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Abstract: Most research on forest tree species classification based on optical image data uses informa-
tion such as spectral reflectance, vegetation index, texture, and phenology data. However, owing to
the limited spectral resolution of multispectral images and the high cost of hyperspectral data, there is
room for improvement in the classification of tree species in large areas based on optical images. The
combined application of multispectral images and other auxiliary data can provide a new method
for improving tree species classification accuracy. Hence, Sentinel-2 images were used to extract
spectral reflectance, spectral index, texture, and phenological information. Data for topography,
precipitation, air temperature, ultraviolet aerosol index, NO2 concentration, and other variables were
included as auxiliary data. Models for forest tree species classification were constructed through
feature combination and feature optimization using the random forest (RF), gradient tree boost
(GTB), support vector machine (SVM), and classification and regression tree (CART) algorithms. The
classification results of 16 feature combinations with the 4 classification methods were compared, and
the contributions of different features to the classification models of forest tree species were evaluated.
Finally, the optimal classification model was selected to identify the spatial distribution of forest
tree species in the study area. The model based on feature optimization gave the best results among
the 16 feature combination models. The overall accuracy and kappa coefficient were increased by
18% and 0.21, respectively, compared with the spectral classification model, and by 17% and 0.20,
respectively, compared with the spectral and spectral index classification model. By analyzing the
feature optimization model, it was found that terrain, ultraviolet aerosol index, and phenological
information ranked as the top three features in terms of importance. Although the importance of
spectral reflectance and spectral index features was lower, the number of feature variables accounted
for a large proportion of the total. The importance of commonly used texture features was limited,
and these features were not present in the feature optimization model. The RF algorithm had the
highest classification accuracy, with an overall accuracy of 82.69% and a kappa coefficient of 0.80,
among the four classification algorithms. The results of GTB were close to those of RF, and the
difference in overall classification accuracy was only 0.14%. However, the results of the SVM and
CART algorithms were relatively weaker, with overall classification accuracies of about 70%. It can
be concluded that the combined application of Sentinel-2 images and auxiliary data can improve
forest tree species classification accuracy. The model based on feature optimization achieved the
highest classification accuracy among the 16 feature combination models. The spectral reflectance
and spectral index data extracted from optical images are useful for tree species classification, but the
effect of texture features was very limited. Auxiliary data, such as topographic features, ultraviolet
aerosol index, phenological features, NO2 concentration features, topographic diversity features,
precipitation features, temperature features, and multi-scale topographic location index data, can
effectively improve forest tree species classification accuracy. The RF algorithm had the highest
accuracy, and it can be used for tree species classification space distribution identification. The
combined application of Sentinel-2 images and auxiliary data can improve classification accuracy,
but the highest accuracy of the model was only 82.69%, which leaves room for improvement. Thus,
more effective auxiliary data and the vertical structural parameters extracted from satellite LiDAR
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can be combined with multispectral images to improve forest tree species classification accuracy in
future research.

Keywords: topography; ultraviolet aerosol index; phenology; feature optimization; tree species
classification

1. Introduction

As the main component of the terrestrial ecosystem, forests play a vital role in reg-
ulating global climate and maintaining biodiversity, ecological balance, and the global
carbon and water cycles [1,2]. Tree species are key parameters in characterizing forest
ecosystems, and they not only provide an important basis for forest planning, design,
operation, and management but are also important parameters for a variety of ecological
process simulations [3]. Hence, how to accurately and efficiently obtain quantity and
distribution information for forest tree species is a crucial problem that needs to be solved
in the domains of scientific management and effective utilization of forest resources.

The main traditional forest resources survey method is the ground survey, but it
has a high cost, long cycle, and large workload, and it does not provide detailed spatial
distribution information for forest tree species types, which is a need of modern forestry
resource management. Remote sensing can overcome the shortcomings of traditional
forest resource surveys, and it has been widely used in the classification research of forest
tree species [4]. Based on GF-6 images, Huang et al. [5] used the random forest (RF)
machine learning method to classify forest tree species, such as eucalyptus, pine trees, cedar,
and other arbor forests, by calculating the vegetation index and optimizing the feature
combination. The results showed that the model of optimized feature combination was the
best, with an accuracy of 85.38%. The accuracy was higher by 3.98% and 8.97% compared
to the model of red edge bands and the model of non-red edge bands, respectively. Based
on airborne hyperspectral data, Zhao et al. [6] used a 3D convolutional neural network
to classify forest tree species, such as cedar, pine trees, eucalyptus, and mytilaria, in the
Nanning Gaofeng Forest Farm of Guangxi in China. The overall classification accuracy was
98.38%, and the kappa coefficient was 0.90. Based on multi-phase Sentinel-2 data, Immitzer
et al. [7] used the RF algorithm to classify 12 tree species of a Central European forest
with an overall accuracy of 89%. Based on hyperspectral data, Zhao et al. [8] classified
seven tree species of a shelter forest using maximum likelihood, support vector machine
(SVM), and RF algorithms. The result showed that the overall accuracy of the RF algorithm
was 95.93%, and the kappa coefficient was 0.95. Through analysis of previous forest tree
species classification studies, it was found that the main optical satellite images used were
multispectral and hyperspectral images, and the classification accuracy of hyperspectral
images was usually higher than that of multispectral images. However, hyperspectral
images are more commonly used in small areas; it is difficult to use them for large areas
owing to the complexity of data processing and the high cost. Multispectral imagery is
usually available for free and is simple to process; therefore, it is commonly used in large-
area studies. However, due to the relatively small number of bands and limited spectral
resolution, the classification results for different tree species need to be further improved.
How to effectively use auxiliary data to make up for the insufficiency of multispectral
images and then improve the classification results is an active area of research related to
forest tree species classification.

To improve the classification results of forest tree species, researchers have tried to
apply multispectral image data together with other data and have achieved good results.
For example, Hoscilo et al. [9] used multi-time Sentinel-2 data and topographic informa-
tion to classify forest tree species in large areas. The results showed that topographic
variables played a significant role in tree species classification, and the introduction of
topographic variables increased the classification accuracy from 75.60% to 81.70%. Ma
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et al. [10] classified forest tree species in the eastern part of the Qilian Mountains based on
Sentinel-2 spectral features, texture features, and topographic features. The results showed
that the combination of elevation, slope, slope aspect, and texture features can increase
the separation of tree species, with an overall accuracy of 86.49% and a kappa coefficient
of 0.83. Cai et al. [11] used RF, SVM, and XGboost to classify the four main dominant
tree species in Longquan City, namely, broad-leaved trees, pine trees, Chinese fir, and
Moso bamboo, based on the spectral reflectance, texture, and spectral index information
extracted from Gaofen-2 data along with topographic characteristics data. The highest
accuracy was achieved with the XGboost algorithm (83.88%), and the kappa coefficient was
0.78. Tran et al. [12] used an object-oriented classification method to classify broad-leaved
deciduous forest tree species, including mixed semi-evergreen forest, keruing, dark red
meranti, and sal, based on phenological information and the backscattering coefficient
extracted from the Landsat-8 and Sentinel-1 time-series images. The overall classification
accuracy was about 79%, and the kappa coefficient was 0.70. Previous research results
show that the combined application of multi-source data can overcome the shortcomings of
multispectral images and improve classification accuracy. However, the auxiliary data used
in former research are mostly topographic factors and phenological information. Besides
the topographic factors and phenological information, other auxiliary data are also closely
related to the distribution of forest tree species. For example, precipitation and temperature
will affect the distribution area of different tree species. Through field surveys, it was
found that eucalyptus often grows in warmer regions, while cedars are suited to growing in
relatively cold temperatures. The distributions of different tree species also change with air
quality. Population densities and administrative unit areas also restrict the distributions of
forests. However, in the former research, the closely related auxiliary data have been little
researched regarding their influence on the classification of forest tree species. Therefore, in
this paper, more variables, such as topography, precipitation, air temperature, ultraviolet
aerosol index, NO2 concentration, topographic diversity, multi-scale topographic location
index, and others, were chosen as auxiliary data to combine with Sentinel-2 data to improve
the accuracy of forest tree species classification.

In addition to the auxiliary data, the algorithm is also an important factor affecting
the accuracy of tree species classification. With their excellent performance, machine
learning algorithms have been widely used in classification research in the past decades.
For example, Hologa et al. [13] used the RF algorithm to classify tree species in temperate
mixed mountains based on multiple datasets, and the highest overall accuracy was 89.50%.
Hu et al. [14] used an SVM algorithm to classify tree species based on multi-source remote
sensing data, and the overall classification accuracy was 89%. Chen et al. [15] used a CART
algorithm to classify tree species based on QuickBird image, with an overall accuracy of
80.50%. Previous research results show that machine learning algorithms, such as RF, SVM
and CART, can realize tree species classification. As a machine learning algorithm, GTB is
an ensemble learning method, whose base model is also a tree model. It can reduce the
variance of the overall model by random sampling of features and flexibly process various
types of data, including continuous values and discrete values. Compared to other machine
learning algorithms, the GTB algorithm is considered to have the best robustness and not
too much time is needed for the tuning of parameters; the results of the model are still
relatively good [16–18]. However, GTB is seldom used in forest tree classification research;
therefore, the performance of GBT in forest tree species classification is still unknown.

The objectives of this study were as follows: (i) to investigate the influence of other
auxiliary data besides topographic factors and phenological information, such as precipita-
tion, air temperature, ultraviolet aerosol index, NO2 concentration, topographic diversity,
multi-scale topographic location index, and other variables, on forest tree species classifica-
tion; (ii) to investigate the performance of four machine learning algorithms (RF, GTB, SVM,
and CART) on forest tree species classification and choose the most suitable algorithm
for forest tree species classification; and (iii) to improve the accuracy of forest tree species
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classification through feature optimization based on the combined application of Sentinel-2
and auxiliary data.

2. Study Area and Data
2.1. Study Area

The study area was located in Liuzhou city, Guangxi Zhuang Autonomous Region,
China (108◦32′–110◦28′ E, 23◦54′–26◦03′ N) (Figure 1). This area is karst terrain, with an
elevation ranging from 85 m to 150 m. The climate is a subtropical monsoon climate, with
an average annual temperature of 20.5 ◦C, annual rainfall of 1400–1500 m, annual sunshine
of more than 1600 h, and a frost-free period of more than 300 days. The forest coverage
rate is 66.70%, and most of the forests are planted forests. The existing broad-leaved forests
mainly include Eucalyptus (Eucalyptus robusta Smith), orange trees (Citrus reticulate L.),
tea bushes (Camellia sinensis (L) Kuntze), bamboo trees (Phyllostachys edulis (Carriere) J.
Houzeau), shrubbery, and natural mixed broad-leaved forest; the coniferous forests are
mainly cedar (Cunninghamia lanceolata (Lamb.) Hook) and pine tree forests (Pinus L.).

Figure 1. Spatial distribution map of the study area and sampling points.

2.2. Data
2.2.1. Sentinel-2 Data

Sentinel-2 is a wide, high-resolution, multispectral imaging satellite with a revisit
frequency of 5 days and 12 spectral bands. There are four bands of visible light and near-
infrared with a spatial resolution of 10 m, six bands of red edge and short-wave infrared
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with a spatial resolution of 20 m, and two atmospheric bands with a spatial resolution of
60 m. The Sentinel-2 images used in this study were Level-2A images from 2020, which
had been subjected to atmospheric correction and radiometric calibration. To avoid the
influence of cloud coverage on the classification results, images with cloud coverage less
than 5% were selected for subsequent mosaic mask processing. The images were resampled
to 10 m.

2.2.2. Auxiliary Data

The auxiliary data used in the study were digital elevation data, precipitation data,
temperature data, water data, Sentinel-5P ultraviolet aerosol index data, multi-scale topo-
graphic position index data, topographic diversity data, population density data, Sentinel-
5P carbon dioxide data, and mean administrative unit area data. All the above data were
obtained through Google Earth Engine (GEE), and the spatial resolution of all auxiliary
data was resampled to 10 m. Detailed descriptions of the auxiliary data are presented in
Table 1.

Table 1. The auxiliary data used in this study.

Dataset GEE ID Dataset Provider Period Spatial
Resolution

Emissivity 8-Day Global 1 km SRTM
Digital Elevation Data (digital

elevation data)
USGS/SRTMGL1_003 NASA/USGS/JPL-Caltech 2000 30 m

CHIRPS Daily: Climate Hazards
Group InfraRed Precipitation with

Station Data (V 2) (precipitation data)
UCSB-CHG/CHIRPS/DAILY UCSB/CHG 1 January 1981–30 June 2022 5566 m

GCOM-C/SGLI L3 Land Surface
Temperature (V2) (temperature data)

JAXA/GCOM-
C/L3/LAND/LST/V2

Global Change Observation
Mission 1 January 2018–28 November 2021 4638.3 m

JRC Monthly Water History, v1.3
(water data) JRC/GSW1_3/MonthlyHistory EC JRC/Google 16 March 1984–1 January 2021 30 m

Sentinel-5P NRTI AER AI: Near
Real-Time UV Aerosol Index

(Sentinel-5P ultraviolet aerosol
index data)

COPERNICUS/S5P/
NRTI/L3_AER_AI

European
Union/ESA/Copernicus 10 July 2018–15 August 2022 1113.2 m

Global ALOS mTPI (multi-scale
topographic position index data)

CSP/ERGo/1_0/
Global/ALOS_mTPI

Conservation Science
Partners 24 January 2006–13 May 2011 270 m

Global ALOS Topographic Diversity
(topographic diversity data)

CSP/ERGo/1_0/
Global/ALOS_topoDiversity

Conservation Science
Partners 24 January 2006–13 May 2011 270 m

GPWv411: Population Density (V 4)
(population density data)

CIESIN/GPWv411/
GPW_Population_Density

NASA SEDAC at the Center
for International Earth

Science Information Network
1 January 2000–1 January 2020 927.67 m

Sentinel-5P OFFL NO2: Offline
Nitrogen Dioxide (Sentinel-5P carbon

dioxide data)

COPERNICUS/
S5P/OFFL/L3_NO2

European
Union/ESA/Copernicus 28 June 2018–6 August 2022 1113.2 m

GPWv411: Mean Administrative Unit
Area (V 4) (mean administrative unit

area data)

CIESIN/GPWv411/
GPW_Mean_Admini-

strative_Unit_Area

NASA SEDAC at the Center
for International Earth

Science Information Network
1 January 2000–1 January 2020 927.67 m

2.2.3. Field Survey Data

The sample data used in the study were from a field survey undertaken in 2021 and
included high-resolution images obtained through Google Earth Pro. According to the
field survey, the forest tree species in the study area mainly included eucalyptus, cedar,
pine trees, orange trees, tea bushes, bamboo trees, shrubbery, and mixed broad-leaved
forest. The non-forest land cover mainly included farmland, water area, grassland, and
construction land. A total of 1481 sample points were selected in the study area. The spatial
distribution and specific quantities of the sample points are shown in Figure 1 and Table 2,
respectively.
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Table 2. Category and quantity of sample points.

Type Category of Sample Points Quantity of Sample Points

Forest land

Eucalyptus 148
Bamboo trees 164

Pine trees 122
Cedar 407

Orange trees 51
Tea bushes 47
Brushwood 107

Mixed broad-leaved forest 85

Non-forest land

Water area 80
Farmland 139

Construction land 74
Grassland 57

3. Methods

In this paper, the Sentinel-2 images were processed to extract various features, in-
cluding spectral reflectance features, phenological features, spectral indices, and texture
features. More data, such as topography, precipitation, air temperature, ultraviolet aerosol
index, NO2 concentration, topographic diversity, multi-scale topographic lo-cation index,
and other variables, were used as auxiliary data. Models of forest tree species classification
were constructed with four commonly used algorithms (RF, GTB, CART, and SVM) based
on the features extracted from Sentinel-2 images and auxiliary data. The accuracy of models
was assessed with 10-fold cross-validation based on the field survey data. The classification
results of different feature combinations with the four algorithms were compared, and the
optimal classification model was selected to identify the spatial distribution of forest tree
species in the study area. The flowchart used in this study is shown in Figure 2.

3.1. Feature Combination Scheme

To quantify the impact of different characteristic variables on the classification results
of the forest tree species, the spectral reflectance data extracted from Sentinel-2 imagery
were used as the basic data, and 16 combination schemes of different features were used to
construct the classification model (Table 3).

Table 3. Sixteen combination schemes of different features.

Scheme Feature Combination

1 Spectral features
2 Spectral features + spectral indices
3 Spectral features + texture features
4 Spectral features + temperature features
5 Spectral features + precipitation features
6 Spectral features + terrain features
7 Spectral features + phenological features
8 Spectral features + water features
9 Spectral features + population density feature
10 Spectral features + topographic diversity feature
11 Spectral features + multi-scale topographic position index
12 Spectral features + ultraviolet aerosol indices
13 Spectral features + NO2 concentration features
14 Spectral features + administrative unit area feature
15 Spectral features + all of the above features
16 Preference features
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3.2. Feature Variable Extraction

Sentinel-2 images and auxiliary data were resampled, and the corresponding feature
variables were extracted from the resampled Sentinel-2 images and auxiliary data based on
the 16 feature combination schemes. The specific feature variables of different features are
shown in Table 4, and the calculation formulas for the spectral index feature variables are
shown in Table 5.

Table 4. Specific feature variables of different features.

Features Number Feature Variable

Spectral features 12 B1, B2, B3, B4, B5, B6, B7, B8, B8A, B9, B11, B12

Spectral indices 18 EVI, NDVI, NDVIA, MTCI, IRECI, PSRI, TCARI, NDWI, MCARI, RDVI, TVI, SAVI,
MSI, LSWI, NDVIred_edge, mNDVIred_edge, MSRred_edge, CIred_edge

Texture features 216
The texture metric was calculated from the gray level co-occurrence matrix around each
pixel in each band. Each band yielded 18 texture feature variables. There were a total of

216 feature variables
Temperature features 5 Temp_mean, Temp_max, Temp_min, Temp_skew, Temp_kurtosis

Precipitation features 5 Precipitation_mean, Precipitation_max, Precipitation_min, Precipitation_skew,
Precipitation_kurtosis

Terrain features 4 Elevation, Slope, Aspect, Hill_shade

Phenological features 18

NDVI_winter, NDVI_summer, NDVI_spring, NDVI_fall, EVI_winter, EVI_summer,
EVI_spring, EVI_fall, LSWI_winter, LSWI_summer, LSWI_spring, LSWI_fall,

NDVI_summer_winter, NDVI_fall_spring, EVI_summer_winter, EVI_fall_spring,
LSWI_summer_winter, LSWI_fall_spring

Water features 5 Water_mean, Water_max, Water_min, Water_skew, Water_kurtosis
Population density feature 1 PD

Topographic diversity feature 1 TD
Multi-scale topographic position index 1 MSTPI

Ultraviolet aerosol indices 5 Aerosol_mean, Aerosol_max, Aerosol_min, Aerosol_skew, Aerosol_kurtosis
NO2 concentration features 5 NO2_mean, NO2_max, NO2_min, NO2_skew, NO2_kurtosis

Administrative unit area feature 1 MAUA
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Table 5. Calculation formulas for the spectral index feature variables.

Spectral Indices Formula Reference

Enhanced vegetation index (EVI) 2.5 × (B8 − B4)/(B8 + 6 × B4 − 7.5 × B2 + 1) Liu et al. [19]
Normalized difference vegetation index (NDVI) (B8 − B4)/(B8 + B4) Broge et al. [20]

Normalized difference vegetation index (NDVIA) (B8A − B4)/(B8A + B4) Broge et al. [20]
MERIS terrestrial chlorophyll index (MTCI) (B6 − B5)/(B5 − B4) Dash et al. [21]
Inverted red-edge chlorophyll index (IRECI) (B7 − B4)/(B5/B6) Frampton et al. [22]

Plant senescence reflectance index (PSRI) (B4 − B3)/B6) Merzlyak et al. [23]
Transformed chlorophyll absorption in reflectance index (TCARI) 3 × ((B8 − B4) − 0.2 × (B8 − B3)) × (B8/B4) Haboudane et al. [24]

Normalized difference water index (NDWI) (B3 − B8)/(B8 + B3) Mcfeeters et al. [25]
Modified chlorophyll absorption in reflectance index (MCARI) (B8 − B4) − 0.2 × (B8 − B3)) × (B8/B4) Daughtry et al. [26]

Ratio difference vegetation index (RDVI) (B8 − B4)/pow (B8 − B4,0.5) Huete et al. [27]
Triangular vegetation index (TVI) 0.5 × (120 × (B8 − B3)/200 × (B4 − B3)) Broge et al. [28]

Soil adjusted vegetation index (SAVI) (1 + 0.2) × float (B8 − B4)/(B8 + B4 + 0.2) Bolyn et al. [29]
Moisture stress index (MSI) B8/B3 Bolyn et al. [29]

Land surface water index (LSWI) (B8 − B11)/(B8 + B11) Bridhikitti et al. [30]
Normalized difference red-edge vegetation index (NDVIred_edge) (B6 − B5)/(B6 + B5) Gamon et al. [31]

Modified normalized difference red-edge vegetation index
(mNDVIred_edge) (B6 − B5)/(B6 + B5 – 2 × B1) Le Maire et al. [32]

Modified specific ratio red-edge vegetation index (MSRred_edge) (B6 − B1)/(B5 + B1) Fourty et al. [33]
Chlorophyll red-edge index (CIred_edge) (B6 − 800/B5 − 725) − 1 Gitelson et al. [34]

3.3. Classification Algorithm

Based on the feature combination schemes and feature variable extraction, four com-
monly used machine learning algorithms, namely, RF, GTB, CART, and SVM, were used
for forest tree species classification. The classification algorithms are summarized below.

(1) The RF algorithm is an ensemble algorithm, which belongs to the bagging type. It
integrates the results of a large number of regression trees. It outputs the predicted class
for classification or mean predicted value for regression by constructing a large number of
decision trees during training. The majority “vote” among all trees is used to assign a final
class to each unknown tree, so that the results of the overall model have high accuracy and
generalization potential. RF corrects the overfitting problem of the decision tree algorithm.
The relative importance of each band can be evaluated by systematically comparing the
performances of trees with and without specific bands [35].

(2) The GTB method is a tree ensemble model in which the subsamples of training data
for each iteration are randomly selected from the complete training data. This subsample
is then used to fit the base learner and update the model for the next iteration, gradually
reducing the cumulative model loss [36]. In other words, gradient descent in parameter
space uses gradient information to adjust parameters to reduce the loss, and gradient
descent in the function space uses a gradient to fit a new function to reduce the loss. GTB is
a boosting algorithm for decision trees, which is one of the best algorithms for fitting the
real distribution in traditional machine learning algorithms. It is a strong classifier, which
is generally more accurate than a decision tree, and can choose the loss function by itself.
Compared to the SVM algorithm, the prediction accuracy of GTB can also be relatively
high with relatively less time taken for parameter adjustment.

(3) CART is a decision tree algorithm. It is a learning method that outputs the con-
ditional probability distribution of a random variable under the condition of given input
random variables. CART determines the relationship between a single continuous response
and multiple continuous and/or discrete explanatory variables through a bivariate recur-
sive partitioning process, in which the data are repeatedly split into increasingly uniform
groups, using the combination of variables that best distinguishes changes in the response
variables [37]. The CART algorithm is very stable in the face of problems, such as missing
values and too many variables.

(4) SVM is a set of related supervised learning methods that are widely used in
data analysis and pattern recognition for classification and regression analysis. The basic
principle of SVM is to map the input vectors onto a high-dimensional feature space through
pre-selected nonlinear relations and find an optimal classification hyperplane in this space
to maximize the classification interval between two classes. The most commonly used
SVM is the linear classifier, which can predict the member classification of each input
between two possible classifications. It classifies all inputs by building a hyperplane or a
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set of hyperplanes in a high-dimensional or even an infinite space. The value closest to the
classification margin is called a support vector [38].

3.4. Accuracy Assessment

To prevent errors caused by sample selection, 10-fold cross-validation was used. The
accuracy assessment indicators were the user’s accuracy (UA), the producer’s accuracy (PA),
overall accuracy (OA), and the kappa coefficient. The calculation formulas are as follows:

UAi =
pii
pi+

, (1)

PAi =
pii
p+i

, (2)

OA =
∑k

i=1 pii

p
, (3)

Kappa =
p∑ k

i=1 pii −∑ k
i=1 pi+p+i

p2 −∑ k
i=1 pi+p+i

, (4)

where p is the total number of samples; k is the total number of categories; pii is the number
of samples correctly classified; p+i is the number of samples of category i; and pi+ is the
number of samples predicted as category i.

4. Results
4.1. Classification Results with Different Feature Combination Schemes

The accuracy of the results for the 16 different feature combination schemes is shown
in Figure 3. It can be seen from the figure that the RF, GTB, SVM, and CART classification
algorithms all achieved the highest classification accuracies with scheme 16 (preference
feature combination). The overall accuracy of the RF and GTB results was high at about
82.50%, and the accuracy of the classification results for SVM and CART was relatively low
at about 72%, which is about 10% lower.

Figure 3. Overall accuracy of the different classification schemes and algorithms.

Compared with the classification results of scheme 1 (spectral features), the classifi-
cation results of scheme 4 (spectral features + temperature features), scheme 5 (spectral
features + precipitation features), and scheme 12 (spectral feature + ultraviolet aerosol
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indices) were significantly better. The results show that the temperature, precipitation,
and ultraviolet aerosol index features can make up for the fewer bands of multispectral
images and improve the accuracy of forest tree species classification. For the commonly
used features of multispectral images, such as spectral index and texture information, the
improvement in classification results is limited and may even be negative. For example,
the maximum improvement of the RF and GTB algorithms was only 3.10%, and with the
SVM and CART algorithms the accuracy of the classification results decreased, with the
maximum decrease being 20.30%. The results show that the introduction of inappropriate
features may reduce the accuracy of classification. The results of schemes 15 and 16 also
confirm this conclusion. Therefore, it is necessary to properly optimize the features used
for tree species classification.

4.2. Analysis of Feature Variable Optimization Results

The results shown in Figure 3 demonstrate that different features can provide more
information for tree species classification. However, the increase in the number of features
will not only cause informational redundancy and higher data calculation costs but also
reduce the accuracy of classification [39]. Therefore, it is very important to optimize the
input features. Based on the classification results of the four algorithms, the RF algorithm
provided the best results under different feature combinations. Therefore, the RF algorithm
is used as an example to show the optimization of feature variables on the basis of scheme 15.
The importance score ranking of each feature variable is shown in Table 6. The importance
score is 0 from the 80th feature variable onward; so, the feature variables after 80 are
excluded and only the preceding 79 feature variables are displayed. As shown in Table 6,
the texture features were not in the 79 feature variables; so, those features can be excluded.

Table 6. Table of the 79 feature variable importance scores.

Number Feature
Variable Score Number Feature

Variable Score Number Feature
Variable Score

1 Elevation 70.96 28 B11 55.96 55 MCARI 49.62
2 Aerosol_skew 67.77 29 NO2_min 55.83 56 B3 49.37
3 LSWI_summer 65.69 30 NO2_max 55.38 57 Precipitation_kurtosis 49.13
4 Aerosol_mean 65.53 31 MSTPI 55.09 58 MSI 48.85
5 Aerosol_kurtosis 63.85 32 NDVI_summer 54.72 59 Aerosol_min 48.43
6 PSRI 63.06 33 NDVIred_edge 54.58 60 MAUA 48.26
7 NO2_mean 62.58 34 EVI_fall 54.53 61 NDVI 48.16
8 LSWI_fall 61.76 35 NDVIA 54.11 62 Hill_shade 48.06
9 B5 61.34 36 CIred_edge 53.94 63 B4 47.87
10 B9 61.22 37 PD 53.72 64 B7 47.27
11 Temp_mean 60.71 38 NDWI 53.67 65 Temp_kurtosis 46.34
12 Precipitation_mean 60.31 39 LSWI_winter 53.39 66 NO2_skew 45.75
13 EVI_spring 59.76 40 NO2_kurtosis 53.23 67 SAVI 45.62
14 B12 58.92 41 NDVI_winter 53.06 68 IRECI 45.24
15 MTCI 58.28 42 B8 52.94 69 TCARI 45.09
16 B6 57.69 43 LSWI 52.92 70 Temp_skew 45.09
17 B2 57.63 44 Slope 52.85 71 EVI 44.50
18 TD 57.23 45 NDVI_summer_winter 52.57 72 Precipitation_max 44.48
19 B1 57.21 46 Precipitation_skew 52.30 73 B8A 44.36
20 RDVI 57.09 47 MSRred_edge 52.25 74 EVI_fall_spring 44.04
21 LSWI_spring 57.01 48 NDVI_fall_spring 51.65 75 Temp_min 38.54
22 mNDVIred_edge 56.92 49 Aerosol_max 51.54 76 Water_skew 32.71
23 LSWI_summer_winter 56.90 50 EVI_summer_winter 51.41 77 Water_mean 29.75
24 LSWI_fall_spring 56.71 51 Aspect 51.26 78 Water_kurtosis 26.95
25 NDVI_spring 56.47 52 EVI_winter 51.18 79 Water_max 1.99
26 EVI_summer 56.27 53 TVI 49.93
27 Temp_max 56.05 54 NDVI_fall 49.86

With the addition of feature variables, the results of the model decrease slightly and
then continue to increase. When the number of feature variables is 16, the changes in the
overall accuracy and kappa coefficient of the model are relatively small and tend to be
stable. At this time, the overall accuracy and kappa coefficient of the model are 81.65% and
0.78, respectively. When the number of feature variables reaches 33, the overall accuracy
and kappa coefficient are highest, at 82.69% and 0.80, respectively. After that, the addition
of feature variables does not improve the classification results. Therefore, the preceding
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33 feature variables (feature combination scheme 16) were chosen as the final preferred
feature variables for the RF algorithm.

Based on the results shown in Table 6 and Figure 4, the 33 preferred feature variables
consisted of 1 topographic feature variable (Elevation), 3 ultraviolet aerosol index feature
variables (Aerosol_skew, Aerosol_mean, and Aerosol_kurtosis), 9 phenological feature
variables (LSWI_summer, LSWI_fall, EVI_spring, LSWI_spring, LSWI_summer_winter,
LSWI_fall_spring, NDVI_spring, EVI_summer, EVI_summer, and NDVI_summer), 5 spec-
tral index feature variables (PSRI, MTCI, RDVI, mNDVIred_edge, and NDVIred_edge),
3 NO2 concentration feature variables (NO2_mean, NO2_max, and NO2_min), 7 spectral
feature variables (B5, B9, B12, B6, B2, B1, and B11), 1 topographic diversity feature variable
(TD), 1 precipitation feature variable (Precipitation_mean), 2 temperature feature variables
(Temp_mean and Temp_max), and 1 multi-scale topographic position index feature variable
(MSTPI). The results show that 10 features (including topographic features, ultraviolet
aerosol index features, and phenology features) can improve the results of forest tree
species classification.

Figure 4. Classification results for the different feature numbers.

The same operation of feature variable optimization was performed for the GTB,
CART, and SVM algorithms. Fifteen feature variables along with their importance score
ranks are shown in Table 7. By analyzing the results shown in Table 7, it can be seen that
the categories of the 15 feature variables are approximately the same: spectral features,
topographic features, spectral indices, phenological features, ultraviolet aerosol indices,
and NO2 concentration features. The GTB, CART, and SVM algorithms achieved the
highest overall accuracy levels when the numbers of feature variables were 27, 19, and 31,
respectively. These were used for the optimal feature combination scheme 16.

To explore why the feature variables affected the classification results, four different
feature variables (Elevation, Aerosol_skew, LSWI_summer, and PSRI in Table 7) were
selected to analyze the distribution characteristics of different tree species, using the classi-
fication results of the RF algorithm with scheme 16 as an example. The results are shown in
Figure 5.
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Table 7. Fifteen feature variables along with the importance score ranks for the four algorithms.

Number
RF SVM CART GTB

Feature Variables

1 Elevation TD B1 B11
2 Aerosol_skew LSWI_fall_spring Elevation B1
3 LSWI_summer Temp_skew B9 NO2_mean
4 Aerosol_mean NDVI_fall MTCI MAUA
5 Aerosol_kurtosis B8 MSRred_edge Elevation
6 PSRI NDVI_fall_spring B2 B9
7 NO2_mean B7 PSRI Slope
8 LSWI_fall B8A LSWI LSWI_summer
9 B5 B11 Slope mNDVIred_edge
10 B9 NDVI_summer_winter NDVI B12
11 Temp_mean LSWI_summer_winter EVI_fall NDVI_winter
12 Precipitation_mean mNDVIred_edge EVI AVE
13 EVI_spring LSWI EVI_winter Aerosol_kurtosis
14 B12 MSRred_edge mNDVIred_edge NO2_max
15 MTCI B12 PD Aerosol_mean

Figure 5. Distribution characteristics of four feature variables with different tree species: (a) Elevation
feature distribution; (b) ultraviolet aerosol feature distribution; (c) LSWI_summer feature distribution;
(d) PSRI feature distribution.
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The distribution characteristics of the Elevation feature variables of the different tree
species are shown in Figure 5a. Orange trees, eucalyptus, tea bushes, and pine trees are
mainly distributed in the elevation range from 0 to 400 m; bamboo trees, mixed broad-
leaved forest, and cedar are mainly distributed in the elevation range higher than 400 m;
and shrubbery is relatively evenly distributed in each elevation range. The results show
that different tree species can be approximately divided into three categories through the
Elevation feature variable.

The distribution characteristics of the Aerosol_skew feature variables of the different
tree species are shown in Figure 5b. The Aerosol_skew indices for cedar, tea bushes, orange
trees, bamboo trees, and mixed broad-leaved forest are mostly in the range of −0.50 to 0.30,
and those for eucalyptus, pine trees, and shrubbery are in the range of 0.30 to 0.90. The
results show that different tree species can be approximately divided into two categories
through the Aerosol_skew feature variable.

The distribution characteristics of the LSWI_summer feature variables of the different
tree species are shown in Figure 5c. The LSWI_summer indices for cedar, eucalyptus, pine
trees, tea bushes, and mixed broad-leaved forest are mostly in the range of 0.24 to 0.36;
those for bamboo trees and shrubbery are mainly in the range of 0.12 to 0.30; and those for
orange trees are mainly in the range of 0.12 to 0.24. The results show that different tree
species can be approximately divided into three categories through the LSWI_summer
feature variable.

The distribution characteristics of the PSRI feature variables of the different tree
species are shown in Figure 5d. The PSRIs for cedar, tea bushes, pine trees, shrubbery,
bamboo trees, and mixed broad-leaved forest are mainly in the range of −0.11 to −0.06,
and the PSRI distribution ranges for orange trees and eucalyptus are wide, ranging from
−0.09 to 1.11. There is a large distribution area between −0.04 and 1.11. The results show
that different tree species can also be approximately divided into two categories through
the PSRI feature variable.

To summarize, different tree species can be approximately separated by superposition
analysis of the classification results of the different tree species corresponding to the above-
mentioned different feature variables. Based on the above analysis results, eucalyptus was
taken as an example, as shown in Figure 6. It can be seen from the figure that eucalyptus,
pine trees, tea bushes, and orange trees can be divided into one category through the
Elevation feature variable. Eucalyptus, shrubbery, and orange trees can be divided into
one category through the Aerosol_skew feature variable. The intersection of the two types
of data superposition can divide eucalyptus and orange trees into one category. Then, the
superposition analysis was performed between the results of the LSWI_summer feature
variable and the above results, and it was found that their intersection could distinguish
eucalyptus separately.

4.3. Comparison of the Classification Results of Different Algorithms Based on the Optimal
Feature Variables

The classification results of different algorithms based on the optimal feature variables
are shown in Table 8 and Figure 7.

Table 8. Fifteen feature variables with the importance score ranks for the four algorithms.

RF GTB SVM CART

Overall accuracy 82.69% 82.55% 71.67% 70.99%
Kappa coefficient 0.80 0.80 0.67 0.66
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feature variables.

By analyzing Table 8, it can be seen that the classification accuracy of the RF algorithm
was the highest and that the classification accuracy of the GTB algorithm was similar to that
of the RF algorithm. Their overall accuracy scores were 82.55% and 82.69%, respectively,
and the kappa coefficients were 0.80 and 0.80, respectively. The classification results of the
SVM and CART algorithms were relatively weaker. Their overall accuracy scores were
11.02% and 11.70% lower, respectively, than the RF algorithm, and the kappa coefficients
were reduced by 0.13 and 0.14, respectively.

The producer and user accuracies of the forest tree species classification models
constructed with four different classification algorithms based on the optimal feature
variables were statistically plotted (Figure 7). The user and producer accuracies of the
tea bushes classification results were the highest of all four classification algorithms. The
accuracy of tea bushes classification with the RF algorithm was the highest. The user
accuracy was 98%, 3.12%, 17.70%, and 4.22% higher than that of the GTB, SVM, and CART
algorithms, respectively. The producer accuracy was 92%, 1.96%, 15.68%, and 21.57% higher
than that of the GTB, SVM, and CART, respectively. The user and producer accuracies
of the mixed broad-leaved forest results were relatively low and much lower than the
results for the other tree species. The RF algorithm had the highest classification accuracy
for mixed broad-leaved forest, but the user accuracy was only 59% and the producer
accuracy was only 34%. The main reason for the low classification accuracy for the mixed
broad-leaved forest is that it has characteristics of multiple tree species. It is still difficult to
accurately distinguish it from other broad-leaved tree species through the combination of
multispectral images and auxiliary data. Therefore, hyperspectral images can be used for
the fine classification of broad-leaved mixed forests in the future.

Forest tree species were classified with the four classification algorithms based on the
optimal feature combination in the study area. The spatial distribution of the classification
results is shown in Figure 8.



Forests 2022, 13, 1416 15 of 21Forests 2022, 13, x FOR PEER REVIEW 16 of 23 
 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 7. PAs and UAs of the different classification methods: (a) RF; (b) GTB; (c) SVM; (d) CART. 

The producer and user accuracies of the forest tree species classification models con-
structed with four different classification algorithms based on the optimal feature varia-
bles were statistically plotted (Figure 7). The user and producer accuracies of the tea 
bushes classification results were the highest of all four classification algorithms. The ac-
curacy of tea bushes classification with the RF algorithm was the highest. The user accu-
racy was 98%, 3.12%, 17.70%, and 4.22% higher than that of the GTB, SVM, and CART 
algorithms, respectively. The producer accuracy was 92%, 1.96%, 15.68%, and 21.57% 
higher than that of the GTB, SVM, and CART, respectively. The user and producer accu-
racies of the mixed broad-leaved forest results were relatively low and much lower than 
the results for the other tree species. The RF algorithm had the highest classification accu-
racy for mixed broad-leaved forest, but the user accuracy was only 59% and the producer 
accuracy was only 34%. The main reason for the low classification accuracy for the mixed 
broad-leaved forest is that it has characteristics of multiple tree species. It is still difficult 
to accurately distinguish it from other broad-leaved tree species through the combination 

1

2

3

4

5

6

7

8

9

10

11

12

0 10 20 30 40 50 60 70 80 90 100

Accuracy（%）

La
nd

 c
ov

er
 ty

pe
s

 PA  UA

1

2

3

4

5

6

7

8

9

10

11

12

0 10 20 30 40 50 60 70 80 90 100

Accuracy（%）

La
nd

 c
ov

er
 ty

pe
s

 PA  UA

1

2

3

4

5

6

7

8

9

10

11

12

0 10 20 30 40 50 60 70 80 90 100

Accuracy（%）

La
nd

 c
ov

er
 ty

pe
s

 PA  UA

1

2

3

4

5

6

7

8

9

10

11

12

0 10 20 30 40 50 60 70 80 90 100

Accuracy（%）

La
nd

 c
ov

er
 ty

pe
s

 PA  UA

  9. Grassland
10. Water area
11. Farmland
12. Construction land

1. Eucalyptus
2. Bamboo trees
3. Tea bushes
4. Shrubbery

5. Orange trees
6. Cedar
7. Pine trees
8. Mixed broad-leaved forest

Land cover types

Figure 7. PAs and UAs of the different classification methods: (a) RF; (b) GTB; (c) SVM; (d) CART.

It can be seen from Figure 8 that cedar and bamboo trees are mainly distributed
in the north of Liuzhou, while eucalyptus and shrubbery are mainly distributed in the
south of Liuzhou. These four kinds of trees species are the main tree species in Liuzhou.
The classification results of the four algorithms are consistent in most regions, but there
are notable differences in some regions, as shown in Figure 9. Through the comparative
analysis of the local classification results of the different classification methods in Figure 9
and the original true-color images, it can be found that the areas with large differences in
the classification results are mainly due to the misclassification of eucalyptus and farmland,
cedar and pine trees, and orange trees and eucalyptus. Overall, the classification results
of the four algorithms for pine trees and construction land are relatively consistent, and
the classification results for water areas are basically the same. RF and GTB reduced the
fragmentation of the classification results compared to the results of SVM and CART, and
the “salt and pepper phenomenon” was significantly improved, as shown in the marked
area in the figure.
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Figure 9. Local classification results of the different classification methods: (a) original image; (b) RF;
(c) GTB; (d) SVM; (e) CART.

5. Discussion

The data used for the classification of forest tree species in large areas are mostly
free multispectral satellite images owing to their low cost, but the number of bands in
multispectral images is usually small and the spectral resolution is limited. Therefore,
there are some deficiencies in the classification of tree species, and the results leave room
for improvement. The accuracy of tree species classification was only 64.84% when the
spectral reflectance information of Sentinel-2 imagery was used in this research, which
is consistent with the results of previous research. For example, Wang et al. [40] used
Gaofen-2 multispectral images to classify dominant forest tree species, and the highest
accuracy was only 68.52%. Katoh [41] used IKONOS images to classify tree species of
northern mixed forest, and the accuracy was 62%. To make up for the shortage of bands in
multispectral images and improve the accuracy of tree species classification, researchers
use multi-source remote sensing data to complement other data to achieve higher accuracy
in tree species classification. For example, Pippuri et al. [42] used airborne LiDAR and
Landsat 5 images to classify tree species. The highest accuracy achieved was 97% and the
kappa coefficient was 0.91. Chong et al. [43] used SPOT5, GF-1 images, and other data to
classify tree species and obtained an accuracy of 92.28% and a kappa coefficient of 0.89.

Although multi-source remote sensing data in combination with other data can im-
prove the accuracy of tree species classification, other auxiliary data, such as DEM and
phenological information, can also make up for the shortcomings of multispectral images
and improve the accuracy of tree species classification. For example, Chiang et al. [44] used
Landsat images and DEM data to classify tree species and obtained an accuracy of 81%
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and a kappa coefficient of 0.70. Compared with the classification results based on Landsat
images alone, the accuracy of combined Landsat images and DEM classification was higher
by 10%, and the kappa coefficient also increased by 0.18. Kollert et al. [45] extracted pheno-
logical information from multi-temporal Sentinel-2 images and applied it to tree species
classification. The results showed that the classification accuracy based on Sentinel-2 im-
ages and phenological information was 84.40%, which was about 10% higher than that of
single temporal Sentinel-2 images. Hoscilo and Lewandowska [9] used multi-temporal
Sentinel-2 images and DEM data to classify forest tree species. The classification accuracy
from multi-temporal Sentinel-2 imagery was 75.60%, and the tree species classification
accuracy based on multi-temporal Sentinel-2 images and DEM information was improved
to 81.70%. These research results show that auxiliary data can improve the classification
of tree species. DEM and phenological information were used in previous studies, but
the effect of other auxiliary data, such as ultraviolet aerosol index, NO2 concentration,
topographic diversity, precipitation, temperature, and multi-scale topographic location
index, on tree species classification has been rarely researched. Therefore, other auxiliary
data than DEM and phenological information, such as ultraviolet aerosol index characteris-
tics, NO2 concentration characteristics, topographic diversity characteristics, precipitation
characteristics, temperature characteristics, and multi-scale topographic location indices,
were included in this study to explore the effects on tree species classification. Topographic
features, ultraviolet aerosol index, phenological features, spectral index features, NO2 con-
centration feature, spectral features, topographic diversity features, precipitation features,
temperature features, and multi-scale topographic position indices were included in the
optimal tree species classification model established through feature optimization. The
accuracy of the optimal tree species classification model was 82.69%, which is 18% higher
than that of the model established with spectral reflectance, and 17% higher than that of
model established with spectral reflectance and spectral indices. The results show that, in
addition to the spectral reflectance, spectral index, DEM, and phenological information
commonly used in previous studies, auxiliary data, such as ultraviolet aerosol index, NO2
concentration, terrain diversity, precipitation, and temperature characteristics, also play an
important role in forest tree species classification. Therefore, in future studies of large-scale
regional tree species classification, more effective auxiliary data can be combined with free
multispectral images to improve the classification of forest tree species.

The results of this study show that the texture information extracted from multispec-
tral images plays a relatively small role in tree species classification and does not need to be
included in the optimal tree species classification model established through feature opti-
mization, which contrasts with previous research results. For example, Deur et al. [46] used
Worldview-3 images to classify forest tree species. The accuracy of the model established
with spectral reflectance was 85% and that with the combination of spectral reflectance and
texture information was higher, at 95%. Gini et al. [47] used UAV multispectral images to
classify tree species. Their results showed that texture information can improve classifica-
tion accuracy; in their work, the accuracy increased from 58% to 78% or 87%. Although
previous studies have shown that texture information can improve the accuracy of forest
tree species classification, the results of this study show that the accuracy improvement is
limited and may even be negative. For the RF algorithm, the addition of texture information
only improved the model accuracy by 1.89%. For the GTB algorithm, the addition of texture
information improved the model accuracy by 3.10%. However, for the SVM and CART
algorithms, the addition of texture information reduced model accuracy, by 20.30% and
0.61%, respectively. Moreover, taking the RF algorithm as an example, the texture features
were not included in the optimized feature variables obtained by ranking the top 79 features
by importance in feature optimization. Although this conclusion still needs to be verified,
this proves the importance of auxiliary variables in tree species classification. Therefore,
whether the effect of texture information on tree species classification is related to region
and tree species composition should be tested in more study areas with diverse tree species
compositions and more multispectral image data.
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6. Conclusions

In this study, spectral reflectance, spectral index, texture, and phenology information
were extracted from Sentinel-2 images. Other features, such as topography, precipitation, air
temperature, ultraviolet aerosol index, and NO2 concentration, were selected as auxiliary
data. Models for classification of forest tree species were constructed through different
feature combinations using RF, GTB, SVM, and CART algorithms. The optimal model
for each algorithm was found and analyzed through feature optimization. The main
conclusions of this study are as follows.

(1) The combined application of Sentinel-2 images and auxiliary data can improve
forest tree species classification accuracy. The model based on feature optimization achieved
the highest classification accuracy among the 16 feature combination models.

(2) Spectral reflectance and spectral index data extracted from Sentinel-2 images are
useful for forest tree species classification, but the value of texture features is limited and
may even be negative.

(3) Auxiliary data, especially topographic features, ultraviolet aerosol index, pheno-
logical features, NO2 concentration features, topographic diversity features, precipitation
features, temperature features, and multi-scale topographic location indices, play an impor-
tant role in improving the accuracy of forest tree species classification.

(4) Among the RF, GTB, SVM, and CART algorithms, the RF algorithm had the highest
classification accuracy, with an overall accuracy of 82.69% and a kappa coefficient of
0.80. The overall accuracy was 0.14%, 11.02%, and 11.7% higher than GTB, SVM, and
CART, respectively.

The research results show that the combined application of multispectral images and
auxiliary data can improve the accuracy of forest tree species classification. It can provide
methods and technical guidance for high-precision classification of forest tree species in
complex mountainous areas. Furthermore, the results of tree species classification can pro-
vide basic data for models in forest biodiversity research and volume and carbon estimation.
At the same time, it can also promote the accurate operation and scientific management of
forest wood production and provide data support for the dynamic monitoring of forest
resources in large areas. However, the highest accuracy was only 82.69% and the kappa
coefficient was 0.80, which leaves room for improvement. In the future, more effective
auxiliary data or low-cost hyperspectral data with could be used to classify forest tree
species in large areas. Horizontal information extracted from multispectral images and
vertical structure information extracted from spaceborne LiDAR could also be used to
classify forest tree species with higher accuracy.
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