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Abstract: The intercropping of nitrogen-fixing and non-nitrogen-fixing tree species changed the
availability of soil nitrogen and soil microbial community structure and then affected the regulation
process of soil carbon and nitrogen cycle by microorganisms in an artificial forest. However, there is
no consensus on the effect of soil nitrogen on soil microorganisms. In this study, the intercropping
of mulberry and twigs was completed through pot experiments. Total carbon, total nitrogen, and
total phosphorus in the rhizosphere soil were determined, and the composition and structure of
the soil microbial community were visualized by PCR amplification and 16S rRNA ITS sequencing.
The analysis found that the intercropping of Morus alba L. and Lespedeza bicolor Turcz. had no
significant effect on soil pH but significantly increased the contents of total carbon, total nitrogen,
and total phosphorus in the soil. The effect on the alpha diversity of the bacterial community was
not significant, but the effect on the evenness and diversity of the fungal community was significant
(p < 0.05). It was also found that soil nutrients had no significant effect on bacterial community
composition but had a significant effect on the diversity within the fungal community. This study
added theoretical support for the effects of intercropping between non-nitrogen-fixing tree species
and nitrogen-fixing tree species on soil nutrients and microbial community diversity.

Keywords: nitrogen-fixing plant; soil microorganism; nitrogen; Lespedeza bicolor; Morus alba

1. Introduction

Soil microorganisms are a kind of significant link between the aboveground vegetation
community and the underground ecological process [1,2]. They are involved in soil organic
matter decomposition, adjusting the forest ecosystem circulation process of material circu-
lation, and energy flow in soil. It is the most momentous driver of ecosystem function and
the “engine” of soil nutrient cycling [3,4]. Changes in the utilization pattern and utilization
efficiency of soil organic carbon by microbial communities may affect forest ecosystems
in organic matter decomposition, the emission of greenhouse gases (CO2 and CH4), and
the carbon sequestration [5]. Soil phosphorus and nitrogen are mainly in the shape of an
organic state, which cannot be directly absorbed and utilized by plants. The nutrients
that must be transformed, absorbed, and “temporarily” preserved by soil microorganisms
are the “effective reservoirs” for plants to absorb nutrients. Soil microbial community
composition (bacteria and fungi) affects soil nutrient transformation and availability [6].
The intercropping between nitrogen-fixing plants and non-nitrogen-fixing plants changes
the availability of soil nitrogen and microbial community structure and then affects the reg-
ulation process of soil carbon and nitrogen cycling by artificial forest microorganisms. [7].
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However, there is still no consensus on the relationship between soil nitrogen and soil mi-
croorganisms. It has been found that increasing soil nitrogen content can increase microbial
biomass [8]. Some studies have also found that an increase in soil nitrogen can sometimes
harm soil microbial biomass, and sometimes this impact is negligible [9,10].

Nitrogen-fixing plants remarkably increased soil organic matter and nitrogen con-
tent [11,12]. The results of Wang et al. showed that the soil organic matter and nitrogen
content in the surface layer of nitrogen fixation artificial forests were 40%–50% and 20%–50%
higher than that of non-nitrogen fixation plantations, respectively [13]. The increase of soil
nitrogen not only affects plant growth but also changes soil physicochemical properties and
affects the structure and function of soil microorganisms, thereby affecting the activity of
soil enzymes and their stoichiometric ratios. Wang et al. have shown that increases in soil
nitrogen (such as nitrogen addition) can change the stoichiometric ratio of soil nutrients,
such as carbon to nitrogen ratio (C/N), carbon to phosphorus ratio (C/P), and nitrogen to
phosphorus ratio (N/P) [14]. Using five years of nitrogen addition experiments, Zeng et al.
found that nitrogen application reduced the N requirement of soil microorganisms in
Phyllostachys pubescens forest [15]. However, in a three-year nitrogen addition experiment in
the mid-subtropical Castanopsis carlesii natural forest, it was found that nitrogen treatment
could significantly accelerate the soil C cycle [16]. In addition to directly affecting the
soil due to their nitrogen-fixing ability, nitrogen-fixing plants can also affect other plants
through their interaction with the soil. Nitrogen-fixing plants can provide abundantly
available nitrogen for other plants through root secretion or litter decomposition [17–19],
which in turn promotes the growth of those [20], improves productivity [21], and promotes
secondary growth of vegetation [22]. They have important ecological functions in the
ecosystem. The roots of nitrogen-fixing plants can coexist with nitrogen-fixing bacteria, and
the nitrogen-fixing effect of nitrogen-fixing bacteria can continuously increase the content
and effectiveness of soil nitrogen, thereby improving plant productivity.

The intercropping compound system is a typical resource-efficient planting model,
which can not only effectively utilize resources through the complementation of species
vegetative niche and spatial niche but also increase species diversity and improve soil
quality, thereby achieving high yield [23,24]. Intercropping can change soil physicochemical
properties, further cause changes in soil microbial communities, and affect soil health and
quality [25]. Legume crops have the function of biological nitrogen fixation, which can
effectively supplement nitrogen in the soil, and their advantages in intercropping with
non-legume crops are very prominent. Previous studies have shown that interbreeding
with nitrogen-fixing plants has positive effects on increasing soil nitrogen content and
nitrogen availability [26,27], thus increasing the organic carbon storage in ecosystems [28].
More importantly, the competition of intercropping species for soil nitrogen stimulates
legume crops to rely more on symbiotic nitrogen fixation, broadening the nitrogen nutrient
niche and further improving the nitrogen use efficiency of the intercropping system [29,30].
Soil nitrogen and atmospheric nitrogen fastened by legume crops are the main sources of
nitrogen for low-input legume and non-legume intercropping. Legume crops show strong
nitrogen dominance when participating in intercropping.

Lespedeza bicolor Turcz. belongs to the legume family and is an erect shrub of the genus
Lespedeza, with good resistance and strong soil adaptability, and can grow on barren, newly
cultivated land. It is a common species in the habitats of different desertification ecosystems
and is suitable for constructing desertification control projects [31]. It is also a typical case
of nitrogen fixation plants. M. alba L., which belongs to the Moraceae, is an excellent local
plant in China. It has the characteristics of strong flexibility, wide geographical distribution,
a high survival rate of afforestation, and a large crown, and can be used for ecological
afforestation. At present, many scholars have found that M. alba and L. bicolor belong
to the legume family and are erect shrubs of the genus Lespedeza that have the same
strong resistance to various adverse site environments; that is, they have excellent salinity
resistance, barren resistance, and drought resistance [32,33]. This lays the foundation for
the possibility and extension of the intercropping of M. alba and L. bicolor. In this study, the
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native tree species L. bicolor in Zhangwu County area of Liaoning Province and “Shen Sang
No.1” cultivated by the Forestry College of Shenyang Agricultural University were selected
for intercropping experiments to investigate the effects of introducing nitrogen-fixing plants
on soil nutrients and microbial community diversity in M. alba plantations and the effects
of nitrogen-fixing plants on soil nutrients and microbial community diversity in M. alba
plantation. The correlation between soil nutrients and microbial community diversity after
the introduction of nitrogen-fixing plants was analyzed.

2. Materials and Methods
2.1. Tested Varieties and Planting Patterns

Planting experiments began in March 2021 in Zhangwu County, Fuxin City, Liaoning
Province, China (122◦29′52′′ E, 42◦21′24′′ N) (Figure 1). It is located on the southern edge
of the Horqin Sandy Land, which has a north temperate monsoon continental climate and
is a typical sandy land in northwestern Liaoning. A total of three planting patterns were
arranged in the pot experiment, namely M. alba pure planting (Ma), L. bicolor pure planting
(Lb), and intercropping of M. alba-L. bicolor planting (MaLb). Pure forest samples were
planted with four plants per pot, and MaLb was planted with two M. alba and two L. bicolor
per pot. A total of four replicates were set up in the experiment, and each replicate was
randomly placed.
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Figure 1. The specific location of the pot experiment.

2.2. Gathered Soil Samples and Admeasurement of Physicochemical Properties

The soil around the roots of each potted plant was obtained using the root shaking
method. Twelve groups of samples were put into sterile ziplock bags and numbered in
August 2021. They were put in an ice box and returned to the lab for further manipulation.
In the laboratory, plant residues, roots, stones, and other garbage were removed from the
sample, and samples were sieved by a 100-mesh (the pore size of 0.015 mm) sieve. The
sieved sample was divided into two parts. A part was air-dried and stored in a refrigerator
at 4 ◦C for the determination of soil chemical properties (total soil carbon, total nitrogen, and
total phosphorus). Another part of the samples was stored in centrifuge tubes according to
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the numbers and stored in a −80 ◦C refrigerator until they were used for the determination
of soil microorganisms.

The soil pH value was extracted with CO2-free water and determined by the poten-
tiometric method (Mettler Toledo pH (FE20), and the water-soil ratio was 2.5:1. Soil total
carbon and soil nitrogen contents were determined by the elemental analyzer (Elementar
Vario EL III Germany). Total phosphorus in soil was determined by the molybdenum–
antimony anti-colorimetric method.

2.3. DNA Extraction and Sequencing of Soil Microorganisms

The OMEGA Mag-bind Soil DNA Kit (Omega M5636-02) (Omega Bio-Tek, Norcross,
GA, USA) was used to extract total DNA and based on the kit-specific extraction, proce-
dures for each sample weighing 0.5 g sample. The quantity and quality of the extracted
DNA were determined by a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scien-
tific, Waltham, MA, USA). Primers 338F (5′-ACTCCTACGGGAGGCAGCA-3′) and 806R
(5′-CGGACTACHVGGGTWTCTAAT-3′) amplified the V3-V4 region of bacterial 16S rRNA
gene [34]; the fungal ITS region was amplified with primers ITS5
(5′-GGAAGTAAAAGTCGTAACAAGG-3′) and ITS2 (5′-GCTGCGTTCTTCATCGATGC-
3′). 2 µL DNA template [35], 1 µL upstream and downstream primers (10 µmol/L), 5 µL
buffer (×5), 5 µL Q5 high-fidelity buffer (×5), high-fidelity DNA polymerase (5 U/µL)
0.25 µL, 2 µL dNTP (2.5 mmol/L), 8.75 µL ultrapure water (ddH2O) constitute the PCR
reaction system. PCR amplification was first pre-denatured at 98 ◦C for 2 min, then re-
peated 25 times in a cycle of 98 ◦C for 15 s, 55 ◦C for 30 s, and 72 ◦C for 30 s, and finally
extended at 72 ◦C for 5 min. The PCR-amplified products were checked by 2% agarose
gel electrophoresis. Then the target fragments were recovered by gel cutting and then by
AXYGEN’s gel recovery kit with Axygen Axy Prep DNA Gel Extraction kit (AP-GX-500).
The final concentrations obtained were 0.63–5.29 ng/µL for bacteria and 0.58–11 ng/µL for
fungi. After the individual quantification step, amplicons were pooled in equal amounts,
and pair-end 2 × 250 bp sequencing was performed using the Illumina NovaSeq platform
with NovaSeq 6000 SP Reagent Kit (500 cycles) at Shanghai Personal Biotechnology Co.,
Ltd. (Shanghai, China). TruSeq Nano DNA LT Library Prep Kit (Illumina) was used in the
sequencing library. In total, 1µL of the library was taken, and the Agilent High Sensitivity
DNA Kit was used for 2100 quality inspections of the library on the Agilent Bioanalyzer
machine. Qualified libraries were sequenced at 2 × 300 bp paired-end using the MiSeq
Reagent Kit V3 (600 cycles) on the MiSeq machine.

2.4. Statistical Analysis

Raw sequence data were demultiplexed using the demux plugin, followed by primers
cutting with the cutadapt plugin [36]. Sequences were then quality filtered, denoised,
merged, and chimera removed using the DADA2 plugin [37]. Non-singleton amplicon
sequence variants (ASVs) were aligned with mafft [38] and used to construct a phylogeny
with fasttree2 [39].

Excel Office 2019 and IBM SPSS Statistics 26.0.0 (Chicago, USA) were used for data
processing and statistical analysis. All the data in Table 1 were mean ± standard deviation
of 4 replicates. The one-way ANOVA method (LSD) was used to compare the different
soil physical and chemical properties and the significant differences of soil microbial
communities. Differences in soil β-diversity were analyzed based on the Operational
Taxonomic Units (OTU) table, and APE package in R (R v.3.4.4) (New Zealand). Common
and unique OTUs of soil microbial communities in each sample were analyzed in R (R
v.3.4.4). Venn diagrams were generated using the “Venn diagram” package [40]. Stacked
histograms of species composition were the most commonly used means of characterizing
the species composition of multiple samples. By statistical analysis of the feature table
after removing Singleton, the visualization of the component distribution of each sample
at different classification levels was realized, and the bar chart was drawn by QIIME2
(2019.4). Data were normalized during α-diversity analysis. The leveling rule adopts
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the qiime feature table refinement function, and the leveling depth is set to 95% of the
minimum sample sequence size. Abundance is represented by the Chao1 index and
observed_species index, while the Shannon and Simpson index represents diversity. The
uniformity was characterized by the Pielou_e index, and the coverage was characterized
by the Good_coverage index. Boxplots were produced using the ggplot2 package in R (R
v.3.4.4) [41]. Non-metric multidimensional scaling analysis (NMDS) was done with R (R
v.3.4.4)’s “vegan” package. It simplified the data structure by reducing the dimension of
the sample distance matrix to trace the distribution characteristics of the sample under
a specific distance scale. By rank ordering the sample distance, ordering the samples in
the low-dimensional space was as close as possible to the similar distance relationship
between each other (rather than the exact distance value). The smaller the stress value
(Stress) of the NMDS results, the better. It is generally believed that when the value is
less than 0.2, the NMDS analysis’s results are more reliable [42]. Cluster analysis was
performed to identify discontinuities in the data. Hierarchical clustering was often used
in Beta diversity clustering analysis, which is in the form of a hierarchy tree according
to the similarity between samples. Through the clustering tree branch, length measures
the quality of the clustering effect. Using the “uclust” function of the R (R v.3.4.4)’s “stat”
package, the Bray–Curtis distance matrix was clustered by the UPGMA algorithm (the
clustering method was average) by default, and the “ggtree” package of R (R v.3.4.4) was
used for visualization.

Table 1. Physical and chemical properties of soil under different planting methods.

Tree Species pH Value Total N/g kg−1 Total C/g kg−1 Total C/Total N Total P/mg kg−1

MaLb 7.94 ± 0.017 aA 0.53 ± 0.003 aA 7.60 ± 0.142 bB 14.43 ± 0.350 bA 4.93 ± 0.268 bB
Ma 7.88 ± 0.023 aA 0.46 ± 0.009 bB 4.38 ± 0.123 cC 9.80 ± 0.030 cB 2.23 ± 0.074 cC
Lb 7.89 ± 0.003 aA 0.54 ± 0.006 aA 8.30 ± 0.047 aA 15.38 ± 0.249 aA 7.12 ± 0.352 aA

Data was expressed as mean ± standard deviation (n = 4). Capital letters in the same row represent a sig-
nificant difference (p < 0.01), and lower-case letters mean significant differences (p < 0.05). Ma: Morus alba;
Lb: Lespedeza bicolor; MaLb: Morus alba-Lespedeza bicolor.

3. Results
3.1. Soil Physicochemical Properties of Different Planting Types

As can be seen from Table 1, there are significant differences in total carbon (total C),
total nitrogen (total N), total phosphorus (total P), and total carbon/total nitrogen (total
C/total N) of different tree species (p < 0.01). At the same time, the pH value differences
between them were not significant (p > 0.0). The soil chemical indexes were the lowest in
Ma and the highest in Lb, including total C, total N, total P, and total C/total N. Unlike soil
chemical indicators, the pH of MaLb was higher than Lb (Table 1).

3.2. Soil Microbial Community Composition and Structural Diversity under Different
Planting Methods

A total of 34,193 OTUs were detected in the presence of unique OTUs and shared
OTUs in the three sample bacteria. OTUs of Ma, MaLb, and Lb were 13,515, 167,206, and
14,315, respectively. Among them, the number of OTUs in Ma, MaLb, and Lb was 2837,
among which the unique OTUs in Ma, MaLb, and Lb respectively were 7941, 10,611, and
8115, (Figure 2a). 2035 OTUs were aggregated in the three sample fungi. Ma, MaLb, and Lb
had 1411, 1227, and 1216 OTUs, respectively. Among them, 307 OTUs were shared by Ma,
MaLb, and Lb, and only Ma, MaLb, and Lb shared 851, 642, and 630 OTUs, respectively
(Figure 2b).
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Figure 2. Venn diagram shows three different samples of unique and shared OTUs soil microorgan-
isms. (a): Endemic and shared OTUs of soil bacteria from three different samples; (b): Endemic
and shared OTUs of soil fungi from three different samples. Ma: Morus alba; Lb: Lespedeza bicolor;
MaLb: Morus alba-Lespedeza bicolor.

The samples with different soil ratios were analyzed by the α–diversity index, and
boxplots were drawn. The soil bacterial diversity indices, including the Chao 1 index
(F = 0.751, p = 0.015), Pielou_e index (F = 1.802, p = 0.2), Goods_coverage (F = 0.849,
p = 0.69), Shannon index (F = 0.677, p = 0.58), Simpson index (F = 0.174, p = 0.79), and
Observed_species (F = 1.108, p = 0.37), showed no significant differences among Ma, MaLb,
and Lb. MaLb had the highest Chao 1 index, Observed_species index, and Shannon index,
which were 6942.935, 5682.775, and 11.205, respectively, followed by Lb, while Ma had the
lowest. Ma had the highest abundance, diversity, and evenness (Figure 3a). MaLb had the
lowest Goods_coverage index, Pielou_e index, and Simpson index, which were 0.949, 0.900,
and 0.99841, followed by Lb, while Ma had the highest.

However, the results for fungi were different from those for bacteria. The soil bacterial
diversity index, including Chao 1 index (F = 3.333, p = 0.018), Goods_coverage (F = 5.149,
p = 0.038), Pielou_e index (F = 4.124, p = 0.024), Shannon index (F = 4.682, p = 0.024),
Simpson index (F = 1.516, p = 0.087), and Observed_species (F = 4.237, p = 0.024), ex-
hibited differences among Ma, MaLb as well as Lb. Ma had the highest Chao 1 index,
Goods_coverage index, Observed_species index, Pielou_e index, Shannon index, and Simp-
son index, which were 556.214, 0.99947, 547.475, 0.715, 6.502, and 0.975, respectively. Lb
had the lowest Chao 1 index (was 480.340) and Observed_species index (was 471.950). The
Goods_coverage, Pielou_e index, Shannon index, and Simpson index of MaLb were the
lowest, which were 0.99908, 0.624, 5.562, and 0.926, respectively (Figure 3b).

The relative abundance of microorganisms at the phylum level (others were shown)
in the three soil samples was counted, as shown in Figure 4. At the bacterium phylum
level, the top 10 relative abundances were Actinobacteria, Proteobacteria, Acidobacteria,
Chloroflexi, Firmicutes, Gemmatimonadetes, Bacteroidetes, Rokubacteria, Nitrospirae,
and Patescibacteria. Among them, Actinobacteria was the most abundant phylum in the
three samples. Only Actinobacteria had the highest content in MaLb, which was 35.85%.
Proteobacteria and Acidobacteria were Lb > Ma > MaLb (Figure 4a). At the level of fun-
gal phylum, the top 10 contents were Ascomycota, Mortierellomycota, Basidiomycota,
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Zoopagomycota, Basidiobolomycota, Blastocladiomycota, Glomeromycota, Olpidiomycota,
Chytridiomycota, and Mucoromycota. Only Ascomycota, Mortierellomycota, Basidiomy-
cota, and Zoopagomycota had a relative content of more than 1%. Ascomycota was the
dominant phyla in the three soil samples, and Lb (82.35%) > MaLb (78.33%) > Ma (74.67%).
Mortierellomycota had the highest content in MaLb at 10.48%, while Basidiomycota had it
in Ma and Zoopagomycota in Lb (Figure 4b).
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Figure 4. The relative content of species composition at the soil microbial phylum-level in differ-
ent planting types (others were shown). (a): Relative content of bacterial phylum-level species
composition; (b): Relative content of fungal phylum-level species composition. Ma: Morus alba;
Lb: Lespedeza bicolor; MaLb: Morus alba-Lespedeza bicolor.

Hierarchical clustering analysis at the genus level of soil microbial community showed
that bacterial and fungal communities exhibit the same regularity. Whether at the bacterial
genus level or fungi, Ma clustered into one class, Ma and MaLb into the class. This indicated
that the similarity between Ma and MaLb is high at the genus level, and the similarity to
Ma was low. The inlay on the right showed that the genus-level abundance of the microbial
community was not the same, and although the species composition of each treatment was
similar, the abundance difference was obvious (Figure 5).
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Figure 5. Hierarchical clustering analysis of soil microbial composition of different planting
types at the genus level. (a): Hierarchical cluster analysis at genus level of bacteria; (b):
Hierarchical cluster analysis at genus level of fungi. Ma: Morus alba; Lb: Lespedeza bicolor;
MaLb: Morus alba-Lespedeza bicolor.

The relative abundances of microorganisms at the genus level (others were not shown)
in the three soil samples were calculated, as shown in Figure 6. At the bacterial genus level,
the relative contents of Subgroup_6, KD4-96, RB41, MND1, A4b, MB-A2-108, Mycobacterium,
Nocardioides, Blastococcus, and Solirubrobacter were in the top 10, but their relative contents
did not exceed 10%. Subgroup_6 was the genus with the highest content in the three soil



Forests 2022, 13, 1345 10 of 17

samples, with Lb of 8.79%, Ma of 8.22%, and MaLb of 7.75%, respectively. The KD4-96 con-
tent of MaLb was higher than that of Ma and Lb, which was 3.65%, and the content of RB41
was the highest in Ma (Figure 6a). At the fungal genus level, the top 10 relative contents
are Botryotrichum, Acaulium, Mortierella, Tausonia, Fusarium, Lophotrichus, Pseudogymnoascus,
Nectria, Aphanoascus, Pseudaleuria. The genus with the highest Ma content was Tausonia,
accounting for 9.08%, while Botryotrichum had the highest Lb and MaLb content, accounting
for 16.68% and 14.44%, respectively (Figure 6b).
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Figure 6. The relative content of species composition at the soil microbial genus level in different plant-
ing types (others were not shown). (a): Relative content of bacterial genus-level species composition;
(b): Relative content of fungal genus-level species composition. Ma: Morus alba; Lb: Lespedeza bicolor;
MaLb: Morus alba-Lespedeza bicolor.

As can be seen from the NMDS analysis chart, based on the Bray-Curtis algorithm, the
population structures of three different soil microorganisms were significantly different.
The degree of similarity in sample microbial population composition was indicated by the
distance between samples in the figure. For soil bacterial communities, Ma was distributed
in the first four quadrants, Lb was distributed in the second quadrant, and MaLb was
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distributed in the third quadrant (Figure 7a). Soil fungal communities differed from
bacteria in that both MaLb and Lb were located in the second and third quadrants. Both
Lb and MaLb were distributed on the negative semi-axis of the NMDS1 axis, while Ma
was distributed on the positive NMDS1 axis. It could be seen that Lb and MaLb had great
similarities in soil microbial structure and were quite different from Ma (Figure 7b).
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Figure 7. Nonmetric multidimensional scale analysis (NMDS) of microbial community structure in
different soil samples. (a): soil bacterial communities; (b): soil fungal communities. Ma: Morus alba;
Lb: Lespedeza bicolor; MaLb: Morus alba-Lespedeza bicolor.

3.3. Different Types of Planting Soil Physicochemical Properties and Microbial
Community Diversity

As shown in Table 2, bacterial community alpha diversity had no significant rela-
tionship with the soil’s physical and chemical properties. For the fungal community, soil
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pH was inversely related to the Goods_coverage index (p < 0.01), Pielou_e index, and
Shannon index (p < 0.05). The soil total N, total C, and total C/total N were significantly
negatively correlated with Chao 1 index, Observed_species index, Pielou_e index, and
Shannon index (p < 0.05). Soil total P index was negatively correlated with Chao 1 index
and Observed_species index (p < 0.05) (Table 3).

Table 2. The relationship between soil physicochemical properties and α-diversity of the bacterial
community in different planting types.

Chao1 Goods_Coverage Observed_Species Pielou_e Shannon Simpson

pH value 0.281 −0.305 0.308 −0.390 0.133 −0.200
Total N 0.253 −0.270 0.258 −0.494 0.146 −0.282
Total C 0.334 −0.350 0.326 −0.515 0.197 −0.190

Total C/total N 0.376 −0.392 0.365 −0.531 0.234 −0.158
Total P 0.132 −0.143 0.111 −0.351 0.006 −0.189

Table 3. The relationship between soil physicochemical properties and α-diversity of the fungal
community in different planting types.

Chao1 Goods_Coverage Observed_Species Pielou_e Shannon Simpson

pH value −0.230 −0.760 ** −0.350 −0.614 * −0.595 * −0.444
Total N −0.630 * −0.253 −0.675 * −0.616 * −0.649 * −0.426
Total C −0.647 * −0.286 −0.697 * −0.656 * −0.688 * −0.430

Total C/total N −0.638 * −0.307 −0.691 * −0.669 * −0.698 * −0.436
Total P −0.613 * −0.046 −0.624 * −0.487 −0.528 −0.281

** indicates a significant difference at the 0.01 level. * indicates significant difference at 0.05 level.

At the phylum level, the bacterial phyla and soil physicochemical properties with
the content of bacterial phyla in the top 10 and the fungal phylum content of >1% were
compared for significance analysis. Firmicutes and Basidiomycota were significantly
negatively correlated with soil total N, total C, total C/total N, and total P (p < 0.01).
Nitrospirae was a notable negative correlation between total N (p < 0.01), total C, total
C/total N, and total P (p < 0.05). Bacteroidetes was significantly positively correlated with
soil total P (p < 0.05). Ascomycota was significantly positively correlated with total N,
total C, total C/total N, and total P (p < 0.05). Zoopagomycota was significantly positively
correlated with total C and total C/total N (p < 0.05). Other phyla had no correlation with
the soil ’s biological and biological properties. (Table 4).

Table 4. Correlation between soil physicochemical properties and bacterial phyla levels in different
planting types.

pH Value Total N Total C Total C/Total N Total P

Actinobacteria 0.246 0.245 0.147 0.133 −0.025
Proteobacteria −0.013 −0.078 0.057 0.075 0.172
Acidobacteria −0.234 −0.128 −0.064 −0.064 0.116

Chloroflexi 0.093 0.575 0.493 0.491 0.452
Firmicutes −0.525 −0.852 ** −0.921 ** −0.935 ** −0.855 **

Gemmatimonadetes 0.138 −0.452 −0.339 −0.313 −0.313
Bacteroidetes −0.023 0.403 0.520 0.534 0.663 *
Rokubacteria −0.450 −0.454 −0.521 −0.548 −0.367
Nitrospirae −0.185 −0.788 ** −0.700 * −0.658 * −0.625 *

Patescibacteria −0.288 0.195 0.202 0.202 0.273
Ascomycota 0.085 0.652 * 0.604 * 0.588 * 0.613 *

Mortierellomycota 0.272 0.633 * 0.586 * 0.565 0.451
Basidiomycota −0.284 −0.848 ** −0.853 ** −0.853 ** −0.810 **

Zoopagomycota 0.364 0.499 0.602 * 0.634 * 0.572

The bacterial phylum level listed the top 10 relative content, and the fungal phylum level listed the relative content
>1%. ** indicates a significant difference at the 0.01 level. * indicates significant difference at 0.05 level.
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4. Discussion

Many early studies have shown that intercropping of nitrogen-fixing plants and other
species can improve productivity [43,44]. Studies also found that intercropping with
nitrogen-fixing plants can increase soil nitrogen content [45,46], thereby enhancing the
accumulation of organic carbon and nitrogen in the ecosystem [28]. As a nitrogen fertilizer
crop, the nitrogen content in Lb was significantly higher than in Ma. However, there were
no significant changes between it and MaLb, which might be due to the apparent effect of
L. bicolor in the intercropping of M. alba and L. bicolor. This study found that nitrogen-fixing
and M. alba intercropping could significantly increase the soil total N, P, and K of M. alba, but
had no significant impact on the soil pH. This indicated that nitrogen-fixing plants could
not only enhance soil nutrients in pure M. alba forests but also have the potential to increase
their soil carbon interception potential, similar to previous studies that concluded that those
could significantly reduce soil carbon loss and increase soil carbon sequestration [47,48].
Nitrogen-fixing plants and M. alba were mixed to improve soil nitrogen availability and
nutrients. The increase in available nitrogen content in soil was an important factor in
significantly improving the net productivity of plants [49]. These results suggest that
nitrogen-fixing plants enhance ground plant productivity by increasing the availability
of soil nutrients, especially nitrogen, and provide essential basal metabolites for more
microbial growth. In turn, the soil microbial biomass was increased, and to a certain extent,
it was possible to increase the source of soil organic carbon.

Several recent studies have shown that soil nutrient quality (e.g., total soil nitrogen,
total carbon, and total carbon/total nitrogen) is also a major factor driving changes in
soil microbial communities [50,51], which is similar to the results of the present study.
The introduction of nitrogen-fixing plants increases soil nitrogen content and reduces soil
carbon-nitrogen ratio, which inhibits the growth of soil fungal communities to a certain
extent [52]. The present study found that intercropping of M. alba and L. bicolor significantly
increased soil nutrient content (total N, total C, total P). These changes significantly in-
creased the biomass of soil bacterial communities but significantly decreased the proportion
of fungal communities. This study was also supported by many studies that suggest that
bacterial communities tend to be dominant in fertile soils [53,54].

Soil has a strong metabolic capacity due to the presence of soil microorganisms [55].
Soil microbes are the link between soil and plants, which drives plant growth [56,57].
Changes in pH have the greatest impact on soil bacteria [58,59], and higher pH increases
the activity of soil microorganisms such as Nitrospira [60]. In this study, the pH value of
MaLb was the highest. Still, there was no significant difference among the three treatments,
so pH value was not the dominant factor affecting the soil microbial community in this
experiment. After intercropping with M. alba, nitrogen fixed by rhizobia was available to
mulberries, and this level of nitrogen addition increased the complexity of rhizosphere
bacteria [61]. In this experiment, the top three bacteria in soil content of three treatments
were Actinobacteria, Proteobacteria, and Acidobacteria. The abundance of actinomycetes is
associated with fast-acting nutrients [62]. There are many reasons for the high abundance
of actinomycetes in MaLb. One is because of nitrogen, and the other is because of the
high content of organic matter, which can also be found from higher C/N [63]. In harsh
environments such as salinity, Proteobacteria dominate the soil and have a certain resistance
to such extreme environments [64]. In this experiment, the content of Proteobacteria showed
Lb > Ma > MaLb, so it was speculated that the resistance of M. alba and L. bicolor to the
harsh environment was higher, and the resistance was still retained after intercropping.

In addition, Fungi play an important role in soil, some of which promote crop growth
and development, and some cause crop diseases [65]. Most soil fungi belong to the
Ascomycetes or Basidiomycetes. In this study, Ascomycetes were significantly positively
correlated with soil nutrients (p < 0.05), while Basidiomycetes were negatively correlated
with those (p < 0.01). After the intercropping of L. bicolor and M. alba, the abundance of
the bacterial community decreased. Basidiomycetes are abundant decomposing fungi
in soil, and their abundance increases the decomposition of organic matter in the soil
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faster efficiently. Ascomycete fungi can be parasites, symbiotic, saprophytic, or facultative
saprophytic, while Basidiomycete fungi are mostly saprophytic. Since plants have different
life forms, their properties vary at the phylum level. The proportion of unclassified plants in
the rhizosphere flora was low, indicating that more research is needed into the rhizosphere
flora plants of M. alba and L. bicolor.

Nitrogen is an important nutrient in the soil and often acts as a soil factor limiting plant
growth. Recent studies have shown that nitrogen-fixing plants are capable of increasing soil
nitrogen content, increasing soil organic matter, and also enhancing soil [66–70]. Up to now,
it has not been possible to establish a uniform conclusion on the mechanisms by which soil
nitrogen content and its availability affect soil microbial biomass. Some studies have found
that the increase of soil nitrogen content is beneficial to the reproduction and growth of soil
microorganisms [71,72]. However, some studies have found that increasing soil nitrogen
content sometimes inhibits their reproduction and growth, and sometimes this effect is
minimal [73,74]. This also explained to a certain extent why the bacterial community
structure and composition of different treatments in this study were not significantly
different. In contrast, the fungal community structure and composition were significantly
different. The past state of understanding the key abiotic and biotic factors that underlie
the structural variations in soil microbial communities exists very uncertain [75,76].

5. Conclusions

In this study, the nutrient content, microbial community, and structural composition
of the rhizosphere soil of different samples were measured in the pot experiments of M.
alba-L. bicolor intercropping and pure breeding of M. alba and L. bicolor, respectively. We
found that in terms of soil nutrients, the intercropping of M. alba and nitrogen-fixing
tree species L. bicolor had no significant effect on soil pH but significantly increased the
content of total C, total N, and total P in the soil and improved soil nutrients. Microbial
community composition and structure were visualized by PCR amplification and 16S rRNA
and ITS sequencing of corresponding primers for soil microbes in different samples. It was
found that the intercropping of M. alba and L. bicolor had no significant effect on the alpha
diversity of the bacterial community but did have a significant effect on the evenness and
diversity of the fungal community (p < 0.05). The intercropping of M. alba and nitrogen-
fixing species increased the relative abundance of Actinobacteria in the rhizosphere soil.
Mortierellomycota was more abundant in MaLb than in the other two. According to NMDS
analysis, the similarity between MaLb microbial community and Lb was higher than that
of Ma. The study also found that soil nutrients had no significant effect on bacterial
community composition (p > 0.05) but did have a significant effect on fungal community
richness, diversity, and uniformity (p < 0.05). This study enriched our understanding of the
effects of the introduction of nitrogen-fixing tree species on soil nutrients and microbial
community diversity in M. alba plantations through the intercropping of mulberry and
nitrogen-fixing tree species—L. bicolor. Add a theoretical basis for our understanding of the
impact of soil nitrogen content on soil nutrients and microorganisms in the future.
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