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Abstract: Some plants have great resistance against herbivores, invertebrates, insects, bacteria, and
fungi. This resistance is mostly present in plants containing alkaloids, which are the substances
responsible for giving them defensive properties. The genus Datura contains tropane alkaloids and
all plants from this genus have defensive properties. In this work, we report the toxic effect against
fungi of Datura stramonium extracts, obtained by the Petri dish method. The extraction solvents were
water, ethanol, 2-propanol, n-butanol, propanone, butanone, 3-methyl-2-pentanone, dichloromethane,
xylene, and toluene. The test fungi were Trametes versicolor (L. ex. Fr) Pilát and Rhodonia placenta (Fr.)
Niemelä, K.H.Larss. & Schigel. It was found that water, butanone, and toluene extracts promoted
mycelial growth, xylene extracts neither inhibited nor promoted mycelial growth, while the other
extracts slightly inhibited the growth of these fungi.

Keywords: xylophagous fungi; extracts; natural preservatives; Petri dish method

1. Introduction

Nowadays, the worldwide demographic explosion means that the demand for forest
resources is increasing daily. The devastation of the flora, along with the growing increase
of indiscriminate use of wood worldwide, the scarcity of raw material, the cost of marketing,
and especially, the awareness of the risks of toxicity for man and the environment, have
stimulated the search for less toxic natural preservatives [1–3].

Wood was probably the first material used for structural purposes. It is abundant in
nature and can be used as sawn or round wood. Its manufacture requires much less energy
consumption than other materials, such as steel, which allows for significant savings. It
is also a very tenacious material with great resistance to bending. However, wood bends,
shrinks, and swells due to moisture loss or absorption [4]. Because of its organic nature,
various biological agents can rot and destroy it under certain conditions, making protection
against these agents indispensable. Fungi are the main wood degrading agents; they cause
great economic losses and considerably decrease the service life of wood [5–8].

The main biological degradation of wood occurs through the action of fungi known
as xylophages [5,9]. In the wood industry, the losses due to this are substantial. In the
cellulose and paper industry wood degradation affects the quality of the final product,
paper [10].

Wood rot has been classified into two main groups: “brown rot” and “white rot”; in
the former, the fungus degrades only cellulose and hemicelluloses, while in the latter, it de-
grades both holocellulose and lignin. Soft rot fungi are simple beings that live parasitically
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inside the wood. From it, they feed on the secondary cellulose, especially when conditions
of high humidity occur; in this process, it loses density and resistance [11–14].

Some woods have natural resistance to fungal attack, while others may be susceptible,
so preservation treatments are required for additional protection; otherwise, the wood
pieces would have to be replaced often, resulting in replacement costs. Chemical treatments
are widely used and require the immersion of the wood or the injection of pesticide oils,
metallic salts, or organic compounds into the wood [15–18].

Datura stramonium belongs to Kingdom: Plantae, Division: Magnoliophyta, Class:
Magnoliopsida, Order: Solanales, Family: Solanaceae, Genus: Datura, Species: Datura stramo-
nium [19,20]. Some of its synonyms are apple D. stramonium, tapa [21], and toloache [22].
The toloache is of American origin but is now can be found throughout the world, in-
cluding the warmer regions of North, Central, and South America, Europe, Asia, and
Africa [23]. It has been used for a variety of purposes such as hallucinogens, for total
relaxation, among others, since before the arrival of the Spaniards to the continent [24].
The cultivation of toloache is legal and can be traded freely; in fact, it is relatively easy
to find in Mexican markets. Its cost is moderate and the conditions for handling it are
not demanding [25]. Preparations used in herbal practice are high risk and should be
carefully monitored in their dosage and administration, especially orally. It was also
used for the treatment of ulcers, injuries, inflammation, sciatica, hematomas and swelling,
rheumatism, gout, asthma, bronchitis, and toothache [26,27]. In Mexico, several species
of Datura have similar properties and a reputation for being toxic [28,29]. D. stramonium
showed protective anti-inflammatory effects [30], as well as antidiabetic, antidyslipidemic,
antioxidant [31], antimicrobial [32], antiepileptic, antiasthmatic, analgesics, and insecticidal
properties [16,20,33]. D. stramonium has been reported to contain: carbohydrates [34,35], al-
kaloids [36–39], saponins, tannins [35,40], steroids, flavonoids, phenols, and glycosides [40].
Phytochemical analysis showed that the aqueous and ethanolic extract of D. stramonium
stem bark contained alkaloids, saponins, tannins, steroids, flavonoids, phenols, and glyco-
sides [41]. Many amino acids were isolated from the seeds, in particular alanine, glutamate,
phenylalanine, and tyrosine [42]. The tropane alkaloids were the important anticholinergic
alkaloids isolated from D. stramonium [43]. The main toxic alkaloids of D. stramonium
are the tropane alkaloids, which are the atropines (dl-hyoscyamine) and scopolamine
(l-hyoscine) [44,45].

In this context, this work contributes to evaluating the antifungal activity of several
extractable compounds from D. stramonium L. (toloache) against xylophagous fungi.

2. Materials and Methods
2.1. Materials

Adult D. stramonium L. plants were obtained from the local market. First, it was
washed with water at 60 ◦C in order to remove superficial impurities, then it was dried
at room temperature and ground to increase its superficial area to facilitate the extraction.
Bidistilled water, ethanol, propanone, isopropyl alcohol, and dichloromethane were pur-
chased from Golden Bell. Butanone (99%) and p-xylene were obtained from J. T. Backer.
3-methylpenta-2-one was bought from Chempure. 1-butanol was purchased from Merck
and toluene from Spectrum. Malt extract agar was obtained from BD Difco.

2.2. Methods

For the evaluation of the antifungal activity of the extracts of D. stramonium L., a general
scheme of the methodology followed in the present investigation is presented in Figure 1.
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Figure 1. Outline of the followed methodology.

2.3. Obtaining Extracts

For each extraction, 50 g of D. stramonium L. in powder form was used. For the
extraction, a batch system with continuous agitation of 670 rpm, for 6 h, a 1/8 hydro
module, at 25 ◦C was used. The solution obtained from the extraction was then filtered
with filter paper. The concentrated solutions were left to dry in a hood at room temperature
until total removal of the solvent.

2.4. Test Fungi

The bioassay was conducted using the white-rot fungus Trametes versicolor (L. ex Fr.)
Pilát (CSNL01760) and the brown rot fungus Rhodonia placenta (Fr.) Niemelä, K.H.Larss.
& Schigel (IEXpp00). The culture medium for the fungal growth test was prepared using
33.6 g/L malt-agar extracts and sterilized at 15 lb/in2 for 15 min. These strains belong to the
strain collection of the Wood Properties and Uses Laboratory of the Department of Wood,
Cellulose and Paper, University of Guadalajara, Mexico. The fungal strain T. versicolor
was donated by the Faculty of Forest Sciences, Autonomous University of Nuevo León,
Monterrey, Mexico. The strain of the fungus R. placenta strain was donated by the Institute
of Ecology of Xalapa, Veracruz, Mexico. Fungal strains were maintained in agar test tubes
kept refrigerated at 5 ◦C. The strain was kept viable by periodic reinoculation. The strains
were reinoculated from one of the test tubes, a first reinoculation was performed in a Petri
dish, and from these a second reinoculation. From these second reinoculated Petri dishes,
the mycelium for the Petri dishes of the bioassay was obtained. The inoculated Petri dishes
were incubated in a laboratory incubator at 28 ◦C.

2.5. Bioassay

To perform the bioassay, acetone/hexane/water solutions (54%/44%/2%) were pre-
pared to dissolve the non-water-soluble extracts and incorporate them into the culture
medium [1]. In order to evaluate the antifungal effects, the “Petri dish” method was
used [46–48]. This method consists in placing the necessary amount of solution containing
the extracts into the culture medium (malt agar). The culture medium was sterilized for
15 min at 15 lb/in2. The extracts were not sterilized to avoid chemical alteration. Once
the culture medium was cooled, the culture medium and the solutions containing the
extracts at different concentrations (Table 1) were mixed with rotating movements in a
50 mL Erlenmeyer flask. Then, the mixing was poured into Petri dishes and allowed to gel.
They were then inoculated using 0.5 cm2 of the mycelium of the test fungus under sterile
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conditions in a laminar flow hood. They were incubated during the test time, 6 days for
T. versicolor and 9 days for R. placenta, and control growth surface was covered in a VWR
incubator, at 28 ± 2 ◦C, in darkness. The areas of growth of the test fungi were measured
both in Petri dishes with extract and in Petri dishes containing only the culture medium
(blank) or culture medium and solvent solution (control), at 48 h intervals. The antifungal
activity (AFA) was calculated according to the following formula [47]:

AFA (%) = [(Growth control − Growth treatment)/Growth control] × 100 (1)

Table 1. Solvent used, extraction yield, and antifungal activity for extracts.

Solvent Formula Yields (%)
Concentration

(mg/mL)
Antifungal Activity (%)

T. versicolor R. placenta

Water
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Table 1. Cont.

Solvent Formula Yields (%)
Concentration

(mg/mL)
Antifungal Activity (%)

T. versicolor R. placenta

Methylene chloride
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2.6. Determination of Minimal Inhibitory Concentration 50 (MIC50) and Minimum Inhibitory
Concentration (MIC)

The MIC50 is the concentration in mg/mL required to inhibit 50% of the mycelial
growth of the fungi. Values of MIC50 were calculated from the percentage of antifungal
activity obtained at each concentration. The minimal inhibitory concentration (MIC) was
calculated by applying a simple regression using the Statgraphics program (Centurion XVI,
version 16.2.04, Virginia, VA, USA).

3. Results
3.1. Yields of Extracts

Table 1 shows the results of the yields of extracts with each solvent. In general, the
obtained yield percentages of extracts are within the ranges reported cited in the literature,
which is less than 8% for non-timber materials. The predominant color of the extracts
was green for all except the water extracts, which had a dark orange color and a powdery
texture. In terms of consistency, all except the water solution had a viscous consistency.

3.2. Antifungal Activity (AFA)

For both test fungi, Table 1 shows the results of the antifungal activity (AFA) of the
extracts, as well as the toxicity classification of the extracts. The results of the water extracts
for the fungus T. versicolor are shown in Figure 2, and for R. placenta in Figure 3. Water
extracts helped the growth of both fungi and, the higher the concentration of the extracts,
the higher the growth, which is why in Table 1 negative AFA values are reported. Water
extracts promoted fungal growth because substances that were extracted were most likely
sugars, which serve as food for the fungi.

Ethanol extracts showed inhibition for both fungi, observing that the higher the
concentration, the greater the inhibition (Figures 2 and 3). For T. versicolor it was observed
that at the highest concentration evaluated (1.2 mg/mL), AFA was classified as LT while at
lower concentrations it was considered NT. For R. placenta, all evaluated concentrations
were classified as NT.



Forests 2022, 13, 1222 6 of 14Forests 2022, 13, x FOR PEER REVIEW 6 of 15 
 

 

 

Figure 2. Antifungal activity of the extracts against the fungus T. versicolor. 

 

Figure 3. Antifungal activity of the extracts against the fungus R. placenta. 

Ethanol extracts showed inhibition for both fungi, observing that the higher the con-

centration, the greater the inhibition (Figures 2 and 3). For T. versicolor it was observed 

that at the highest concentration evaluated (1.2 mg/mL), AFA was classified as LT while 

Figure 2. Antifungal activity of the extracts against the fungus T. versicolor.

Forests 2022, 13, x FOR PEER REVIEW 6 of 15 
 

 

 

Figure 2. Antifungal activity of the extracts against the fungus T. versicolor. 

 

Figure 3. Antifungal activity of the extracts against the fungus R. placenta. 

Ethanol extracts showed inhibition for both fungi, observing that the higher the con-

centration, the greater the inhibition (Figures 2 and 3). For T. versicolor it was observed 

that at the highest concentration evaluated (1.2 mg/mL), AFA was classified as LT while 

Figure 3. Antifungal activity of the extracts against the fungus R. placenta.

Propane-2 of extracts showed that the higher the concentration of the extracts, the
higher the AFA for both fungi. The extracts showed greater inhibition for R. placenta than
for T. versicolor. The extracts obtained with butan-1-ol showed, for the fungus T. versicolor,
that the first two concentrations (0.06 mg/mL and 0.30 mg/mL) were not able to inhibit
the fungus so that it grew as if it were in its usual cultivation medium, and in the following
two concentrations (0.60 mg/mL and 1.2 mg/mL) the fungus was inhibited. The inhibition
effect increased with increasing concentration (Figure 2). For R. placenta (Figure 3), it was
observed that the concentration of 1.2 mg/mL was able to inhibit the fungus. The other
three concentrations showed growth equal to the target. The activity of the extracts against
both fungi was classified as NT.

Moreover, it was observed that propanone extracts inhibited the growth of both
fungi, showing that the higher the concentration of extracts in the medium, the lower
the mycelial growth. The trends of AFA against T. versicolor and R. placenta can be seen
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in Figures 2 and 3. For T. versicolor, the AFA of the extracts was classified as NT at the
0.06 mg/mL, 0.30 mg/mL, and 0.60 mg/mL concentrations, and as LT at the concentration
of 1.2 mg/mL. For R. placenta, all concentrations evaluated were considered NT.

Butanone extracts showed mycelial inhibition for T. versicolor at all concentrations
evaluated. In Figure 2, it can be observed that with increasing concentration of the extract,
the inhibitory effect is greater. The extracts were classified as NT, LT, LT, and MT at
concentrations of 0.05 mg/mL, 0.25 mg/mL, 0.50 mg/mL, and 1.0 mg/mL, respectively.
For R. placenta at the first three concentrations, growth similar to that of the control was
observed, while at the concentration of 1.0 mg/mL, a mycelial growth-promoting effect
was observed.

The AFA of the extract obtained with 3-methyl pentane-2-one showed that it inhibits
the growth of the fungus T. versicolor. The tendency was to increase the AFA by increasing
the concentration of the extract, being that of 1.2 g/L the one showing the highest % AFA
value, as shown in Figure 2. In the case of the fungus R. placenta, Table 1 shows the values
for the first two concentrations (0.06 mg/mL and 0.30 mg/mL) that the growth of the
fungus in the Petri dishes was equal to the blank. The next two concentrations inhibit the
fungus, and the trend of these data is shown in Figure 3. This extract was more toxic to R.
placenta than to T. versicolor. In general, it was observed that the extracts with 3 methyl,-2
pentanone were classified as NT for both fungi in the four concentrations evaluated.

The compounds extracted by dichloromethane showed inhibition against T. versicolor,
the highest AFA was at the concentration of 1.2 mg/mL. The AFA values are shown in
Table 1, and it is observed that by increasing the concentration, the toxicity increased. This
trend is observed in Figure 2. The fungus R. placenta was slightly affected in its growth by
the solution used in the concentration of 1.2 mg/mL. It can be seen in Figure 3 that the
higher the concentration of extracts, the greater the inhibition. For both fungi, statistically,
the concentrations of 0.30 and 0.60 mg/mL did not show significant differences between
them, while the other concentrations did. The effect of the extracts against T. versicolor
were classified as NT, PT, PT, and MT at the concentrations of 0.06 mg/mL, 0.30 mg/mL,
0.60 mg/mL, and 1.20 mg/mL, respectively. For R. placenta, all concentrations evaluated
were considered as PT.

The compounds present in the toluene extracts inhibited the mycelial growth of
T. versicolor, and this effect increased with increasing extract concentration. The concen-
trations of 0.06 mg/mL and 0.30 mg/mL were classified as NT, the concentrations of
0.60 mg/mL and 1.2 mg/mL were classified as LT and the concentration of 2.5 mg/mL as MT.
For R. placenta, all the concentrations evaluated showed a mycelial growth-promoting effect.

3.3. Minimal Inhibitory Concentration 50 (MIC50) and Minimum Inhibitory Concentration (MIC)

The MCI50 and MIC were calculated (see Tables 2 and 3) using the biological models
of simple regression, adjusted, and obtained with the inhibition percentages, taken at the
endpoint of the fungal growth kinetics. Figure 4 shows the biological models plotted for
the tested extracts that inhibited mycelial growth for both fungi.

Table 2. Adjusted model by simple regression, MIC50, and required for inhibition of T. versicolor growth.

Extracts Solvent Adjusted Regression Model p-Value
Model R2 MIC50

(mg mL−1)
MIC

(mg mL−1)

Ethanol AFA(%) = sqrt (10.4693 + 535.428 × C) 0.0038 0.9784 4.651 18.66
Propan-2-ol AFA(%) = −0.786175 + 25.0934 × sqrt C 0.0001 0.9798 3.874 15.64
Butan-1-ol AFA(%) = sqrt (−42.899 + 361.641 × C) 0.0066 0.9688 7.032 27.78
Propanone AFA(%) = sqrt (−25.338 + 449.926 × C2) 0.0006 0.9939 2.37 4.725
Butanone AFA(%) = sqrt (332.376 + 4761.72 × C2) 0.0007 0.9927 0.675 1.425

3-methilpentan-2-ona AFA(%) = sqrt [20.3534 + 191.434 × sqrt (C)] 0.0105 0.9572 167.5 2720
Methylene chloride AFA(%) = sqrt (−22.994 + 708.481 × C2) 0.0016 0.9879 1.888 3.762

Methylbenzene AFA(%) = sqrt (77.5182 + 1157.11 × C) 0.0001 0.9916 2.094 8.576
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Table 3. Adjusted model by simple regression, MIC50, and required for inhibition of R. placenta growth.

Extracts Solvent Adjusted Regression Model p-Value
Model R2 MIC50

(mg mL−1)
MIC

(mg mL−1)

Ethanol AFA(%) = sqrt [−34.875 + 320.387 × sqrt (C)] 0.0047 0.9753 62.6 981.1
Propan-2-ol AFA(%) = sqrt (460.576 + 238.656 × C2) 0.0165 0.9923 2.924 6.323
Butan-1-ol AFA(%) = sqrt (−617,135 + 339.318 × C) 0.0513 0.8761 7.55 29.657
Propanone AFA(%) = sqrt [29.8105 + 1217.68 × sqrt (C)] 0.0007 0.9779 4.117 67.045

3-methilpentan-2-ona AFA(%) = sqrt (4.37133 + 354.005 × C2) 0.0018 0.9870 2.656 5.315
Methylene chloride AFA(%) = sqrt [−22.1977 + 820.0009 × sqrt (C)] 0.0029 0.9820 9.468 149.4
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The extracts with the lowest MICs, for the fungus T. versicolor, were those extracted
from butanone, dichloromethane, and propanone. While for R. placenta they were 3-
methilpentan-2-one, propan-2-ol, and butan-1-ol.

4. Discussions

The yield of the extraction depends on the temperature, the type of solvent, and
whether the extraction is sequential when performed with various solvents. Therefore, the
yields obtained in this work are similar amounts reported by other authors. Flores-Villegas
et al. (2019) reported extraction yields of 9.7%, 5.7%, and 7.1%, in methanol extraction
of the root, stem, and leaf of D. stramonium, respectively [50]. Rai et al. (2013), reported
that the seeds of Datura metel plant contained fat (14.72%), carbohydrate (51.22%), protein
(20.73%), moisture (4.63%), ash content (5.14%), total sugar (5.63%), reducing sugar (2.65%),
crude fiber (17.35%), and trace elements (mg/100 gm): calcium 174.0, phosphorus 690.0,
potassium 0.50, sodium 0.085, iron 16.8, zinc 2.63, copper 6.9, and magnesium 390.0 [51].

Wood as a renewable natural resource has played an important role in the global
economy, especially in the construction industry. Under conditions favorable to the growth
of wood-degrading organisms, the most commonly used species of wood may deteriorate.
Non-durable wood products can be protected from attack by xylophagous fungi, insects,
bacteria, and marine borers by treating them with natural biocidal extracts.

The biocidal properties of secondary plant metabolites are of great interest in many
fields, such as pharmacology, the food industry, and wood preservatives. It is a growing
trend that compounds that have natural antifungal activity are used to replace traditional
preservatives due to their side effects. The test fungi are fungi recommended by the
standards for the determination of the natural durability of wood, and in recent years they
have been widely studied due to their great capacity to degrade wood [52–58].

The “Petri dish” method was used, which is a non-standardized biological method,
but widely recommended and used as a simple and relatively fast quantitative procedure
to measure the toxic effect of extractives on rot fungi, consisting of adding solutions of
D. stramonium extracts to the cultivation medium. Bravo and Lomelí (1992) reported that
ethanol extracts of Barcino and Nogal wood showed inhibitory effects against the fungi
Lentinus lepideus Fr., causing dark or brown rot and Laetiporus sulphureus Murr., causing
white rot [59]. Beltrán et al. (1997) reported a promoter effect of ethanolic extracts of corn
against the fungi Pleorotus ostreatus, Lentinus sajor-caju, Lentinula edodes, Agaricus bisporus,
and Agaricus campestris [60]. Torres et al. (2004), evaluated the toxic effect against fungi of
ethanolic extracts of corncob and blue agave leaves on the fungus T. versicolor. They observed
that the agave extracts, at concentrations lower than 1.0 g/L, presented greater AFA than
the corncob extracts, but at the 1.0 g/L concentration, AFA was similar for both extracts [61].
Shagal et al. (2012) reported that the aqueous and ethanolic extracts of D. stramonium stem
bark contained alkaloids, saponins, tannins, steroids, flavonoids, phenols, and glycosides [41].
Perez-Najera et al. (2013), reported that glycoside flavonoids and aglycones, which are more
polar, are extracted with alcohols or alcohol–water mixtures [62]. Altameme et al. (2015),
through GC-MS analysis of alkaloid leaves ethanolic extract of D. stramonium, revealed the
existence of ethyl iso-allocholate, D-asycarpidan-1-methanol, acetate (ester), 3-(1,5-dimethyl-
hexyl)3a,10,10,12btetramethyl1,2,3,3a,4,6,8,9,10,10a,11,12,12a,12b-tetradec-ahydro-benzo [4,5]
cyclohept,2,7-diphenyl-1,6-dioxopyridazino [4,5:2,3] pyrrolo [4,5-d] pyridazine, 3,8,8-trime
thoxy-3-piperidyl-2,2-benaphthalene-1,1,4,4-tetrone, [5β] pregnane3, 20β-diol,14α,18α-[4-
methyl,3-oxo-[1-oxa-4-azabutane-1,4-diyl], diacetate, 1-monolinoleoylglycerol trimethylsi-
lyl ether, and 17-[1,5-dimethylhexyl]-10,13-dimethyl3sstyrylhexadecahydrocyclopenta[a]
phenathren-2-one. Alkaloids extracted from leaves of D. stramonium were assayed for
in vitro antibacterial activity against Escherichia coli, Proteus mirabilis, Staphylococcus aureus,
Pseudomonas aeruginosa, and Klebsiella pneumonia by using the diffusion method in agar [63].
Carpa et al. (2017) reported the presence of atropine and scopolamine in ethanol extracts of
D. stramonium. The plant extracts were tested on Gram-negative bacteria Escherichia coli and
on Gram-positive bacteria S. aureus. Both tested strains showed resistance but for E. coli
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a higher inhibition was observed in all samples containing Datura extract [64]. Girmay
2015 reported that with propanone, substances such as flavonoids, cholesterol, tannins,
glycosides, alkaloids, phenols, samonins, proteins, carbohydrates, and terpenoids can be
extracted [65]. Bravo and Lomelí (1992) reported that propanone extracts of Barsino and
Walnut wood showed good results in the inhibition of the fungi L. lepideus Fr. and Laeti-
porus sulphureus Murr [59]. With dichloromethane as a solvent for extraction, isoflavones,
flavanones, flavones, and methylated flavonols can be extracted [62]. Obomanu et al. (2018)
reported that using dichloromethane as a solvent, alkaloids, flavonoids, saponins, and
tannins can be extracted from D. stramonium flowers. These substances may be responsible
for the inhibitory function of these extracts [66]. Paraxylene failed to extract components of
D. stramonium that can inhibit or promote the growth of the test fungi. The values reported
for both fungi were 0% AFA at all concentrations tested. Beltrán et al. (1997) reported that
toluene extracts from corn stover contain inhibitory substances for the growth of the fungi
P. ostreatus, L. sajor-caju, L. edodes, A. bisporus, and A. campestris [60].

For the inhibition of T. versicolor, the extracts of D. stramonium that presented the
greatest antifungal potential were those of butanone, propan-2-ol, and methylbenzene. For
the inhibition of R. placenta, the extracts that presented the highest antifungal potency were
those of propan-2-ol and propanone. These are the extracts that could be economically
profitable for exploitation as biocides.

The minimum inhibitory concentration (MIC) has been defined by the Clinical and
Laboratory Standards Institute (CLSI) as the lowest concentration of an antimicrobial agent
that will inhibit the visible growth of a microorganism [67]. The MIC is generally considered
to be the most widely adopted laboratory measure of the relative in vitro activity of an
antimicrobial agent against an organism: a lower MIC value indicates that a smaller amount
of the preservative is required to inhibit the growth of an organism [68]. Traditionally, MIC
values are determined by agar dilution and broth dilution. Yen et al. (2008) reported MIC
25 and 30 µg/mL for β-γ-thujaplicin and thujaplicin compounds extracted with ethanol
heartwood from Calocedrus macrolepis var. Formosa, to inhibit T. versicolor [69]. Theapparat
et al. (2015) reported MICs against T. versicolor of 12.5 mg/mL, 12.0 mg/mL, 12.5 mg/mL,
6.25 mg/mL, and 6.25 mg/mL from pyrolean acids of Leucaena leucocephala, Azadirachta
indica, Eucalyptus camaldulensis, Dentrocalamus asper, and Hevea brasilensis, respectively [70].
Lomeli et al. (2016) reported MICs against T. versicolor of 1.584 mg/mL, 1.723 mg/mL,
1.243 mg/mL, and 1.861 mg/mL from P. strobus, P. douglaciana, P. caribaea, and P. leophylla,
respectively [48].

The half maximal inhibitory concentration (MIC50) is a measure of the potency of a
substance in inhibiting a specific biological or biochemical function. MIC50 is a quantitative
measure that indicates how much of a particular inhibitory substance (e.g., drug) is needed
to inhibit, in vitro, a given biological process or biological component by 50%. Mansor and
Ali (1992) reported MIC50 values of 0.640 mg/mL of pyrolytic rubberwood tar oil against
Coriolus versicolor [71]. In another study, Jantan et al. (1994) showed that Capsicum pubescens
leaf oil had the most effective MIC50 among seven Cinnamomum species at 0.060 mg/mL
for C. versicolor [72]. Cheng et al. (2005) reported MCI50 values of 91 mg/mL, 139 mg/mL,
and greater than 500 mg/mL for heartwood, sapwood, and bark of Cryptomeria japonica,
respectively, showing that bark extracts have the lowest AFA [73]. Wang et al. (2011)
reported that extracts with hexane, ethyl acetate, and methanol, from the heartwood of
Cunninghamia lanceolata, require 0.47, 0.64, and 0.84 g/L, respectively, to inhibit by 50%
the growth of the fungus T. versicolor [74]. Lomelí et al. (2016) reported that, to inhibit
50% growth of the fungus T. versicolor, the necessary concentrations were 0.071 mg/mL,
0069 mg/mL, 0.279 mg/mL, and 0.096 mg/mL for bark extracts of Pinus strobus, Pinus
douglasiana, Pinus caribaea, and Pinus leiophyla, respectively [48].

The effect of extracts with butanone, methylene chloride, propane, and methylbenzene
against the fungus T. versicolor and extracts with 3-methylpentan-2-one and propan-2-
ol against the fungus R. placenta show that low amounts are required to achieve total
inhibition. Therefore, in the future, it will be possible to proceed with impregnation tests
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on wood susceptible to degradation by these fungi and really test its protection capacity on
wooden blocks.

5. Conclusions

The highest extraction yields were obtained with water and ethanol (6.01% and 3.04%,
respectively). While for the other solvents yields varied from 1.01% to 1.30%.

The compounds extracted with water showed similar results for the two xylophagous
test fungi. They showed to be growth promoters, favoring the mycelial development of the
fungi T. versicolor and R. placenta.

Ethanol extracts at the concentrations tested showed low toxicity to both fungi. The
extract obtained with propan-2-ol generally inhibited the two test fungi. It was observed
that the higher the concentration, the greater the inhibition, being more effective the inhibi-
tion of R. placenta. In the concentration of 5.0 mg/mL, the antifungal activity was 80.6%,
being classified as toxic. The extract obtained with butan-1-ol, at lower concentrations
of 0.30 mg/mL and 0.60 mg/mL for T. versicolor and R. placenta, respectively, showed
no effect. These were classified as non-toxic (NT). The extract with propanone generally
inhibited both fungi. The AFA of the extracts proved to be more aggressive for R. placenta.
The extract with butanone showed to be the best inhibitor of T. versicolor growth, while
for R. placenta it showed a promoter effect. The 3-methyl-2, pentanone extract, at the
concentrations evaluated, showed low toxicity to both fungi. The biological activity of the
dichloromethane extracts showed that the higher the concentration, the greater the degree
of inhibition against both fungi. The xylene solvent was not able to extract components
of D. stramonium that inhibited or promoted the growth of the xylophagous fungi. The
compounds extracted with toluene inhibited T. versicolor, with an AFA that increased with
the concentration. In the case of R. placenta, toluene extracts promoted growth.

The biological models of the extracts that showed an inhibitory effect on mycelial
growth showed a good fit to the experimental data.

The extracts with the lowest MICs for the fungus T. versicolor were butanone,
dichloromethane, and propanone, while for R. placenta they were 3-methylpentan-2-one,
propan-2-ol, and butan-1-ol.
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