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Abstract: The site quality evaluation of plantations has consistently been the focus in matching
tree species with sites. This paper studied the site quality of Chinese fir (Cunninghamia lanceolata)
plantations in Lin’an District, Zhejiang Province, China. The site quality model was constructed
using the algebraic difference approach (ADA) to classify the site quality grades. The rough set
algorithm was used to screen out the key site factors affecting the site rank of Chinese fir plantations.
Site quality classification models based on random forest were established, and the importance of
key site factors was evaluated. The results are as follows. The random forest model based on the
rough set algorithm had small scale and low complexity, and the training and testing accuracies of
the model were 92.47% and 78.46%, respectively, which were better than the model without attribute
reduction. The most important factors affecting Chinese fir growth in the study area were the slope
aspect, slope grade, and canopy closure. The least important factors were the humus layer thickness,
soil layer thickness, naturalness, and stand origin. The attribute reduction method proposed in this
study overcame the subjectivity of traditional site factor selection, and the site quality classification
model constructed improved the model accuracy and reduced the complexity of the algorithm. The
methods used in this study can be extended to other tree species to provide a basis for matching tree
species with sites and to improve the level of forest management in the future.

Keywords: Cunninghamia lanceolata plantations; site quality classification models; site quality evaluation;
rough set; random forest

1. Introduction

Forestation is an important natural and strategic resource in China. The develop-
ment of forestland resources in Zhejiang Province is relatively high, but its quality has
been disregarded in the long-term national economic development process. Therefore,
protecting forestland and improving its quality have been important measures to balance
rapid economic growth and ecosystem protection. The accurate evaluation of forest site
quality is an important guarantee for matching tree species with sites and establishing
plantation management measures scientifically. Such an evaluation is a significant premise
for realizing the scientific, reasonable, and efficient utilization of forestland. If a scientific
and accurate evaluation system of forest site quality can be proposed, then it will have an
immense impact on improving the productivity and sustainable development of plantation
forests [1].

At present, numerous studies have been conducted in the field of the site quality
evaluation of plantation forests. Site quality evaluation aims to classify the suitability or
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potential productivity of forestland by collecting relevant data with generalized mathe-
matical methods to take forest management measures according to different classification
results [2]. The selection of site factors and site evaluation methods is the key to solving the
problem of the site quality evaluation of the plantations.

(1) Site factors

The site quality of plantations can be reflected by some site factors [3]. Given that
measuring all of the numerous site factors is impossible, identifying which factors are used
as the basis of site quality evaluation has constantly been the research focus in this field. The
existing research results have shown that commonly used site factors at present are mainly
summarized as topography, soil, climate, and vegetation factors. Traditional forest site
quality evaluation involves obtaining relevant site factors through ground measurement
and dividing site types, thereafter according to the combination of different site factors. The
research on dominant tree species has been conducted particularly in regions with relatively
consistent climatic conditions, in which the concern is on the relationship between the local
soil or topographic factors and tree height or site index [4–6]. Moreover, some scholars
have indicated that ground survey data are mostly discrete non-numerical data, thereby
reducing the convergence and stability of the site quality model. Therefore, the focus of site
factor acquisition has shifted to climate and plant biological factors. For climate factors,
temperature, humidity, precipitation, and dryness are the most selected factors applied to
the site quality evaluation of Pinus koraiensis, Picea asperata, Fagus longipetiolata, Quercus
mongolica, and other tree species [7–10]. For vegetation factors, the height and coverage of
understory vegetation are often used to construct a site index model [11].

In collecting site factors, topography, soil, and understory vegetation factors can be
obtained through the Forest Management Inventory System of China or field investigation.
Studies have shown that soil chemical properties and nutrients such as soil PH, nitrogen,
phosphorus, potassium, and other elements directly affect the growth of trees [12]. However,
determining these factors is time-consuming and costly. In local stands, the effects of
climate change on tree growth are not significant [13]. Therefore, the effects of climate
can be markedly important at the landscape and regional scales, while topography and
soil can be significant at the local scale. Therefore, in selecting site factors of local stands,
choosing factors that can affect the growth of the stand and are easy to determine and
measure is better.

At present, selecting site factors in site quality model construction is often subjec-
tive. ANKIWAN [14] estimated the average height growth model by using 32 site en-
vironmental factors such as topography, gradient, effective soil depth, and the average
height of five dominant trees in the Jeju special self-governing province and southern
area. Chen et al. [15] selected eight indices, namely, geomorphology, slope aspect, slope
position, slope degree, altitude, soil type, soil parent materials, and soil thickness to study
the site quality classification rules of Chinese fir and Masson’s pine using the decision
tree algorithm. Some scholars have used a series of mathematical methods to reduce the
dimension of numerous site factors. Guo et al. used principal component analysis (PCA) to
select eight main relevant factors (i.e., slope, position, aspect, soil type, humus thickness,
soil thickness, landform, and altitude) affecting tree growth from the original 16 site factors,
and classified the site quality grade using the comprehensive fuzzy method [16]. Lv et al. se-
lected nine indicators (e.g., soil thickness, soil type, aspect, and position) and reconstructed
a stand index model through expert scoring and weighting via the Delphi method [17].
Quichimbo et al. used the CART method to reduce the dimension of subjective soil factors
and to analyze the relationship between the dominant height and soil factors [4]. Site
factor selection is a multi-attribute fuzzy decision-making problem, and the relationship
among factors is constantly complex. Hence, finding key factors affecting stand growth
is difficult. The site factor selection method typically relies on prior knowledge, and the
results are subjective. To solve this problem, this study used rough set theory to reduce the
dimension of site factors. Rough set theory, which was proposed by Professor Pawlak in
1982, is a mathematical tool that can quantitatively deal with inaccurate, inconsistent, and
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incomplete information [18]. Rough set can accurately calculate the attribute factors closely
related to the decision attribute from the data level without prior knowledge and remove
redundant information on the premise of keeping the original classification ability.

(2) Site quality evaluation method

The traditional way to evaluate the stands’ site quality mainly includes direct and
indirect evaluations [3]. Site class (SC) and site index (SI) methods, as direct evaluation
methods, are often used to evaluate the site quality of plantations [19]. That is, the site
quality of plantations is evaluated according to the average height and dominant height
of the stands. Mathematical methods such as the guide curve model [20], random effect
model [21], algebraic differential approach (ADA) [22], generalized ADA (GADA) [23,24],
parameterization model [25], and mixed effect model [26] are commonly used to establish
the SC and SI models. The indirect method mainly establishes the multiple regression
equation between the tree height and site factors to evaluate the growth potential of trees;
the quantity theory I model is a typical method and is mostly used in the quality evaluation
of non-forested sites [27], where its basic principle is to convert the data of each plot to 0–1
according to the sub-classes of the site factors (i.e., the site factor of slope position is divided
into three sub-classes, namely upper, middle, and lower), so as to construct the regression
equation of sub-small classes site factors and dominant heights. In addition, the functional
relation of the site index between tree species is used to evaluate the site quality, but the
accuracy of the results depends on the similarity of the growth types of tree species [28].

Site quality evaluation methods are based on traditional linear or nonlinear modeling
methods, which need to have certain statistical assumptions such as data independence,
normal distribution, and equal variance. However, the relationship between tree growth
and site factors is typically complex and nonlinear, and most forest growth data do not meet
this assumption, thereby resulting in difficulty in providing accurate prediction results [29].
For example, biased estimation or invalid prediction would easily occur when traditional
regression analysis is used [30]. Site factors screened by PCA can effectively simplify the
data structure, but the cumulative contribution rate of the first several principal component
factors is consistently low and the key factors cannot be easily determined. The application
of quantity theory I can effectively deal with discrete attribute factors, but it depends on
the long-term observation data.

In recent years, machine learning, as a new artificial intelligence technology, has
gradually entered the field of forestry scientific research to satisfy the needs of forestry pro-
duction [31]. Compared with traditional statistical models, the machine learning method
has no assumptions on the distribution form of data, can considerably process data with
high dimensions and complex nonlinear interactions, and can deeply mine valuable in-
formation [32]. Furthermore, machine learning models based on recursion, resampling,
averaging, and randomization can reveal the hidden structure in the stand data, obtain
accurate site quality prediction, and discover new relationships [33]. In machine learning
technology, random forest can effectively deal with nonlinearity, interaction, collinearity,
and other problems, and can effectively avoid multiple fitting [34]. Moreover, random
forest can be used for regression, classification, and prediction, and can also measure the
importance of the variables.

Chinese fir is one of the major plant species in Southern China, particularly in Zhejiang
Province, and exhibits characteristics such as fast growth, high yield, good material, and
significant economic value [35]. Research on trees and stands is essential for Chinese fir
planation management in the region. The motivation of the present study is to explore
the role of rough set in site factor dimension reduction, develop site quality classification
models for Chinese fir using rough set theory and random forest algorithm in Lin’an District,
Zhejiang Province, and compare the accuracy of classification models under different site
factors. Accordingly, the influence of key site factors on Chinese fir site quality is explored,
and the comprehensive evaluation of the forest quality grade is realized.
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2. Materials and Methods
2.1. Data

Lin’an District is in the west of Hangzhou City in Zhejiang Province, China from
118◦51′ to 119◦52′ east longitude and from 29◦56′ to 30◦23′ north latitude. Data were
derived from the dynamic monitoring data of forest resources in Lin’an District from
2009 to 2012, which was the annual dynamic monitoring system of counter-level forest
resources established based on the planning and design investigation of forest resources
in Zhejiang Province. Investigation factors were based on sub-compartments containing
75 investigation attributes such as the basic information of sub-compartments, site factors,
stand factors, management measures, disease, insect, and fire information.

We selected sub-compartment data with the dominant species of Chinese fir as the
dataset. In the selection of site factors, we attempted to choose factors that could affect the
growth of the forest stand and could be easily obtained. A total of 20 factors were chosen as
the initial site factors based on existing research, landform, altitude, slope direction, slope
position, slope gradient, soil types, soil texture, soil layer thickness, humus layer thickness,
undergrowth vegetation species, undergrowth vegetation height, undergrowth vegetation
coverage, plant community structure, naturalness, forest class, forest protection grade, land
type, age group, stand origin, and canopy closure. Among the site factors, except altitude,
the undergrowth vegetation height, understory vegetation coverage, and canopy density,
which belong to continuous data, other site attribute data were classified and assigned
based on the planning and design investigation of forest resources in Zhejiang Province.

Given that seedlings were in the recovery and rooting phases, Chinese fir truly entered
the fast-growing phase five years later. The related literature has indicated that only forest
stands with canopy densities exceeding 0.2 could sufficiently embody the forest tree growth
status [36]. Thus, small-class data with ages and canopy densities below 5 years and 0.2,
respectively, were excluded in this study. In addition, the data integrity and consistency
were checked, and abnormal data were excluded by taking thrice the standard deviation as
the criterion. A total of 1903 sub-compartment data were obtained through data processing.

Sub-compartment site data were obtained as depicted in Table 1.

Table 1. The general site information of Chinese fir stands in Lin’an District.

Factor Nos. Site Factors Related Values

1 Landform Medium hills, lowland, irregular hillslopes
2 Altitude (m) 10–1104 m
3 Slope direction East, south, west, north, northeast, southeast, northwest, southwest
4 Slope position Ridge, upper, middle, lower, valley, whole
5 Slope gradient Flat, gentle, inclined, steep, abrupt, dangerous
6 Soil types Red soil, yellow soil, limestone soil, purplish soil
7 Soil texture Sandy soil, loamy soil, clay
8 Soil layer thickness Thick, medium, thin
9 Humus layer thickness Thick, medium, thin
10 Undergrowth vegetation species Grass cluster, shrub, bush wood, miscan stem, bamboo fungus
11 Undergrowth vegetation height (cm) 0–85 cm
12 Undergrowth vegetation coverage 0%–90%
13 Plant community structure Complete structure, relatively complete structure, simple structure
14 Naturalness Classes I, II, III
15 Forest class Public welfare forests, commercial forests
16 Forest protection grade Grades I, II
17 Land type Highwood land, open forest land
18 Age group Young forest, middle-aged forest, near mature forest, mature forest
19 Stand origin Natural forest, plantation
20 Canopy closure 0–0.85
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2.2. Methods

In this study, the site index model of Chinese fir was constructed using ADA to
determine the site quality grade. A total of 20 site factors were reduced by rough set
according to the site quality grade after the discretization of continuous data and balance
of the sample data. Classification models based on random forest were likewise carried out
with site quality grade as a dependent variable and site factors as independent variables.
Unlike in previous studies, there are two ways to select independent variables in this study:
all 20 site factors considered as independent variables formed scheme A and the key site
factors after rough set were considered as independent variables (scheme B). The two
schemes were compared, the best method model was selected for the quality classification
of Chinese fir, and the importance of the site factors was comprehensively evaluated. The
model building process is shown in Figure 1.
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2.2.1. Site Quality Grade Classification

SC and SI are commonly used in site quality evaluation in China [37]. Compared with
SC, SI is widely used because of its specific mathematical expression and less artificial
interference in the modeling process [38,39]. Therefore, the current study used ADA to
construct the SI model of Chinese fir as a judgment index of the site conditions.

(1) Establishment of the SI model

ADA is one of the common methods used to establish forest stand site indices. Its
principle is to select a theoretical growth equation as the basic (fundamental) equation and
select one parameter in the equation as the element elimination parameter, thus elimination
of the equation to obtain a difference equation including two groups of dependent and
independent variables [40].

In this study, the Richards equation was used as the basic equation to establish the
difference equation. The equation can be expressed as follows:

HT = a(1− exp(−ct))b (1)

where HT is the dominant height of the sub-compartment; t is the age of the sub-compartment;
and a, b, and c are the parameters. In Equation (1), parameter a represents the maximum
potential growth of trees, parameter c represents the growth rate of trees, and parameter b
is used as an elimination parameter to obtain the elimination. The converted difference
equation is as follows:

HT2 = a(HT1/a)
ln(1−exp(−ct2))
ln(1−exp(−ct1)) (2)

where HT1 and HT2 are the dominant tree heights of the sub-compartment in years t1 and
t2, respectively; other variables are as previously defined. The specific construction process
of the difference equation can be referred to in [40].

We selected the data of the dominant tree heights and age of the Chinese fir sub-
compartment in 2009 and 2012. HT1 and HT2 in Equation (2) represent the dominant tree
heights of Chinese fir sub-compartments in 2009 and 2012, respectively; t1 and t2 represent
the average age of Chinese fir sub-compartments in 2009 and 2012, respectively. SPSS soft-
ware [41] was used to fit the formula. Finally, we obtained parameter a = 23.989, parameter
c = 0.004, and model determination coefficient R2 = 0.870, standard error (SE) = 0.942.

In the established site index model, one group of data represents the dominant tree
height and age of the sub-compartments, and the other group represents the standard
age (the age at which height the growth of Chinese fir stands becomes stable) and the
SI of Chinese fir. Relevant studies have shown that the standard age T of Chinese fir is
20 years [40]. Hence, we set HT = HT2, t = t2, SI = HT1, and T = t1 = 20, and placed each
parameter into Equation (2). After transformation, the SI model of Chinese fir is shown
as follows:

SI = 23.989
(

HT
23.989

) ln(1−exp(−0.004t))
ln(1−exp(−0.004∗20))

(3)

(2) Site grade division

According to Equation (3), the SI of each Chinese fir sub-compartment can be calcu-
lated, and the frequency of each sub-compartment of SI is statistically shown in Table 2:
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Table 2. The SI frequency distribution of the Chinese fir sub-compartments.

SI Sub-Compartment Frequency SI Grade SI Frequency

6 86
Grade III 9078 187

10 634

12 530
Grade II 87414 344

16 106
Grade I 12218 11

20 5

Table 2 shows eight classes of site indices in the Chinese fir sub-compartments in Lin’an
District, with the indices ranging from 6 to 20. The distribution of sub-compartments under
different site indices was unbalanced, among which the number of sub-compartments
with site indices 10, 12, and 14 was high, accounting for 79.2% of the total, while the
number of sub-compartments with other site indices was low. Given that numerous site
indices would affect the accuracy of the final classification model, the site grade of the
sub-compartment in this study was divided into three categories based on the frequency
distribution of sub-compartments in the data: grades 16–20 are Grade I, and the frequency
of sub-compartments is 122, which is regarded as an excellent site quality grade; grades
12–14 are Grade II, and the frequency of sub-compartments is 874, which is considered
medium site quality grade; and grades 6–10 are Grade III, and the frequency of sub-
compartments is 907, which is regarded as inferior site quality grade.

2.2.2. Data Preprocessing

(1) Discretization of continuous data

The discretization of continuous variables will improve the prediction accuracy of the
random forest model [42]. In this research data, the altitude, undergrowth vegetation height,
undergrowth vegetation coverage, and canopy closure belonged to continuous variables.
In this study, the four factors were discretized by referring to the grading standards of
some factors specified in the “Technical Operation Rules for Forest Resources Planning and
Design Survey of Zhejiang Province (2014 Edition)” and the distribution of data in this
study. The results are shown in Table 3.

Table 3. The discretization of continuous site factors.

Site Factors Discrete Classification Standard

Altitude High: ≥1000 m; medium: 500–1000 m; low: <500 m
Undergrowth vegetation height High: ≥60 cm; medium: 30–60 cm; low: <30 m

Undergrowth vegetation coverage High: ≥60%; medium: 30%–60%; low: <30%
Canopy closure High: ≥70%; medium: 40%–70%; low: <40%

(2) Balanced sampling plans

Table 2 shows that approximately 93.6% of the Chinese fir sub-compartments in Lin’an
District were in the middle or low site grade, while the number of the excellent site classes
only accounted for about 6.4% of all sub-compartments. The uneven frequency distribution
of the site-level data would affect the performance of the model. Therefore, the sample data
in this study were over-sampled by the SMOTE algorithm. The SMOTE algorithm is an
oversampling method widely used in the classification of data imbalance [43]. The principle
of this algorithm is to synthesize a new minority class sample. That is, for each minority
class sample Xi, a sample Xij was randomly selected from the k-nearest neighbor. Moreover,
a point on the line between Xi and Xij was randomly selected as a newly synthesized
minority class sample.
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The SMOTE algorithm principle is explained in Figure 2.
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The algorithm can be implemented through the third-party library “imblear.over_sampling”
of Python, and the number of minority class samples would be a multiple of the original
sample number after balancing. In this study, the number of each SI grade after the
SMOTE algorithm balance was 907 (see Table 4) so as to not lose the original number of
majority samples.

Table 4. The number of samples before and after data balance.

Sample Types SI Grades

Grade I Grade II Grade III

Original sample 122 874 907
Balanced sample 907 907 907

Given that the newly added samples were generated according to distance through
the original samples, non-integer data cannot be avoided in the newly added samples,
thereby affecting the construction of the subsequent classification model. Therefore, the
newly generated sample numbers were rounded to integers after oversampling.

2.2.3. Site Factor Reduction Based on Rough Set

In this study, Python was used to construct a factor reduction algorithm proposed by
Pawlak [18]. Site factors and SI grades were taken as input variables and decision variables,
respectively. First, the core attributes of the site factors relative to site grades was calculated
using the elimination method. The initial reduction table was composed of core attributes,
and the importance degree of other remaining attributes other than nuclear attributes was
calculated each time. Moreover, the attribute with the largest value of importance was
selected and added to the reduction set until the importance degree of all of the remaining
attributes was 0. That is, the value of the system’s dependency function does not change
when any new attribute is added.

The main calculation process is as follows.
Input: Attribute reduction decision table T = (U,C,D), where U represents the dataset

of Chinese fir sub-compartments, C is the conditional attribute in dataset U (i.e., each site
factor), and D is the SI grade.

Output: Attribute reduction set R.
Step 1: Calculate the positive domain POSc(D) of the site grade for site factors, select a

random attribute i from set C of the site factors, and calculate POSc-{ci}(D) without attribute i.
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Step 2: If POSc(D) is equal to POSc-{ci}(D), then the remaining site factor Cj is
randomly selected on the basis of C-Ci. Compare whether or not POSc(D) is equal to
POSc-{ci,cj(i 6= j)}(D). If they are still equal, then continue to remove the remaining site
factors until the attribute set that is not equal to POSc(D) is found. COREc(D), so the core
attribute of the site factors dataset C relative to SI grade D can be obtained.

Step 3: Take the core attributes in Step 2 as the initial reduction attribute set R.
Step 4: On the basis of core attributes R, the importance of each non-core attribute Ck

to decision set D was calculated, and the calculation formula is as follows:

sig(CkRD) =

∣∣∣POSR∪{Ck}

∣∣∣− |POSR(D)|
|U| (4)

where sig(Ck,R,D) is the importance of attribute Ck to SI grade and other variables are as
previously defined.

Step 5: Take the most important attribute Cl and add this attribute to R, which is
R = R ∪ Cl

Step 6: Return to Step 4 and loop until the condition is not satisfied.
Rationality of the reduced attributes of the rough set can be expressed according to

dependence degree e, which is expressed as follows:

e =
|POSC(D)|
|U| (5)

where POSc(D) is the positive domain of site quality grades for site factors; U represents
the entire dataset; and e is typically between 0 and 1. Moreover, e reflects the ability to
correctly classify sub-compartments into corresponding site quality levels according to
reduced attributes. The larger the value of e, the more the reduced attributes can explain
the final classification results. The related concepts and specific derivation process of rough
set theory can be referred to in [18].

2.2.4. Site Classification Modeling of Random Forest

(1) Random forest principle

Random forest is an integrated learning algorithm based on decision tree proposed by
Breiman [44]. This algorithm uses bootstrap re-sampling to extract multiple samples from
the original data, conducts decision tree modeling for each bootstrap sample, and obtains
the classification results of the optimal decision tree through voting. The modeling steps
are as follows.

Step 1: k samples are extracted from the original training set D to construct the D1, D2
. . . Dk sub-training set. The amount of data in the sub-training set is the same as that of the
original training set.

Step 2: k decision trees are constructed using k sub-training sets. In splitting the
decision tree, a certain feature was randomly selected from all features (site factors), and
the optimal feature was selected thereafter for segmentation.

Step 3: Test sets were used for prediction, and the k classification results were obtained
from k decision trees.

Step 4: The final classification result was obtained by voting on the k classification results.
The construction process of the random forest model is shown in Figure 3.
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(2) Implementation of the random forest model

This study used Python to build a random forest model on the Visual Studio Code
platform [45]. Python provides a program package “RandomForestClassifier” to build the
random forest model. The random forest model has two important customized parameters:
“n_estimators” and “max_features”. In particular, “n_estimators” is the number of sub-
models. In general, the more the number of sub-models, the better the performance of
the model and the more stable the accuracy of prediction. However, this situation may
slow down the calculation process. Some studies have shown that the final value of
“n_estimators” only needs to meet the requirement that the overall error of the random
forest tends to be stable [46]. This study set the “n_estimators” range between 10 and 1000,
and 10 was taken as the step to calculate the accuracy of the model cross validation and
overall error of the model. The results are shown in Figure 4a,b.
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Figure 4a,b shows that when the number of sub-models was over 200, the cross
validation results and error rate tend to be stable. Therefore, the “n_estimators” value in
this model was set to 200.

“Max_features” refers to the maximum number of features involved in the judgment
of node splitting. In general, the smaller the “max_features”, the more different the trees
in the random forest will be. However, if the “max_features” are considerably small
(set to 1), choosing the feature that can be tested in division would be impossible. In the
Python-based random forest classification model library “sklearn,” the recommended value
for “max_features” is the square root of the total number of features [47]. Therefore, the
“max_features” in this model was the square root of the total number of site factors, which
was the square root of 20 and the square root of the number of site factors after reduction.

(3) Model evaluation method

In classification problems, a confusion matrix is generally used to display the predic-
tion of each category, typically based on the following four indicators.

True Positive (TP): The number of sub-compartments of the real category of the sub-
compartment is in an SI grade, and its prediction category is also in that SI grade.

False Positive (FP): The number of sub-compartments of the real category of the
sub-compartment is not in an SI grade, but its prediction category is in that SI grade.

True Negative (TN): The number of sub-compartments of the real category of the
sub-compartment is not in an SI grade, and its prediction category is also not in that
SI grade.

False Negative (FN): The number of sub-compartments of the real category of the
sub-compartment is in an SI grade, but its prediction category is not in that SI grade.

According to the confusion matrix, various indicators can be derived to measure the
performance of the model including precision, recall, and accuracy. These indicators are
calculated as follows:

Precision = TP/TP + FP;
Recall = TP/TP + FN; and
Accuracy = (TP + TN)/(TP + TN + FP + FN).
In this study, the experimental data were divided into the training and test samples in

a 7:3 ratio. That is, training samples were used to build the model and test samples were
used to test the accuracy of the model.

(4) Importance evaluation of variables

Random forest has the function of feature importance assessment, and the importance
of each factor is often measured according to the reduction in the classification accuracy. In
random forest, about a 1/3 of data are not selected in each sampling (i.e., out-of-bag (OOB)
data). The OOB error Er of the rth subtree in the model was calculated according to the
OOB data. Thereafter, the OOB error of the rth tree was calculated again by adding feature
j, denoted as Erj. The importance Mj of feature j can be expressed as follows:

Mj =
N

∑
r=1

Erj − Er (6)

where N is the number of random forest subtrees and other variables are as previously
defined. Mj is normalized to 0–1; the greater the value, the greater the importance of
this feature.

3. Results
3.1. Attribute Reduction Results Based on Rough Sets

Table 5 shows that seven of the 20 site factor attributes were reduced: forest protec-
tion grade, soil texture, altitude, land type, soil types, landform, and age group. These
factors can be disregarded because they cannot determine the site grade of Chinese fir sub-
compartments. The following 13 attributes were retained: naturalness, stand origin, plant
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community structure, forest class, soil layer thickness, humus layer thickness, undergrowth
vegetation coverage, undergrowth vegetation height, undergrowth vegetation species,
slope position, slope gradient, slope direction, and canopy closure. Among the retained
attributes, canopy closure, slope direction, slope gradient, slope position, undergrowth
vegetation species, undergrowth vegetation height, and undergrowth vegetation coverage
were the essential attributes of site classification (i.e., core attributes).

Table 5. The attribute reduction results of the rough set.

Categories Specific Site Factors Factor Numbers Dependence Degree e

Reduced attributes Forest protection grade, soil texture, altitude,
land type, soil types, landform, age group 7

0.94

Reserved attributes

Naturalness, stand origin, plant community
structure, forest class, soil layer thickness,

humus layer thickness, undergrowth vegetation
coverage, undergrowth vegetation height,

undergrowth vegetation species, slope position,
slope gradient, slope direction, canopy closure

13

Core attributes

Canopy closure, slope direction, slope gradient,
slope position, undergrowth vegetation species,
undergrowth vegetation height, undergrowth

vegetation coverage

7

Classification dependence degree e of the rough set was 0.94, which was close to 1.
The results showed that reserved attributes can reasonably explain the classification results
of Chinese fir sub-compartments.

3.2. Results of Classification Model Based on Random Forest
3.2.1. Comparison of Model Accuracy

Two 3 × 3 multi-classification confusion matrices were obtained, as shown in Figure 5.
In the training dataset, scheme A without an attribute reduction and scheme B with an
attribute reduction were compared. Moreover, there were 639 sub-compartments with
SI Grade I, 508 of which were correctly classified as SI Grade I forestland in Scheme A,
and the recall rate was 79.50%. A total of 564 were in Scheme B, and the recall rate was
88.26%. Meanwhile, there were 628 sub-compartments with Grade II site quality, 510 of
which were correctly classified as Grade II forestland in Scheme A, with a recall rate of
81.21%. A total of 550 were correctly classified as Grade II forestland in Scheme B, with
a recall rate of 87.58%. Moreover, there were 637 sub-compartments with Grade III site
quality, 510 of which were correctly classified as Class III forestland for Scheme A, with the
calculated recall rate of 80.06%. A total of 575 were correctly classified as Class III forestland
for Scheme B, with a recall rate of 90.27%.
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The model was validated with the test data, and the confusion matrices based on the
test data are shown in Figure 6. Confusion matrices of the two schemes were compared on
the test data. In particular, there were 268 sub-compartments with Grade I site quality, 147 of
which were correctly classified as Grade I forestland for Scheme A, with a calculated recall
rate of 54.85%. A total of 169 were for Scheme B, with a recall rate of 63.06%. Meanwhile,
there were 279 sub-compartments with the site quality of Grade II, 131 of which were
correctly classified as Grade II forestland in scheme A, with a recall rate of 46.95%. A total
of 140 were correctly classified as Grade II forestland in Scheme B, with a recall rate of
50.18%. Finally, there were 270 sub-compartments with the site quality of Grade III, 195 of
which were correctly classified as Class III forestland in Scheme A, with a calculated recall
rate of 72.22%. A total of 244 were correctly classified as class III forestland in Scheme B,
with a recall rate of 90.37%.
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Table 6 shows the classification level of models with the two schemes. Compared with
scheme A, Scheme B reduced seven site factor attributes, accounting for 35.0% of the total,
and the modeling time was reduced by 2.71 s, accounting for 50.19% of the total time of
Scheme A. In the training data, the accuracy of the model in Scheme A was 80.37%, the
recall was 80.26%, and the accuracy was 86.83%. The accuracy of the model in Scheme B
was 88.70%, the recall was 88.70%, and the accuracy was 92.47%. In the test data, the model
accuracy in Scheme A was 58.52%, the recall was 58.00%, and the accuracy was 71.93%.
The model accuracy in Scheme B was 67.42%, the recall was 67.87%, and the accuracy was
78.46%.

Table 6. A comparison of the two schemes for the site quality grade evaluation of Chinese fir.

Schemes Number of Factors Training Time
Training Dataset Testing Dataset

Precision Recall Accuracy Precision Recall Accuracy

Scheme A 20 5.40 s 0.8037 0.8026 0.8683 0.5852 0.5800 0.7193
Scheme B 13 2.69 s 0.8870 0.8870 0.9247 0.6742 0.6787 0.7846

Note that rough sets played an obvious role in the simplified classification, as shown
in Table 6. After attribute reduction, the training time and complexity of the model were
shorter and reduced, respectively. Moreover, the accuracy, recall, and accuracy of the model
after attribute reduction were also improved, making the model considerably valuable
for promotion.

3.2.2. Application of the Model

The model combining the rough set and random forest was applied to the quality
evaluation of Chinese fir in the Lin’an District. Data of 312 Chinese fir sub-compartments
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that were not used in the modeling and 1232 non-forestland sub-compartments were
selected. A total of 13 site factor attributes of the sub-compartments were input into the
established site quality classification model. Finally, the site grade of the sub-compartments
could be output and visualized by GIS. The site grade of a Chinese fir sub-compartment is
clearly presented in Figure 7, which is convenient for forestry workers to divide Chinese
fir forestland and choose thinning measures according to the principle of “matching tree
species with site”.
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3.3. Importance Assessment of Site Factors

The importance of 13 site factors was evaluated using the evaluation method of
feature importance (in Section 2.2.4) to analyze their influence on the growth of Chinese fir.
Importance values were normalized from 0 to 1 and arranged from high to low, as shown
in Figure 8.
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Figure 8 shows that among the 13 site factors, the slope direction and canopy closure
had the greatest influence on the growth of Chinese fir with influence values of 0.99 and
0.95, respectively, followed by the slope gradient with an influence value of 0.52. Factors
with minimal influence on the growth of Chinese fir were the humus layer thickness, soil
layer thickness, naturalness, and stand origin, with importance values below 0.3.

4. Discussion

The results of the rough set study showed that the main factors affecting the growth
of Chinese fir were naturalness, stand origin, plant community structure, forest class, soil
layer thickness, humus layer thickness, undergrowth vegetation coverage, undergrowth
vegetation height, undergrowth vegetation species, slope position, slope gradient, slope
direction, and canopy closure. These factors played a key role in the site quality classifica-
tion of the Chinese fir sub-compartments. In the attribute reduction based on rough set,
Pawlak indicated that the reduction algorithm is suitable for dealing with discrete variables.
However, some forestry data belonged to continuous data, in which the Pawlak algorithm
was introduced to process this type of data [18]; continuous data were often converted into
discrete data, inevitably resulting in information loss [48]. To solve this problem, fuzzy
rough set, similar relation rough set, and neighborhood relation models can be introduced
to study the attribute reduction of site factors in subsequent research.

The results of the site quality classification model based on random forest showed
that this model, based on reduced attributes, was more simplified and the model training
efficiency was higher. The accuracy, recall rate, and accuracy of the model were relatively
improved in the training and testing sets compared with the model without attribute
reduction. The random forest model is an extension of the decision tree model. Chen et al.
once used the decision tree to construct the quality classification model of Chinese fir, and
her research results showed that the classification accuracy of the model was lower than
that of the random forest model [15]. At present, some scholars have used random forest
algorithm to evaluate site quality, but in the selection of site factors, almost all of them were
subjective selection based on experience [49], and the rough set in this study could well
solve the subjective problem of site factor selection. Moreover, the effects of 13 site factors
on the growth of Chinese fir were analyzed using the variable importance assessment
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function of the random forest model. The results showed that the most influential site
factors were slope direction, canopy closure, and slope gradient, while the less influential
factors were the humus layer thickness, soil layer thickness, naturalness, and stand origin
in the study area. The reasons were as follows. The change in the slope direction and
slope gradient have a certain influence on solar radiation, soil fertility, and air temperature.
Hence, the slope direction and slope gradient have immense influence on the growth of
Chinese fir.

Related studies in the same region have shown that the steeper the slope, the worse the
stand quality. The reason is that the slope has an impact on the microclimate of the stand.
The place where the slope is considerably steep is often located in the windward with the
thinner soil layer, which is not conducive to the growth of Chinese fir [50]. Some studies
have also shown that Chinese fir on the northeast and northwest slopes has better site
quality than that on the south slope, indicating that Chinese fir is more suitable for growing
on shady or semi-shady slopes [5]. Some studies have also shown that site factors have
different effects on the growth of Chinese fir in different growth stages of stands. Slope
position is the main factor affecting the growth of Chinese fir in young and middle-age
stands, while humus thickness is the most critical factor affecting the growth of Chinese fir
in near-mature and over-mature stands [16].Canopy closure is the embodiment of stand
density. The change in canopy closure can indirectly affect changes in solar radiation, stand
air humidity, growth environment of undergrowth vegetation, soil physical and chemical
conditions, and the types and activity intensity of microorganisms in the soil. Some studies
have also shown that the density of the stand indirectly affects the site conditions of
vegetation [51]. Therefore, canopy closure is an important factor affecting the growth of
Chinese fir. Although there are many studies that have indicated that soil layer thickness
and humus layer thickness have relatively important effects on soil quality [52–54], there
are a few types of soil in the planting area of Chinese fir in Lin’an District, most of which are
yellow and red soils. In addition, most of the soil is thick, so the influence of soil thickness
and humus layer thickness on the growth of Chinese fir is not evident. At present, no study
has been conducted to analyze the impact of naturalness and origin on site quality. The
data in this study indicated that stands with naturalness Class III accounted for 94.5%, and
the rest of the stands with naturalness II and I merely accounted for 5.5%. In the origin of
stand, plantations accounted for 96.0% and natural forest only accounted for 4.0%. Thus,
the imbalance in the experimental data was also the main reason that the preceding factors
did not clearly classify the site quality of Chinese fir. Furthermore, plantations are probably
located in specific (pre-selected) locations, therefore, the site factors affecting the growth
of Chinese fir showed inconsistent conclusions with other references [55,56], the results of
this study are only applicable to the study area, so we still need to verify the applicability
of the results to other regions.

The results of this study proved that the method of forest site quality evaluation
combined with rough set and random forest could deal well with the nonlinear relationship
between forest site quality and site factors as well as overcome the limitation and subjec-
tivity of the artificial selection of site factors. The random forest model can improve the
accuracy of classification and prediction without significantly increasing the amount of
computation. In the model construction, there are few adjustment parameters, and it can
also be used to evaluate the importance of features. In general, the model has numerous
advantages in classification. The model can predict the site quality of Chinese fir with
the site factors and also judge whether or not there is forestland suitable for the growth
of Chinese fir. Meanwhile, the algorithm was edited using Python, which has strong
universality and compatibility. Finally, the programs proposed in this study can be used on
different software platforms, thereby providing a new idea for the application of big data
in Chinese forestry.

The main innovation of this study was to apply the rough set theory and random
forest model to the problem of “matching tree species with site” with satisfactory results. In
future research, we should deeply analyze the impact of each site factor on the site quality
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of the stand and the interaction between site factors under different climates, environments,
stand ages, and stand densities, so the growth environment of Chinese fir is in the best
combination state to achieve the best productivity. In addition, the random forest model
has potential wide application. The proposed model was only for Chinese fir species, and
random forest models of other species can be established in the future. Future models can
provide scientific theoretical basis for further discussion of the spatial distribution of the
forest site quality grade and forest land utilization planning, and provide technical support
for improving forestry information management.

5. Conclusions

This paper studied the site quality classification model of Chinese fir in Lin’an District,
Zhejiang Province. First, an SI model was constructed using ADA to divide the site grade of
the Chinese fir sub-compartments in the study area. The original data were discretized and
balanced to improve the accuracy of the subsequent models. Thereafter, 20 site factors were
selected as the initial factors, which were reduced using rough set theory. Eventually, 13 site
factors closely related to the site quality of Chinese fir in the study area were obtained. The
random forest model of machine learning was introduced into this study, and site quality
classification models based on the initial and reduction factors were constructed. This study
proposed a complete process of data processing, modeling, and evaluation. Moreover, the
optimal model was used to classify the site quality grade of Chinese fir sub-compartments
that were not used in the modeling, and the classification results were visualized. Finally,
the importance of factors affecting the site quality of Chinese fir was evaluated.
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