance of a targeted distribution of
diameters [1]. A good understanding of the dynamics within an uneven-aged stand at the
global level but also at the level of diameter classes then allows for better planning of cuts,
in the sense of choosing the timing and the intensity of the next cut [2], including the
intensity of the cut by diameter class. Growth models for uneven-aged stands can there-
fore support silvicultural decision making.

The literature on existing uneven-aged forest growth models identifies three possible
resolutions for this type of model: the whole stand, diameter classes and individual trees
[3,4]. It is also possible to make a distinction between empirical and mechanistic (also
called process-based) models [3]. This distinction is theoretically relevant, although there
is a gradient between these two archetypes, with models estimated on the basis of empir-
ical data but whose structure is to some extent inspired by theoretical mechanisms of for-
est growth [5].
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Stand-level models aim at predicting the increment of a key stand-level variable, typ-
ically the increment of the standing volume or basal area. The recent literature has seen
the publication of several such studies based on machine learning methods and data from
permanent plots [6-8]. In particular, some of these studies use artificial neural networks
among other regressors [7,8]. All of these models achieve good predictive performance
and can be useful in practice, e.g., in management systems where harvested volumes are
planned on the basis of increments. However, they do not provide information on stand
structure.

Models at the individual tree level aim to predict individual diameter increments.
Several recent studies have approached this topic from a machine learning perspective
[4,9], for example, by testing several types of models including an artificial neural network
[9]. These models perform well and give a maximum of details on growth within a stand,
but individual monitoring data on diameter growth, i.e., data from permanent plots, are
needed to train them. When this is the case, the data are usually available in large num-
bers, which fits well to machine learning approaches. For example, one of these studies
[4] is based on 16,619 observations from the monitoring of 20 permanent plots.

Models based on diameter classes generally aim to predict increments in the number
of stems per diameter class. Some studies [5,10] propose for example an empirical model-
ing of radial increments per diameter class based on inventory data using a linear model.
These radial increments are then integrated into a process-based model to simulate the
dynamics of the passage of trees between two successive classes, as well as the recruitment
into the first diameter class. Numerous other studies [11-14] use an approach that is quite
similar in principle but generalized and formalized. Passage rates are modeled directly
(and empirically with linear models), and the increment in the number of stems in a given
diameter class potentially depends on the respective numbers of stems in all other diam-
eter classes. This type of model accounts for passages between two non-successive classes,
competition effects between diameter classes, as well as the influence of the diameter dis-
tribution on recruitment. These models are formalized as matrix equation systems allow-
ing the recursive simulation of stand dynamics, sometimes called a matrix model or tran-
sition matrix model [3]. The predictive performances of those models are limited com-
pared to recent machine learning models developed on the stand or individual tree levels.

The canton of Neuchatel in Switzerland is historically and professionally recognized
as the Swiss high place of the selective felling forest management, which is implemented
on a tree-by-tree basis (see Section 2.2 for further details). In the canton of Neuchatel, se-
lective felling management is implemented through the so-called control method (Méthode
du controle) [3,15,16]. This method is based on periodic and complete inventories of stands
as well as on a direct control of all harvests. Some studies [5,10] use an extract of these
data. Some other studies [12,14] use data from the French Jura mountain where a similar
management and controlling system prevail. These inventory data from the practice are
non-experimental and are not based on individual tree monitoring, which makes their
analysis more complex than data from permanent plots.

The objective of this study is to explore the potential of machine learning for model-
ing growth dynamics at the level of diameter classes from the available inventory data of
the Canton of Neuchatel. From a practical point of view, the aim is to determine if a model
of this type can predict the evolution of the distribution of diameters that is specific to a
given stand with sufficient accuracy to serve as decision support for the planning and
implementation of cuts.

To achieve this goal, a machine learning workflow is implemented for data prepara-
tion and preprocessing, modeling, and evaluation of the models for their out-of-the-box
predictive performances. This workflow can iteratively refine the data preprocessing and
modeling steps. As to the modeling step, two main approaches are compared: (i) an ap-
proach based on fine-tuned linear models differentiated per diameter class, analogous in
spirit to previous matrix models [11], (ii) an approach based on an artificial neural net-
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work trained on all diameter classes. The potential of these two types of models for pre-
dicting a future state at the stand level is analyzed in absolute terms, but they are also
compared with each other and with previous models found in the literature. Moreover, a
comparative analysis of features importance and the impact of data scarcity on model
performances is proposed. The best model is also evaluated for its ability to be used in
practice, i.e., for its ability to predict the evolution of the overall diameter distribution at
the stand level, and to predict increments of important aggregated variables.

2. Materials and Methods
2.1. Geographical and Climatic Context in the Canton of Neuchdtel

The canton of Neuchatel, in Switzerland, is located in the Jura Mountain range. Its
altitude stretches between 429 and 1552 m. Its climate is humid continental [17]. In terms
of altitudinal zonation, the territory of the canton is currently located in the submontane,
lower montane and upper montane zones [18]. Simulations of two possible climatic fu-
tures [18] also tend to show, in the canton, a transition from the lower and upper montane
zones to the submontane zone. The southern part of the Canton, located at a lower altitude
and in the minority, would even enter the foothill zone.

2.2. Brief Summary on Forest Management and Forest Data Collection in the Canton of Neuchi-
tel

The selection felling management that is historically applied in the canton of Neu-
chatel is an uneven-aged management method where silviculture is implemented on a
tree-by-tree basis. This type of management is based on periodic and situative cuts. The
selection of trees to be harvested is the result of multiple determinants (wood harvesting,
fostering tree vitality, fostering wood quality, continuous regeneration), but these cuts af-
fect all diameter classes and are characterized by a fairly constant harvesting intensity that
depends on the periodicity of interventions [2]. At the stand level, selective felling man-
agement results in the transformation to or the maintenance of a state of equilibrium that
can be expressed in terms of diameter distribution within a given stand. A typical example
of a diameter distribution at the stand level is shown in Figure 1.
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Figure 1. Example of a distribution of diameters in a forest division under selective felling manage-
ment (division number 2202, inventory of 1971).

Information on the state of a stand, including the diameter distribution, also helps
with the planning of the next cuts, as management goals on the stand level can be ex-
pressed as a desired state of equilibrium in terms of species mixture, standing volume,
and stand structure [2].

Cuts take place periodically, typically every 7 to 12 years (in the Canton of Neucha-
tel). The maintenance of the equilibrium is made possible by the fact that the harvesting
of given trees allows for a “continuous” natural regeneration within the stand and allows
for the further growth of trees in the intermediate strata.

Management by selective felling on a tree-by-tree basis is generally based on species
that are shade tolerant, at least in their youth, typically but not exclusively white fir,
spruce and beech. Since regeneration occurs in small patches and trees continue to grow
in intermediate strata in the shade of larger trees, heliophilic species are not suitable for
this type of management.

In the canton of Neuchatel, selective felling management has been implemented
through the so-called control method (Méthode du contrile) [3,15,16] since the end of the
19th century. This method is based on several important elements: complete inventory of
the stands (in particular individual diameters and species) between two successive cuts,
direct control (i.e., inventory) of all harvests (as well as forced harvests), definition of par-
cels with fixed boundaries as management units called divisions (a term that we use here-
after in lieu of stand). The diameters are recorded by class of 5 cm width and with an
inventory threshold of 17.5 cm. The classes are numbered from 1 to 24, and the center of
the class in cm is then obtained by the following formula ((#class — 1) * 5 + 20). From the
perspective of selective felling management, the purpose of collecting such systematic and
detailed information is to be able to accurately characterize the silvicultural state of a di-
vision, particularly with respect to the diameter distribution, so as to better plan the next
cuts. This information also allows for a detailed monitoring of forests at the division or
landscape level over time and thus helps in better forest planning at the landscape level.
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There are no direct data on recruitment and natural mortality (excluding windfall cases)
that are collected through this control method. The application of this method in Neucha-
tel allowed for the collection of the large data set used in this study.

2.3. Data and Data Preprocessing

This study is based on a standard machine learning workflow. The data collection
and preprocessing steps are presented in this section. Section 2.4 presents the data sets
building and features engineering steps, and Section 2.5 presents the modeling ap-
proaches.

The raw data consist of a record of the absolute number of stems in a division for a
given inventory year, species and diameter class. These data are subjected to prepro-
cessing, which consists of the following steps.

Step 1. The absolute numbers of stems per division are converted into numbers of
stems per hectare. The areas of the divisions, whose boundaries are administratively set
and (persistently) fixed, are known and could be found for 98% of the divisions mentioned
in the data set. The remaining divisions were discarded. Meanwhile, the main forest site
of each division (in terms of area) is integrated into the data set. Forest sites are given
according to the typology of Ellenberg and Klotzli [19].

Step 2. Only divisions that have been inventoried at least twice are kept, i.e., divisions
for which it is possible to calculate increments over at least one period are kept, which
corresponds to 95% of the divisions kept thus far. From this step on, the inventory data
are organized by couples (division, inventory year). This couple designates the state of a
division at a given date, but it also designates the period between the inventory year and
the date of the next inventory to which cuts and windfalls are associated (see step 4) and
for which it is possible to determine increments.

Step 3. Only the couples (division, inventory year) whose species are compatible with
selective felling management are retained. The three usual species in this management
method are white fir, spruce and beech [16], but the presence of other species that are
sufficiently tolerant to shade, in the minority or minority, cannot be excluded. Therefore,
the following criteria were defined: the majority species (in terms of basal area) must be
among fir, spruce or beech, the 2nd majority species must be among fir, spruce, beech,
maple, or ash, and the 3rd majority species must be among the same species or flowering
ash or be another deciduous species.

Table 1 is a contingency table of the number of couples (division, inventory year)
according to their first and second majority species, before application of step 3. The table
reveals that the divisions that meet the filtration criteria of step 3 are overwhelmingly in
the majority, reflecting the importance of the selective felling management in the Canton
of Neuchatel. The table also reveals that most of the situations that do not meet the defined
criteria correspond to couples (division, inventory year) where the 1st or 2nd majority
species is oak. These situations may correspond to even-aged stands preferentially located
in the south of the canton on less elevated grounds and on forest sites that are better
adapted to oak.

Table 1. Contingency table of couples (division, inventory year) according to the 1st and 2nd ma-
jority species (for simplicity of representation, the 2nd majority species that had less than 10 couples
for all 1st majority species combined are not reported in this table).

2nd Majority Species
; Oak Scots Maple Other De- Other
Spruce  Fir  Beech (Sessile) Pine (Syca-  Ash ciduous Aspen Resinous
more)
1st major- Fir 1412 0 544 5 5 3 1 11 15 0
ity spe- Spruce 0 1053 444 15 6 85 7 23 8 0
cies Beech 201 317 0 143 19 25 5 2 0 2
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Oak (sessile) 2 14 124 0 5 0 0 0 0 8
Scots pine 5 16 18 7 0 0 0 2 0 0
Larch 1 0 0 0 0 0 0 0 0 0
Other resinous 1 0 14 9 0 0 0 4 0 0
Other deciduous 3 12 0 0 3 0 0 0 0 0
Black pine 3 0 0 3 2 0 0 0 0 0
Poplar 0 0 0 0 1 0 2 0 0 0
Ash 4 0 0 1 0 0 0 0 0 0
Step 4. The inventory data are merged with the respective data on decided cuts and
windfalls, which are formatted in the same way. The data on cuts and windfalls are asso-
ciated with couples (division, inventory year) when the cuts and windfalls occur in this
division and between the inventory year and the date of the next inventory.
Step 5. The temporal gap between two successive inventories in the same division is
variable, see Figure 2.
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Figure 2. Histogram of the time gap between two successive inventories in a given division.

There are a large number of successive inventories that are 7 to 12 years apart but
also many successive inventories that are 20 to 24 years apart. In the first case, the inven-
tories were carried out before and after the same cut and correspond therefore to the
standard application of the control method. In the second case, there are several cuts be-
tween two successive inventories. The standard application of the control method is actu-
ally historical in the Canton of Neuchatel, but it has since been adapted, and the current
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legislation provides for an inventory at least every 25 years for each division, which cor-
responds to 2 or 3 cutting cycles. In some divisions of historical or technical importance,
inventories are maintained on the basis of one inventory per cutting cycle.

The goal of this study is to simulate growth dynamics recursively, i.e., we want to
predict the state of a division at date t + At from its state at date t. This is a pragmatic
approach that is well suited to the development of the model and its use in practice. The
duration At does not need to be constant (see Section 3), but it must be within an interval
whose definition meets two constraints: (i) the possibility of finding data describing dy-
namics over such periods; (ii) the relevance of these durations At for a use of the model
as a decision support in practice. Figure 2 shows that the available data correspond to
durations from 8 to 26 years. However, this interval is too wide for model development.
The diameter data are given in 5 cm diameter classes. For a relatively large annual diam-
eter increase of 5 mm.year™, a tree takes 10 years to completely cross a diameter class.
Over a period of 20 years and more, with such an increase, a tree can pass through two or
more diameter classes. The growth mechanisms in the sense of recursive modeling cannot
therefore be the same over these two types of periods. We choose to focus on durations
At of up to 12 years. This interval allows the model to be used over a sufficiently long
period to assist in planning the next cut, and it is possible to use the models recursively to
simulate dynamics over longer periods. Data corresponding to gaps of more than 12 years
between two successive inventories are left out, so that only 52% of couples (division,
inventory year) that had been retained until then are kept.

Step 6. Much of the harvest data are not available. All the data on the cuts, some of
which are old, have not yet been compiled and digitized. This gap in the data leads us to
keep only the couples (divisions, year of inventory) for which cuts and windfalls are
known, i.e., 38% of the couples that had been kept until now. In addition, a few outliers
(in small numbers) that stand out by cutting intensities that are much too strong for the
selective felling management are also set aside.

Step 7. The number of trees in the upper diameter classes is small or even negligible
and therefore does not allow for a reliable modeling of the growth mechanisms among
these classes. Therefore, the data must be truncated at a given diameter threshold. The
number of trees that are beyond diameter class 16 (class 24 is the maximum class), i.e.,
trees with a diameter strictly greater than 97.5 cm, are relatively rare compared to the
lower classes; they represent about 0.07% of the trees remaining in the data set at this
stage. Such a threshold is also high enough that it is not a problem for practical use of the
model; thus, we chose this threshold to truncate the data. Nevertheless, simply ignoring
trees beyond class 16 could be problematic in some cases. These trees are few in number
but large and can therefore have a non-negligible impact on the growth of other trees. For
this reason, only couples (division, inventory year) that meet the following criteria are
retained: a maximum of 0.5 trees per ha above class 16 in the division and a maximum of
0.125 trees per ha above class 16 for cuts or windfalls. These criteria were defined partly
arbitrarily but in the search for a compromise between filtering potentially biased data
and keeping a sufficient volume of data. At the end of this step, 77% of the couples (divi-
sion, year of inventory) that had been kept until then remain.

In the end, after this preprocessing, there are data on 580 couples (division, inventory
year), and for each couple, there are data on 16 diameter classes. Individual observations
in the data set then correspond to triplets (division, inventory year, diameter class). The
mean basal area of remaining couples (division, inventory year) is 28.0 m2ha' (the stand-
ard deviation is 7.26). Despite a strong filtration, the volume of data remains important
for a study of this type. The data are moreover complete and consistent.

2.4. Data Buildings and Features Engineering

The objective is to develop a model or a set of models to predict the gross annual
increment in the number of stems per hectare for a diameter class d (if there were neither
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cuts nor windfalls, hence the gross increments), noted AN,;. AN; will be the endogenous
variables in our models. They can be calculated as follows:
ANd _ (Nafter,d - Nd + Ncut,d + Nwindfall,d) (1)
At

In Equation (1), N; denotes the number of stems per hectare in diameter class d at
the time of the first inventory, Ngsierq the number of stems per hectare in diameter class
d atthe time of the subsequent inventory, Ncyq and Nyinaraua the respective numbers
of stems cut or windfallen per hectare in diameter class d between these two inventories,
and At denotes the duration in years between the two successive inventories.

Following exogenous variables (also called features) are defined for use in the models
(all of which are expressed per hectare, except the diameter class):

1. The diameter class d;

2. The number of stems per diameter class at the time of the first inventory, aggregated
by species type (resinous/deciduous) N,esinousa’ aNd N geciguousa’s OF aggregated for
all species Ny (for 1 < d' < 16);

3. The corresponding basal areas (calculated from the N features and the centers of di-
ameter classes): Gresinousa’s Gaeciauousa’s and Ggr (for 1 < d' < 16);

4. The numbers of stems cut and windfallen (aggregated for all species) and expressed
on an annual basis:

_ Ncut,d
Nannual cut,d — At 4 (2)
Nwindfall,d
Nannualwindfall,d = At . (3)

e The total number of stems per hectare N, and the total basal area per hectare G,
are calculated too;

e  The basal area of all trees overlying a given diameter class is used as an indicator of
the competition to which this diameter class is subject. This variable, denoted Gy,
(for cumulative basal area), is defined as the sum of the basal areas of every tree larger
than the considered diameter class [4,5], in our case:

dmax
Geuma = z Gy (4)
a’'=d+1

e  The number of stems cut or windfallen annually in the overlying classes (as an indi-

cator of the regulation of competition for a given diameter class):

16
Noverlying annual cut,d = Z Nannual cut,d’s (5)
d'=d+1
16
Noverlying annual windfall,d = Nannual windfall,d’* (6)
d'=d+1

This set of features includes indicators of the current state and structure of the divi-
sion (Nyesinousa’s Naeciavousa’s Na» Gresinous,a’s Gaeciduousa’» Ga')s indicators of density at
the division level (N, Gior), an indicator of competition at the diameter class level
( Geuma ) and indicators of sylvicultural management
(Nannual cut,d» Nannual windfall,d» Noverlying annual cut,d» Noverlying annual windfall,d )/ all of which
can potentially provide additional insight into forest growth. As an additional explana-
tion, the G, of a diameter class measures the density of trees in overlying diameter clas-
ses. Since competition between trees is on average exerted by larger trees on smaller trees,
Geym effectively measures the competition exerted on a given diameter class within a
given division. When some of the trees in these overlying diameter classes are cut or wind-
fallen, the competition exerted on the diameter class may decrease, hence the role of

Noverlying annual cut and Noverlying annual windfall-
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These dendrometric variables represent a classical set of variables used in forest sci-
ences to describe the state and dynamics of a forest stand. In addition to these dendromet-
ric variables, the main forest site for each division is also used as a feature [19].

2.5. Modeling Approaches

This study is based on two main modeling approaches: (i) fine-tuned linear models;
(ii) an artificial neural network (a multilayer perceptron regressor). The criterion for refin-
ing and comparing models is a coefficient of determination R? calculated on a set of test
data that are not used for training the models. This test data set accounts for 20% of total
available data. Test data are selected among couples (division, inventory year), not at the
level of triplets (division, inventory year, diameter class). Prediction performances are
therefore measured on divisions that are completely unknown to the models, which is
crucial to test the capacity of the model under practical conditions. The principle of parsi-
mony, which with equal or almost equal performance, leads to favoring the simplest mod-
els, is also applied, as well as the search for models that are consistent with theoretical
considerations on forest growth.

Algorithms for data transformation, model training and model evaluation are de-
rived from the sklearn library (version 0.23.1, and version 1.0.2 for the SplineTransformer,
[20]). Other important libraries are pandas (version 0.24.2, [21]) and numpy (version
1.19.5, [22]).

2.5.1. Detailed Method for Linear Modeling

Linear models are refined following a usual machine learning workflow so as to find
the best possible combination of features, data transformation and (linear) regressor. This
type of model provides transparent and easily interpretable results from the point of view
of forest growth. Moreover, their linearity and the relatively limited number of parame-
ters make them resilient to overfitting problems when sufficient data are available.

Past studies clearly show the essential role of diameter as a predictor of diameter
growth [5,9]. However, the effect of diameter is not necessarily separable from the effect
of other features. For example, there is no reason that the effect of forest density, compe-
tition between trees or harvesting be expressed in the same way on trees of (very) different
diameters. In order to take into account these interaction effects (which could turn out to
be non-linear) without complicating the modeling process, a distinct model is estimated
for each diameter class, resulting in a total of 16 linear models. In order to maintain overall
consistency, a common specification (choice of features) of these different models is pro-
posed; only the transformation of the features and the estimation of the coefficients are
distinct.

The selection of features is an important and sensitive step in a machine learning or
statistical workflow. The principle of parsimony suggests keeping only the features that
bring significant additional information to the model. This allows one to obtain a more
robust model by limiting multicollinearity problems and facilitates the interpretation of
the regression results.

In this study, the features selection is based on a mix of three approaches: (i) Recur-
sive Feature Elimination; (ii) Stepwise Regression by Backward Elimination; (iii) theoret-
ical considerations on forest growth.

Recursive Feature Elimination consists in successively and iteratively removing fea-
tures from a model from the least to the most important one [23,24]. In the context of a
linear model, the relative importance of the features is given by the numerical order of the
regression coefficients in terms of absolute value (which are recalculated at each iteration).
This purely empirical method makes it possible to obtain a first systematic ranking of the
features according to the information they bring to the model. However, this approach is
limiting for two reasons. The application of this method is sensitive to scale effects and
therefore to the transformation of features (e.g., standardization). Furthermore, this ap-
proach does not take into account multicollinearity effects.
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In order to complete this approach, a Stepwise Regression method with Backward
Elimination is applied [25]. This method is based on the successive and iterative elimina-
tion of features, but the elimination is performed on the basis of a model fit criterion. At
each iteration, the eliminated features are those that decrease the least (increase the most)
fit criterion, here a test R2. This allows one to take into account the multicollinearity effects.
In this study, this method is applied at the level of groups of features (e.g., forest sites,
density indicators) so as to identify the groups of features that can be removed and those
that should be kept in the model. Theoretical considerations help in the definition of
groups and further engineering of features. Proceeding by groups also facilitates a com-
mon specification for all models.

The models are also optimized from the point of view of the transformation of the
features (e.g., standardization) and the choice of a regressor (choice of the loss function,
regularization, fine-tuning of hyperparameters). To do so, different specifications are
tested in order to find the combination that maximizes the test R2.

In all cases (features selection, estimation of the final models), the fit criterion used is
a coefficient of determination (R?) measured on a set of test data not used for training the
model and representing 20% of available observations. The root mean squared error
(RMSE) is also calculated as additional information (also computed on test data sets). The
advantage of the RMSE is that it expresses an average estimation error in absolute value,
in the unit of the predicted variable. The evaluations of test R? and RMSE are always av-
eraged on 10 different train-test splits.

2.5.2. Detailed Method with Multilayer Perceptrons

The use of a multilayer perceptron [26,27], which is a nonlinear model, allows for a
more generic and flexible modeling approach. A multilayer perceptron with at least one
hidden layer (hence multilayer) can serve as a universal approximator [28], in the sense
that it can approximate with a finite number of neurons any continuous function (on par-
ticular subdomains, see [28] for further details). The scikit-learn library [27] provides such
a ready-to-use regressor. In this case, potential exogenous variables can be all pooled to-
gether because this model fits to non-linear effects and interaction effects. However, this
type of model, usually based on a large number of parameters (at least larger than linear
models), requires large volumes of data to avoid overfitting. In addition, results (the esti-
mated values of parameters) are harder to interpret. The volume of data used in this study
is comparatively large, but it is not large in the sense of big data. One of the objectives of
this second modeling approach is to analyze the potential of the multilayer perceptron for
this modeling problem based on a large but probably limiting data set.

The multilayer perceptron regressor was trained to directly predict the gross num-
bers of stems (without the removal effect from cuts or windfalls) by diameter class at the
end of a growth period of duration At: Nggier grossa- This direct approach, without going
through increments, resulted in better predictive performances. Only one model was
trained instead of separate models for each diameter class. Therefore, the training of this
model is based on 9280 entries, which is a comparatively large volume of data for this type
of application.

The exogenous variables (features) presented in Section 2.4 were all retained, and
several features were even added: the diameter (center of the class), the length of the
growth period At, which differs from one couple (division, inventory year) to another, as
well as the forest site. The model hyperparameters: the number of hidden layers, the num-
ber of neurons in hidden layers, and the regularization parameter [27], are tuned by
gridsearch and cross-validation. The fit criterion is also a coefficient of determination (R?)
measured on test data representing 20% of available observations. The root mean squared
error (RMSE) is computed too. Results are all averaged over 10 different train-test-splits.
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A permutation importance procedure [29] is also applied to a fitted multilayer per-
ceptron. This procedure determines the importance of each feature to the model by meas-
uring the model score loss (here the test R?) when the entries for this feature are randomly
shuffled (the shuffling and the measure are here repeated 30 times for each feature).

3. Results
3.1. Results of the Linear Modeling
3.1.1. Features Selection

The best results with linear models are obtained by training a separate model for each
diameter class. These models are of the following form for any diameter class 1 < d < 16
and for each couple (division, inventory year) i:

ANa’l:i = .Bg + ﬁg—z ’ Nc,i—z,i + Bg—l ! Nc,l—l,i + Bg ’ Nc,i,i + ﬁc‘ii+1 ’ Nc,i+1,i +oet Bgmax(d)

@)

N d . i d N .
Ndmax(d),i + ﬁcut annual cut,d,i + ﬁwindfall Nannual windfall,d,i + €ai

B are the regression coefficients corresponding to the model of diameter class d.

The results of the Recursive Feature Elimination procedure are presented in Table A1l
in Appendix A (note that these results are based on the optimal features transformation
and the optimal regressor presented in Section 3.1.2). The results show that the most im-
portant features for predicting the variation of the number of stems in a given diameter
class d, i.e., AN,, are the initial number of stems N; and basal area G, in this class, as
well as annual cuts Ngpnyai cut,q @nd to a lesser extent annual windfalls Nypnyai winafaia
occurring in this class. The number of stems (N,csinous/decidquousa’) and basal area
(Gresinous/deciduous,q’) In the different classes (1 < d’ < 16) play a highly variable role that
differs in part between models. Annual cuts in the overlying diameter classes
Novertying annuat cut,a are of intermediate importance. The features Geym , Gior »
Novertying annuat windfairas Neor and forest sites play a less important role.

Following this order of importance, a Stepwise Regression with Backward Elimina-
tion is conducted by a group of features. The detailed results are presented in Table A2 in
Appendix A (note that these results are based on the optimal features transformation and
the optimal regressor presented in Section 3.1.2). In this procedure, the features corre-
sponding to the forest sites are eliminated, then Ny, and G, then Giypmq, then
Noverlying annual cut,d and Noverlying annual windfall,d- Then, there is the PrOblem of multicol-
linearity between the features Nesinous/aeciduousa @A Gresinous/deciauous,a (due to the

2
identity G = N-m- (g) ). Since the objective of the models is to predict variations in the

number of stems, the G features are eliminated. Then, the N, gnousa’ and Ngeciquous,a’
features are added together, yielding the N, features (with 1 < d’ < 16). Finally, the
N, features can be adjusted to take into account certain characteristics of forest growth,
such as the fact that in the short/medium run (around 10 years), trees of a given diameter
normally have little influence on the dynamics of much larger diameter classes (see a full
explanation below in this section). The eliminations or adaptations mentioned thus far do
not lead to a strong and uniform degradation of the test R? of the different models com-
pared to the models with all features (see Table A2). However, the elimination of
Nannuat cuta AN Ngnnyar winarana 1€ads to a noticeable and uniform degradation of the models.
Thus, these latter features are kept, resulting in the models given in Equation (7) above.
As to the adjustment of features N ;/, when modeling the increment in the number of
stems for a diameter class d (AN;), among underlying classes, only the two preceding
ones (d —1 and d — 2) provide relevant information. Some stems in these classes may
enter class d during the growth periods considered in the data, typically 7 to 12 years.
Trees in classes lower than d — 2 do not have the time to grow as much (at least 10 cm in
diameter) over a period of 7 to 12 years. Moreover, trees in those lower classes normally
exert no competition (or limited competition) on trees in class d. The corresponding var-
iables can therefore be eliminated since they would only capture statistical noise (overfit-
ting). This verifies empirically when fitting models on unadjusted features N,. In the
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same way, it is not always necessary to keep all the variables corresponding to numbers
of stems in classes higher than a given class, i.e., d,q, is not necessarily equal to 16 in all
cases (see Equation (7)). These d,,,, values are adjusted for each model separately so as
to optimize the model’s performances (through a trial and error approach). A detailed
analysis of the value of the regression coefficients and the role of each feature in the linear
models is presented in Section 3.1.4.

3.1.2. Features Transformation and Optimization of the Regression Procedure

Despite their relative simplicity, linear models can be significantly improved by
transforming the endogenous and exogenous variables. The exogenous variables (fea-
tures) are each subjected to a standard scaling (noted by an apostrophe in Equation (7)
above). This usual transformation is obtained by removing the mean and scaling to unit
variance. The endogenous variable is subjected to a Yeo-Johnson transformation [30]. This
transformation is noted by a double apostrophe in Equation (7). This non-linear transfor-
mation can reduce the skewness of a distribution and solves the heteroscedasticity prob-
lem that was visible on the residuals plots. This transformation is similar to the Box-Cox
transformation [31], which is better known, but it accepts negative values as an argument,
which is necessary in our case. The Yeo-Johnson transformation improved the perfor-
mance of the models of classes 1 to 12 (as a reminder, classes are 5 cm wide, and the center
of a class in cm = (#class — 1) x 5 + 20). For classes 13 to 16, this transformation did not
improve performances, and it even deteriorated them. The transformation was therefore
applied only to classes 1 to 12. These two transformations (standard scaling of the exoge-
nous variables and Yeo-Johnson transformation of the endogenous variable) were per-
formed separately for each model. B-splines transformations [32,33] on the exogenous var-
iables were also tested. This type of non-linear transformation, related to the generalized
additive modeling (GAM) approach, allows for non-linearity effects between the respec-
tive exogenous variables and endogenous variable. The use of this transformation did not
produce strong and unambiguous results (performances were slightly better for half of
the diameter classes and slightly worse for half of the diameter classes with no particular
order among these diameter classes). By principle of parsimony and to keep a common
structure to our models, this transformation was left aside.

Finally, best performances were obtained using a Huber loss function [34,35]. This
loss function is quadratic below a given error threshold but linear above this threshold,

which can limit the weight of points that stand out (e.g., residual outliers). Moreover, a
regularization term of type L2 is added to the loss function [36], which can control the
overfitting in a systematic way. Note that this regularization term makes the models non-
linear in the strict sense. A Stochastic Gradient Descent regressor [36] is used to train the
model, and the hyperparameters related to the Huber loss function and the regularization
term are tuned by gridsearch and cross-validation.

3.1.3. Performance of Linear Models

The performances obtained for the different linear models are presented in Table 2.
As the train-test-split is random, it is repeated 10 times, and the table therefore presents
averaged results. Table 2 gives the test R2s for the prediction of transformed annual incre-
ments of the number of stems per hectare AN",,,c4ict.q,- The table also shows the test R2s
for predicting gross (i.e., if neither cuts nor windfalls occur) stem counts at the end of the
growth period, ie, based on the errors between the Nyfiergrossai and the

Npredict after gross,d,i [6]:

Nafter gross,d,i = WNafter,d,i + Ncut,d,i + Nwindfall,d,i' (8)
Npredict after gross,d,i — Nd,i + ANpredict,d,i - At. (9)
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Table 2. Performances of the models measured by R? and RMSE scores for respective prediction of
AN"4; and Ngfier grossa,i (the overall R? is measured on the whole data set when the models are
trained on the whole data set).

Test R2 for the Test R2forthe Overall R2for Test RMSE for Mean of Real

Diameter Class Diameter Prediction of  Prediction of the Prediction of the Prediction of Ngfier grossd,i
Range '
AN di Nafter gross,d,i Nafter gross,d,i Nafter gross,d,i Values
1 [ 13.6% 82.4% 82.0% 15.3 stems/ha  66.2 stems/ha
2 [22.5;27.5] 55.2 93.5 93.2 7.1 49.0
3 [27.5;32.5] 64.5 934 93.5 5.7 40.2
4 [32.5;37.5] 71.6 92.9 92.4 44 322
5 [37.5;42.5] 66.9 91.3 91.7 3.5 25.8
6 [42.5;47 5] 60.5 89.2 91.4 2.9 19.8
7 [47.5;52.5] 54.7 90.3 92.0 24 14.9
8 [562.5;57.5] 49.0 88.7 90.8 2.1 10.4
9 [567.5;62.5] 51.2 90.6 90.9 1.6 7.3
10 [62.5;67.5] 56.1 90.4 90.9 14 4.7
11 [67.5;72.5] 58.1 89.6 89.7 1.0 2.7
12 [72.5;77.5] 61.5 88.0 88.0 0.7 1.6
13 [77.5;82.5] 60.6 84.2 85.3 0.5 0.8
14 [82.5;87.5] 50.5 74.5 79.7 04 04
15 [87.5;,92.5] 53.8 69.8 72.9 0.2 0.2
16 [92.5;97.5] 57.3 65.9 70.8 0.1 0.1
All classes 90.3% 96.7%
combined

The plots of the residuals (corresponding to one of the train-test-split) for the 16 mod-
els are presented in Figure A1l in Appendix B. A review of the histograms giving the dis-
tributions of these residuals (not shown here) shows Gaussian-type distributions centered
in 0.

The results for the predictions of AN";; are satisfying except for class 1 (17.5cm <

d < 22.5cm). Since there are no data on the number of stems for diameter classes below
17.5 cm, it is impossible to precisely predict the number of trees that will enter class 1 dur-
ing the growth period, i.e., the recruitment rate of our set of models, hence the limited
performance. For the other models, test R?s range typically from 50% to 70%. These models
manage to predict most of the variance of the AN";; based on the initial state of a division
Ng; (and on cuts Ngpnyaicuta; and windfalls Ngpnyar winaraiai) for cases that were not
used for training the model. Using these predicted increments (after inverse transfor-
mation) to predict stem counts at the end of the growth period also produces satisfying
results, mechanically better than the prediction of increments since the initial stem counts
are known and largely explain the stem counts 7 to 12 years later. All diameter classes
combined, the models predict future stem numbers with a test R? of 90.3%. The root mean
squared error (RMSE) indicates the average difference between predicted values and real
values in absolute terms. It is here computed on Ngfier grossa,; Teal and predicted values
and can be compared to mean real values of Nyfier gross,a,i- Table 2 shows that RMSE val-
ues are satisfyingly small compared to mean values, although performances decrease no-
ticeably for diameter classes above 10 (d = 10) and are mediocre for diameter classes
above 13 (d = 13). These figures can be compared to the result obtained with the artificial
neural network approach (see below).

The models are then retrained on the whole data set to determine the final regression
coefficients. Table 2 presented above shows corresponding R2s, which are in this case
training R? s. Those training R2s are close to the test R2s presented before, showing an
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absence of overfitting (or limited in the higher diameter classes), which is normal given
that the linear models have relatively few features and have been trained on a fairly large
data set (580 observations each).

3.1.4. Analysis of the Regression Coefficients

The regression coefficients corresponding to the training on the whole data set are
presented in Table A3 in Appendix B and are shown in Figure 3 as a heatmap for ease of
exposition and interpretation. Because of the transformations undergone by the variables
(Yeo-Johnson and standard scaling, for each diameter class separately), the coefficients
are difficult to interpret in absolute terms, but their sign can be interpreted, as can their
relative values within a given model.

class 2
class_4
class 5
class 6

N'_class_3

N'_class_7
N'_class_8
N'_class_9
N'_class_10
N'_class_11
N' class_12
N'_class_13

z z =z z

N'_class_14
N'_class_15
N'_class_16

Regression coefficients related to the transformed number of stems per ha in the different diameter classes

Figure 3. Heatmap of the regression coefficients for the models given by Equation (7) (the values are
given in Table A3 in Appendix B).

For diameter classes greater than 1 (diameters greater than 22.5 cm), a common pat-
tern is visible. This pattern is similar to the results presented in [13], despite the differences
due to our data transformations. This pattern is also clearly visible when displaying the
coefficients for a given model on a graph, see for example, Figures 4 and 5.
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Figure 4. Regression coefficients for the model of diameter class 5, associated with transformed fea-
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Figure 5. Regression coefficients for the model of diameter class 8, associated with transformed fea-
tures Ng.
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The effects of the respective features are comparable within the same model despite
different numbers of stems depending on the class (high for small classes to low for large
classes) because these features have been scaled to the unit variance. The increment in the
number of stems per ha AN, of a given diameter class d is positively influenced by the
number of stems per ha in the two directly underlying classes (d — 1) and (d — 2). These
are the trees whose growth will allow them to move from class (d — 1) to d or from class
(d —2) to d during the growth period.

The number of stems in class d, however, has a negative influence on the increment
of class d. This effect corresponds to the trees that will leave class d and move to the
overlying classes during the growth period. The effect of the overlying classes is negative
but more difficult to interpret. In general, only the directly overlying classes seem to have
a slight negative influence on the increment of the number of stems in a given class. It can
be assumed that there is some competition between close diameter classes, provided that
there is some spatial proximity between trees of these classes. This can be the case in small
and intermediate classes. It is more uncommon for the largest trees whose neighborhood
at their height is generally more sparse (those trees have already been fostered by previous
cuts). Classes much larger than a given diameter class did not seem to play a clear and
strong role on the increment in that class, either because of a lack of strong competition
between trees of different diameters (e.g., due to spatial differentiation) or because this
competition effect is relatively constant across divisions and that without variability, the
models fail to quantify this effect. For this reason, the corresponding features were not
included in the model. The threshold for not including these features in the model, d,q
in Equation (7), depends on a given diameter class, hence the notation d,q,(d).

For class 1, the situation is different for the reasons already stated, which have to do with
the lack of information on the underlying classes. In this case, the model performed better by
keeping all features corresponding to the overlying classes. Figure 6 shows the value of the

regression coefficients associated with features N (see Equation (7)) for the diameter class 1
model.
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Figure 6. Regression coefficients for the model of diameter class 1, associated with transformed fea-
tures Ng.
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The number of stems in class 1 has a negative effect on the increment in the same
class. This effect is explained by the trees that will leave this diameter class during the
growth period. The effect of the number of stems in the directly overlying diameter classes
is also negative. This could be explained by the existing competition between the trees of
these diameter classes and the trees of class 1. In contrast, the numbers of stems in the
larger diameter classes do not appear to have a significant effect on the increment of class
1. The latter two findings could be explained by the hypotheses made above.

Figure 7 shows the regression coefficients associated with the feature Ng,,ua1cuta
(see Equation (7)) for the different models.

4 6 8 10 12 14 16
Diameter classes

Figure 7. Regression coefficients corresponding to the transformed feature Ngnnya1 cut.a-

Figure 7 shows the gross effect of cuts in a given diameter class on the increment in
the number of stems in that same class, i.e., the indirect effect of cuts in a class on the
growth of trees in that class but without the direct effect of tree removal. The indirect effect
of cuts is positive for all diameter classes. Comparing diameter classes with each other is
less obvious because increments (a fortiori transformed according to Yeo-Johnson) do not
mean the same thing from one class to another; an increment in the number of stems will
necessarily be lower in the larger diameter classes. However, it may be that intra-class
competition is weaker in the larger diameter classes because the larger trees are more spa-
tially separated from each other (they have been fostered by previous cuts), compared to
the smaller classes. The pattern of regression coefficients associated with the feature
Nannuat windfaia i similar to that in Figure 7.

3.2. Results of the Modeling with the Multilayer Perceptron

The best topology had two hidden layers with 10 neurons each (among those tested:
one or two hidden layers, 5 to 100 neurons by layer in steps of five). The optimal value of
the regularization parameter (L2) optimally defined by the gridsearch is 100 in both cases,
an intermediate value among the values tested.
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Even though a unique model is trained for all diameter classes, its performances are
disaggregated by diameter class in order to compare the results with those of the linear
models. Results are presented in Table 3.

Table 3. Comparison of performances for predicting Nyfier gross,ai Petween the linear models and
the multilayer perceptron (MLP).

Diameter Test R? Linear Mean of Real
Diameter Class Models (Re- Test R MLP  Train R2 MLP Test RMSE MLP  Ngfier gross,d,i
Range .
minder) Values
1 [ 82.4% 81.4% 83.0% 14.3 stems/ha  74.9 stems/ha
2 [22.5;27.5] 93.5 89.7 91.5 8.3 59.1
3 [27.5;32.5] 93.4 90.4 91.5 6.4 49.1
4 [32.5;37.5] 92.9 85.8 88.2 5.6 39.1
5 [37.5;42.5] 91.3 82.7 86.2 4.8 31.3
6 [42.5;47.5] 89.2 81.1 84.1 4.0 24.0
7 [47.5;52.5] 90.3 80.3 83.2 3.6 18.4
8 [52.5;,57.5] 88.7 78.8 81.2 3.1 13.3
9 [57.5;62.5] 90.6 79.3 82.3 2.5 9.4
10 [62.5;67.5] 90.4 75.5 80.5 2.1 6.1
11 [67.5,72.5] 89.6 61.4 74.6 1.9 3.7
12 [72.5;77.5] 88.0 47.0 66.7 1.4 2.1
13 [77.5;82.5] 84.2 16.1 55.1 1.2 1.3
14 [82.5;87.5] 74.5 -85.5 20.3 1.0 0.6
15 [87.5;92.5] 69.8 —298.8 -87.5 0.8 0.3
16 [92.5;97.5] 65.9 -1133.7 -389.3 0.8 0.1
All classes com- 90.3% 96.1% 96.5%
bined

The analysis of results by diameter class shows that the multilayer perceptron results
in lower and more heterogeneous performance than the linear models. The performance
is close for some diameter classes (the lower diameter classes for which a large volume of
data are available), and it is inferior in the higher diameter classes. For classes 14, 15, and
16, for which there are limited data, the multilayer perceptron is apparently totally unable
to predict future stem numbers. In the case presented in Table 3, the model with two hid-
den layers of 10 neurons each is relatively complex (in comparison to linear models pre-
sented in Section 3.1), which gives good results in the lower classes but produces overfit-
ting and thus bad results in the higher classes. This hypothesis is confirmed by comparing
the training and test R? at the level of the different diameter classes. These two scores are
close for the low and intermediate diameter classes (1 < d < 9) but diverge for the higher
diameter classes (and the higher the class). This reflects overfitting in the higher diameter
classes. For the two highest classes (15 and 16), even the training R?s become negative,
reflecting the fact that the MLP is no longer able to learn from the data even through over-
fitting. This is due to the scarcity of data in the higher classes. There are few trees this large
in the data set and thus many null features for these diameter classes.

The performance of the multilayer perceptron seen on the whole data set is however
better than that of the linear models. As the multilayer perceptron has been trained on the
whole data set, its objective is to minimize the errors on the whole data set, which leads
to this better global result.

The results of the permutation importance procedure are shown in Table 4.



Forests 2022, 13, 1432

19 of 35

Table 4. Results of a permutation importance procedure on the multilayer perceptron (with 30 rep-
etitions). Only main features for which the loss in test R? is above 0.001 are mentioned in the table.

Feature Test R? Loss (Permutation Importance)
Na 0.6522
d (diameter class) 0.2012
Gy 0.046
Noverlying annual cut,d 0.0085
chm,d 0.0026
Gresinous,l 0.0025
Nresinous,l 0.0021
Ndeciduous,l 0.0011

The information extracted by the multilayer perceptron is related to the initial state
of the diameter class (above all the number of stems N; but also the basal area G4 in this
class), the diameter (d), an indicator of the competition regulation (Noyeriying annuat cut,a)r
an indicator of competition (G, ¢), and information on the initial state of the 1st diameter

ClaSS (Gresinous,ll Nresinous,l' Ndeciduous,l)-

3.3. Results of Linear Modeling at the Forest Division Scale

Linear models perform better for predictions at the diameter class level, which are
important from a silvicultural point of view. In particular, linear models also produce
good results for larger diameter classes. In addition, due to their simplicity and transpar-
ency, linear models are much easier to interpret in terms of forest growth, which facilitates
the quality control. Linear models could be used as a decision support tool for the plan-
ning of cuts in forests under selective felling management.

The performance of these models is also convincing when tested in real situations.
The linear models are applied on whole test divisions (completely unknown to the mod-
els) to predict the increment of the number of stems in each diameter class. These incre-
ments are then used to calculate the raw stem counts (i.e., without tree removal from cuts
or windfalls) at the end of the growth period and can be compared to the actual values.
Figures 8-11 show the results for four couples (division, inventory year).
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Figure 8. Overall prediction quality control for the division 1974 inventoried in the year 2003.
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Figure 9. Overall prediction quality control for the division 2240 inventoried in the year 1947.
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Figure 10. Overall prediction quality control for the division 809 inventoried in the year 1989.
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Figure 11. Overall prediction quality control for the division 1878 inventoried in the year 1983.
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Figures 8-10 show quite contrasting situations for which the models produce good
results. The predictions for the first diameter class are rather approximate due to the lower
performance of this model. However, results are particularly convincing for intermediate
classes, which correspond to the best performing models. Figure 11 shows an example
where the models produce poor results, which happens for a small minority of the divi-
sions tested.

Linear models also perform well for predicting increments of some aggregate fea-
tures at the division level, e.g., number of stems per ha N, basal area per hectare G, and
standing volume V. Prediction tests are this time performed on all couples (division, in-
ventory year) to keep the number of points large. This is not a problem, as the overfitting
of linear models is extremely limited.

For each couple (division, inventory year), the linear models are used to predict the
AN and AG at the end of the corresponding growth period. The predicted values are then
compared to the actual values. For AN, an R? of 52.3% is obtained, or a mean absolute
error of 13.2 stems.ha™l. For AG, an R2 of 42.5% is obtained, or a mean absolute error of
1.37 m2.ha™. Figures 12 and 13 show the corresponding residuals plots.
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Figure 12. Residuals plot for AN predictions at the level of couples (division, inventory year).
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Figure 13. Residuals plot for AG predictions at the level of couples (division, inventory year).

In selective felling management practice, variables N, G and V are often disaggre-
gated by large diameter classes; in the Canton of Neuchatel, those classes are: small woods
(17.5 to 32.5 cm), medium woods (32.5 to 52.5 cm) and large woods (>52.5 cm). Disaggre-
gating the variables into these three classes provides concise information about the struc-
ture of a division. The predictive capacity of our models for AG in these three respective
classes is tested. For small woods, we obtain an R2 of 66.2%, i.e., a mean absolute error of
0.46 m2.hal. For medium woods, we obtain an R2 of 78.9%, that is, a mean absolute error
of 0.68 m2.ha'. For large woods, we obtain an R? of 41.9%, that is, a mean absolute error
of 0.73 m2.ha'. Figures 14-16 show the corresponding residuals plots.
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Figure 14. Residuals plot for AG predictions at the level of couples (division, inventory year) for the
small woods class.
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Figure 15. Residuals plot for AG predictions at the level of couples (division, inventory year) for the
medium woods class.
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Figure 16. Residuals plot for AG predictions at the level of couples (division, inventory year) for the
large woods class.

4. Discussion
4.1. Absolute and Comparative Performance of the Models Developed in this Study

The two modeling approaches followed in this study for modeling dynamics of the
numbers of stems by diameter class both produce compelling results, which differ from
each other. The linear models achieve better performance at the level of individual diam-
eter classes. More specifically, performances of the two model types are close to each other
for most diameter classes, but the performance of the linear models is much better for
larger diameter classes.

For the linear models, test R? coefficients typically range from 50% to 70% (excluding
class 1). These good performances are made possible by training a specific model for each
diameter class (a form of data panelization). The absence of overfitting in the case of linear
models indicates that the (large) volume of data available in this study is not limiting for
those models. However, the comparatively poor performance of the model for diameter
class 1 shows that the lack of data on the underlying classes (d < 17.5 cm) is naturally
limiting for predicting the evolution of the number of stems in this class.

As to the methodology, the implementation of a machine learning workflow, facili-
tated by existing technologies (in this case the scikit-learn library supported by the Python
language), could significantly improve the performance of linear models by iteratively
improving the features selection and transformation, as well as the selection of a loss func-
tion and a regressor. Train-test splits also allowed for an unbiased evaluation of model
performances in terms of predictive capabilities, which was rarely proposed in past infer-
ential statistical studies.

The multilayer perceptron provides the best performance at the global level for pre-
dicting the future number of stems with an average test R? of 96.1%. This is due to the fact
that only one model was trained on the whole data set and not independently for each
diameter class. The volume of data was considered insufficient to train a multilayer per-



Forests 2022, 13, 1432

26 of 35

ceptron per diameter class, as there would only be 580 observations per class. The multi-
layer perceptron shows heterogeneous performance in the diameter classes. The perfor-
mances are close to the linear models for the lower and intermediate diameter classes (be-
tween 17.5 and 62.5 cm), but they decrease quickly toward the large diameters. The anal-
ysis of the difference between test and training R? shows an increasing overfitting for the
diameter classes between 62.5 and 82.5 cm. Beyond 82.5 cm, the multilayer perceptron is
unable to learn from the available data. It is therefore clear that the volume of data avail-
able for this study is limiting for modeling growth with a multilayer perceptron beyond
62.5 cm. From a methodological point of view, the implementation of the multilayer per-
ceptron was much simpler than the fine-tuning of linear models.

4.2. Comparison of Performances with a Literature Benchmark

Both types of models developed in this study perform better than previously devel-
oped linear models for predicting dynamics at the diameter class level. For example, the
model in [12] achieves an R? (on the whole data set) of 40% or less for predicting the prob-
abilities of transition of trees between size classes. Our approach, differentiated by diam-
eter class and based on a larger number of features (notably the initial diameter distribu-
tion) produces better results. It is not possible to directly compare our results with the
results of models predicting individual tree diameter increment, but we can still note that
the orders of magnitude of the test R? obtained are similar to ours, 57% for the best model
in [4] and 53% for the best model in [9].

Aggregating the values predicted by our models for predicting increments of the
number of stems per hectare, basal area per ha, or standing volume per ha at the division
level produces relevant results for the practice of forest management. Nevertheless, the
prediction performance is inferior to the performance of models specialized on this ap-
proach and based on machine learning methods. One model in [8] based on an artificial
neural network achieves a test R? of 76%, and another model in [7], also based on an arti-
ficial neural network, achieves a test R? of 94% (versus 87% with linear regressions). This
better performance is enabled by specialized models that directly predict the aggregate
increment but probably also by the fact that these models are based on data from perma-
nent plots.

4.3. Comparative Analysis of Feature Importance

The feature selection conducted in the case of linear models and the feature importance
analysis conducted in the case of the multilayer perceptron result in partly different con-
clusions. It is interesting that the feature selection in the case of linear models has led with-
out this being the initial goal to models based on the concept of passage rates from one
diameter class to the next. Linear models based on passage rates are common in the litera-
ture [5,10-14], but they are usually specified as such initially. They are simple but general
models and are consistent with forest growth theory. The mainly empirical feature selec-
tion conducted in this study shows that this is also a powerful and parsimonious type of
model when the use of a linear model is imposed.

The analysis of feature importance in the case of the multilayer perceptron shows the
high importance of a limited number of features. These results are consistent with the the-
ory on forest growth and with the results of past studies. It is clear that the number of
stems (N;) or basal area (G,4) in a diameter class are good predictors of the number of stems
in that same class in the near future. The role of diameter d is also intuitive and has been
demonstrated many times [5,10]. Most interesting is the important role played by indica-
tors of competition (cumulative basal area G, 4) and of regulation of competition (cuts
in overlying diameter classes Noyyeriying annual cut,a) between diameter classes. The role of
Geym has already been demonstrated in previous studies [5,10] and is confirmed and quan-
tified here in a flexible and general-value model. The role of cuts in the overlying diameter
categories is clearly demonstrated here. The fact that the latter two variables (Gymq and
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Novertying annuat cut,a) Were not equally important in the linear models shows that the cor-
responding effects are likely to be non-linear. However, the linear models perform well
nonetheless by exploiting the information related to the initial structure at the division
level, which also reflects the competitive conditions. Finally, the particular importance of
the features related to the initial state of diameter class 1 ( Gresinous1, Nresinous1:
Ngeciauous,1) is probably due to the difficulty of predicting recruitment in the absence of
data on underlying classes, the initial state of this class 1 remaining the best predictor of
its future state.

However, one should be careful not to draw too general conclusions about the im-
portance of the features achieved in this study. For example, forest sites have a known
influence on forest productivity but are not considered important in the models developed
in this study. This does not imply that these parameters are negligible in general. The var-
iability of forest sites is relatively small at the scale of the Neuchatel forests managed ac-
cording to selective felling. Furthermore, our models focus on short- to medium-term
growth (about 10 years). On a larger spatial or temporal scale, forest sites have an im-
portant effect on forest productivity.

4.4. Assessment of the Use of Data from the Canton of Neuchdtel

Our results show that the inventory data from the Canton of Neuchatel, collected
through the Méthode du contrile, generate valuable information to train convincing growth
models at the diameter class level. The use of this type of data is an additional challenge
compared to the use of data from permanent plots. Because increments are not tracked on
the individual tree level, the calculation of increments is more approximate, for example,
because of the lack of data on mortality. The lack of information on stems below 17.5 cm
and of direct data on recruitment in the first diameter classes makes it difficult to model
their dynamics. From this point of view, the performance of our models is limited. An-
other particularity of the data collected by the Canton of Neuchatel compared to perma-
nent plots is related to the inventory areas. The divisions used for this purpose are each
about ten hectares in size instead of a few thousand square meters at most for the plots.
Data at such a large scale are necessarily averaged, resulting in a probable reduction of
variability in the data and reduced information for model training compared to the per-
manent plots.

The fact that the volume of data provided by the Canton of Neuchatel was so large
was clearly an added value for our study. The volume of data was clearly sufficient to
train our linear models with a remarkable absence of overfitting. This large volume of
data was also crucial for the training of the multilayer perceptron, which reached convinc-
ing performances. Nevertheless, the volume of data remained limiting for the latter, espe-
cially in the upper diameter classes.

5. Conclusions

The linear models developed in this study achieve sufficient performance for practi-
cal use. The predictions from these models are division specific in that the predicted dy-
namics depend on the initial diameter distribution and take into account competition be-
tween diameter classes to some extent. Linear models also have the advantage of being
relatively transparent and therefore convincing for practitioners (coefficients can be di-
rectly interpreted by a professional knowledgeable in forest growth). Linear models, at
least in this study, also predict fewer outliers than the multilayer perceptron.

Linear models can be used to predict the growth dynamics of a division over a period
of 7 to 12 years. They can possibly be used recursively to predict dynamics over longer
periods, but it is not recommended to simulate more than two or three growth periods,
especially because the prediction of recruitment is limiting. The models can typically be
used for better planning and implementation of the next cut in a given division. The model
is not well suited to understanding the role of cuts on recruitment.
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Before the model can be used in practice, it must first be tested under real conditions,
for example on a current case study in the Canton of Neuchatel.

Implications and Management Options for Policy

The (linear) models developed in this study could be used to assist in the planning
of cuttings in uneven-aged stands. In their current state, they are applicable in stands man-
aged according to the selection felling approach such as in the Canton of Neuchatel, but
after adaptation (i.e., re-estimation of the models on different sets of data), they could be
applied to other uneven-aged management systems.

More specifically, the models could be used to:

e help plan the couple (harvest intensity, periodicity of interventions), specifically to a
given forest stand (i.e., taking into account the current state of the stand);

e help in the silvicultural knowledge management, by serving as an analysis tool for
training to selection felling (e.g., by simulating the potential effects of a cut on the
dynamics of a stand);

e help concretely with selection felling in the field (for the selection of trees to be cut).

The possibilities of using such a tool would also be increased dramatically if it were
possible to determine the initial structure of a stand in terms of diameter distribution from
remote sensing data (especially LIDAR data). Data on the initial state of a stand are nec-
essary for the application of the models, and remote sensing data are often available at
lower cost and potentially more regularly than inventory data.
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Appendix A

Table A1l. Average ranking of features through Recursive Feature Elimination (one feature is elim-
inated at each iteration until complete elimination of all features); these results are based on the
optimal features transformation and the optimal regressor presented in Section 3.1.2; each average
is calculated over feature ranks of the respective models for the 16 different diameter classes and
over 10 train-test splits for each model (i.e., 160 values in total).

Average Ranking Average Ranking
Feature (Recursive Feature Feature (Recursive Feature
Elimination) Elimination)

Nannual cut,d 8.2 Nresinous,ls 43.0
Nd 8.9 Ndeciduous,4- 43.4
Gd 9.6 Gdeciduous,z 43.5
Gresinous,ﬁ 28.9 Gresinous,ls 43.6
Nresinous,G 28.9 Gdeciduous,lo 44.0
Nannual windfall,d 29.1 Nresinous,l4 44.1
Gresinous,lo 30.6 Gtot 44.8
Nresinous,3 31.5 Ndeciduous,14 44.9
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Gresinous,s 32.3 Nresinous,l 45.3
Gresinous,3 32.4 Ndeciduous,9 46.0
Nresinous,lo 324 Gdeciduous,9 46.1
Nresinous,s 32,5 Ndeciduous,lo 46.2
Gdeciduous,S 32.9 Gdeciduous,M 46.6
Nresinous,ll 33.2 Ndeciduous,l 47.0
Gresinous,ll 334 Nresinous,16 47.5
Gresinous,7 33.5 Gresinous,l 47.6
Ndeciduous,s 33.8 Gdeciduous,lﬁ 47.9
Noverlying annual cut,d 34.9 Noverlying annual windfall,d 48.0
Gresinous,12 35.7 Forest_site_13 48.1
Nresinous,7 35.8 Gdeciduous,l 48.4
Forest_site_8 36.0 Forest_site_12 48.7
Ndeciduous,3 36.0 Gresinous,16 49.5
Ny esinous,a 36.3 Forest_site_2 49.6
Gresinous,4 36.4 Niot 49.8
Nyesinous,12 38.5 Forest_site_14 50.0
Gresinous,9 38.5 Ndeciduous,s 50.0
Gresinous,s 38.6 Ndeciduous,ll 50.1
Nresinous,') 38.9 Gdeciduous,s 50.3
Nresinous,s 39.0 Gdeciduous,ll 50.8
Gresinous,13 39.1 Forest_site_27 52.6
Nresinous,13 39.3 Gdeciduous,ls 53.1
Gdeciduous,3 39.6 Ndeciduous,lG 53.3
Nresinous,z 40.0 Ndeciduous,ls 54.7
Gaeciduous,7 40.2 Forest_site_11 54.9
Naeciduous,? 40.5 Forest_site_9 55.7
Gresinous,z 40.9 Ndeciduous,lz 55.9
Gresinous,14 41.0 Gdeciduous,lz 57.6
Ngeciduous,2 41.3 Forest_site_17 57.8
Ndeciduous,G 41.6 Ndeciduous,13 58.3
Gdeciduous,é 42.0 Gdeciduous,13 59.4
Gaeciduousa 42.6 Forest_site_23 60.3
Geumad 42.6
Table A2. Results of the Stepwise Regression with Backward Elimination; values are test R? for the
respective models corresponding to the 16 different diameter classes; these results are based on the
optimal features transformation and the optimal regressor presented in Section 3.1.2; the columns
correspond to different sets of features, starting with all features in the left column and progressively
and cumulatively eliminating or modifying groups of features going to the right; the bold column
corresponds to the set of features selected for the final models in this study; all values are averaged
on 10 different train-test splits.
then removing .
Diame- then- then re- N overtying then‘re- then MEIENE then modify- then.re-
ter All Fea- remov- moving then remov- annualcut ~ Moving of Variables ing of N Fea- moving
tures ing For- ing Geyum and G Fea- N, and annual cut/
Class .. Niot/Grot ] estnous tures
est Sites N overlying tures N geciduous N annual windy
annual windfall
1 12.4 13.2 12.9 14.6 12.5 13.5 11.9 11.9 10.6
2 50.1 53.5 53.3 53.3 52.8 51.6 53.3 54.1 51.5
3 61 63.9 63.7 63.6 62.7 62.3 63.5 64.1 61
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4 65.9 67.8 68.7 68.7 69.3 67.3 65 65.9 63.7
5 65 68.4 68.8 68.7 69.2 67 64.8 65.2 61.9
6 61.2 63 64 64.1 64.2 62.4 59.4 60.1 57.1
7 60.1 60.7 60.3 60.1 60.7 56.9 56.2 54.6 50.2
8 50.9 53.9 53.2 53.1 53.6 50.7 46.6 48.7 44.8
9 48.9 48.8 50 47.6 49.3 47.8 46 48.7 42.6
10 54.7 54.7 54.3 54.9 55 53 50 51.9 46.8
11 48.2 48.7 48.8 47.9 49.8 49.1 49.8 52.5 45

12 50.7 51.2 51.8 50.1 50.6 52 51.3 53.1 47

13 56.9 56.5 57.8 59 58.4 58.4 59.2 61.5 56.4
14 55.1 52.5 55 53.6 56 56.9 57 57.6 41.5
15 51.3 49.1 50.1 50.8 51.8 53.2 54.9 56.4 46

16 48.2 50.4 49.4 50.9 51 52.8 53.9 49.9 28.5
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Appendix B
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Figure Al. Residuals plots for linear models differentiated by diameter class presented in Equation
(7) (classes from 1 to 16 where class center in cm = (#class — 1) x 5 + 20).
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Table A3. Regression coefficients for linear models trained on the whole data set (class center in cm = (#class — 1) x 5 + 20).

Model Model Class 1 Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model
ode odeltlass Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 «class10 Class11l Class12 Class13 Class14 Class15 Class 16

o
lri?g;er [17.5;22.5[  [22.5;27.5] [27.5;32.5[ [32.5;37.5[ [37.5;42.5[ [42.5;47.5] [47.5;52.5[ [52.5;57.5[ [57.5;62.5[ [62.5;67.5[ [67.5;72.5[ [72.5;77.5] [77.5;82.5[ [82.5;87.5[ [87.5;92.5[ [92.5;97.5[
Intercept  0.31567783 0'43880849 0'4724011 0'46055145 0‘5218635 0'42(;5625 0'35251592 0‘25770511 0'202767% 0.15179939 0.10445036 0.07182693 0.0590785 0.0288967 0.01538693 0.00806861
N _class 1 -0.08857224 0'95266258 0'3017816 0 0 0 0 0 0 0 0 0 0 0 0 0
N _class 2 -0.19883118 _0'7;’:498 0'44i6962 0'26?050 0 0 0 0 0 0 0 0 0 0 0 0
N class3 02479029 ~0.315376 ~0.479452 03334920 0.1944185 o 0 0 0 o 0 o 0 o 0
05 68 9 4
N dassd  —0.05295262 ~0.126753 ~0.226611 -0.360865 03856231 0.2185642 0 0 0 0 0 0 0 0 0
51 29 38 1 7
N class 5  -003021211 o 0106328 -0.214206 -0.447156 0.1948281 0.1491078 0 0 0 0 0 0 0 0
99 64 99 3 6
N class 6 002551455 0 o 0114472 -0.121773 -0.303913 0.1825712 0.1081218 0 0 0 0 0 0 0
64 19 04 3 1
N class.7  —0.09059655 0 0 o 0057739 -0.107800 -0.246066 0.1192432 0.0690701 0 0 0 0 0 0 0
86 3 61 8 2
N_class 8  -0.04804268 0 0 0 0 0.0004088 -0.063784 0.145912 0.0699203 ) ) 504 0 0 0 0 0 0
4 76 35 9
N _class 9  0.03877847 0 0 0 0 0 0 _0'0561216 _0'0292017 0.06730688 0.04144019 0 0 0 0 0
N_class_ 10 -0.03040491 0 0 0 0 0 0 0 '0'0292523 '0‘10;’0219 0.05030268 0.04166453 0 0 0 0
N_class_11  0.00132175 0 0 0 0 0 0 0 0 0 _0‘06f0787 0.04787912 0.02745242 0 0 0
N_class 12 -0.00334377 0 0 0 0 0 0 0 0 0 0 _0'062’3282 0.03742049 0.01877528 0 0
N_class 13 0.01200967 0 0 0 0 0 0 0 0 0 0 '0‘005’ 0463 '0'03968559 0.02548971 0.01338672 0
N_class_14  0.01124542 0 0 0 0 0 0 0 0 0 0 0 0 ~0.0302876 ) 11377143 0.00454961
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N_class_15  -0.06703446 0 0 0 0 0 0 0 0 0 0 0 0 _0'0153380 0.0064068
N_class_16 ~ 0.02649344 0 0 0 0 0 0 0 0 0 0 0 0 0 0 _0'0051247
N_annual_cut 0.1378631  0.2531186 0'21220282 0.1655776 0'13161423 0'10655701 0'0823793 0'05977958 0'05191395 0.05160261 0.04996778 0.03751677 0.03917284 0.02788062 0.01534358 0.01277216
nueil ;\i:i fall 0.09950984 0'04170747 0'0325562 0'02299268 0'00979012 0'0329087 0'026297% 0.0147016 0'0016119 0.0032046 0.01048788 0.00560738 0.00773745 0.00713012 0.00603813 0.00204978
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