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Abstract: Carbon allocation is an important mechanism through which plants respond to environ-
mental changes. To enhance our understanding of maximizing carbon uptake by controlling planting
densities, the carbon allocation module of a process-based model, TRIPLEX-Management, was modi-
fied and improved by introducing light, soil water, and soil nitrogen availability factors to quantify
the allocation coefficients for different plant organs. The modified TRIPLEX-Management model
simulation results were verified against observations from northern Jiangsu Province, China, and
then the model was used to simulate dynamic changes in forest carbon under six density scenarios
(200, 400, 600, 800, 1000, and 1200 stems ha−1). The mean absolute errors between the predicted
and observed variables of the mean diameter at breast height, mean height, and estimated above-
ground biomass ranged from 15.0% to 26.6%, and were lower compared with the original model
simulated results, which ranged from 24.4% to 60.5%. The normalized root mean square errors ranged
from 0.2 to 0.3, and were lower compared with the original model simulated results, which ranged
from 0.3 to 0.6. The Willmott index between the predicted and observed variables also varied from
0.5 to 0.8, indicating that the modified TRIPLEX-Management model could accurately simulate the
dynamic changes in poplar (Populus spp.) plantations with different densities in northern Jiangsu
Province. The density scenario results showed that the leaf and fine root allocation coefficients
decreased with the increase in stand density, while the stem allocation increased. Overall, our study
showed that the optimum stand density (approximately 400 stems ha−1) could reach the highest
aboveground biomass for poplar stands and soil organic carbon storage, leading to higher ecological
functions related to carbon sequestration without sacrificing wood production in an economical way
in northern Jiangsu Province. Therefore, reasonable density control with different soil and climate
conditions should be recommended to maximize carbon sequestration.

Keywords: planting density; simulation model; carbon dynamics; above-ground biomass

1. Introduction

Forests are important carbon sinks that contribute to slowing global climate change.
Stand density regulation is a key forest management measure that affects the carbon
cycle [1]. Stand density regulation is widely used to improve the growth environment
of planted trees [2]. Changes in competition conditions affect the carbon and nitrogen
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allocation modes of stands [3]. It is necessary to conduct a modeling study to explore the
impact of stand density on carbon allocation and stand growth, so as to develop planted
forest managing techniques to improve ecological function and wood production.

Functional balance is commonly used to explain carbon allocation [4]. If growth is
limited by underground resources, such as water and nutrients, plants allocate more carbon
to their root systems to absorb more resources [5]. In contrast, if growth is limited by above-
ground resources (such as light and spots), plants allocate more carbon to aboveground
parts [5], especially the foliage [3]. A meta-analysis on the responses of even-aged mono-
specific stands to population density revealed that with an increase in stand density, the
mean size of the individuals decreased, but the tree height remained similar [6]. Through
studying five sets of premature and mature pine stands, Wertz et al. [3] found that stand
density only affected branch allocation and had no effect on the stems and foliage. In
current studies, the experimental design, choice of research object, and calculation method
of the selected variables led to different results [3,5]. Few studies could explain the influ-
ence of stand density on carbon allocation, as carbon allocation is a dynamic process, and
biomass partitioning could not fully explain the flux allocation at planting density trails.
In addition, the research duration in previous studies was generally short [4], and there
are a lack of studies on long-term carbon allocation dynamics. Modelling studies can be
conducted to study carbon allocation at different climate and soil conditions.

In general, because of a lack mechanistic understanding regarding carbon allocation at
an individual or stand level, models use either a static or a dynamic allocation scheme [7,8].
Static allocation models such as CABLE [9] and CLM4 [10] are practically unable to capture
the changes in allocation with changing water and nutrient availability at seasonal to
interannual timescales. Some models such as ED [11], LPJ-GUESS [12], and ISAM [13] use a
dynamic allocation scheme to regulate carbon allocation, owing to functional relationships
and resource limitations, which can change allocation coefficients based on individual
development, the environment, and resource availability [4]. Trugman et al. [14] developed
an optimization-based model to explore a leaf allocation strategy and to explain the patterns
in leaf allocation across CO2 fertilization. Merganicova et al. [8] analyzed 31 contrasting
models to identify the major forest carbon allocation modeling approaches and provided
examples regarding how to improve C allocation modelling in the context of climate change.
Using the 3-PG model with GIS, Prilepova et al. [15] predicted the biomass of poplars
under different management and climate conditions in the Pacific Northwest of the United
States. To evaluate the importance of the modulations of tree carbon allocation by water
and low-temperature stress for the prediction of forest growth, a new carbon allocation
scheme was implemented in the CASTANEA model, which accounted for lagged and
directed environmental controls of carbon allocation [16]. The coupled eco-hydrological
model based on the process model was applied to study the change in forest carbon
under different allocation methods, which indicated that the influence of uncertainty
regarding the allocation strategy or parameters on carbon estimation varies depending
on location [17]. However, few studies have used a process-based model with a dynamic
carbon allocation scheme to test the growth response of forest management practices such
as density regulation.

The objective of this study was to adjust the carbon allocation module of an existing
model, TRIPLEX-Management [18], in a different way that depends on light, water avail-
ability, and nitrogen to make it more flexible for simulating stand growth and the dynamics
of planted forests with different planting densities. The performance of the modified model
was tested using the stand characteristics of poplar (Populus spp.) plantations with different
densities and climatic conditions in northern Jiangsu Province. We also experimentally
simulated the dynamic carbon allocation and stand growth between poplar plantations
with diverse suggested planting densities in the region. We hypothesized that with an
increase in stand density, the carbon allocated to the stems would decrease while that
allocated to the leaves and roots would increase, resulting in a lower diameter at breast
height (DBH).
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2. Materials and Methods
2.1. The Model
2.1.1. Model Description

TRIPLEX, originally designed by Peng et al. [19], integrates three well-established
models: the model of tree biomass production, 3-PG [20]; the model of forest stand dynam-
ics, TREEDYN3.0 [21]; and the model of soil organic matter dynamics, CENTURY4.0 [22].
Wang et al. [18] modified the original TRIPLEX model and developed a new version,
TRIPLEX-Management, that can simulate the effects of thinning on forest growth, carbon,
and nitrogen cycling at the stand level.

The climate driving forces included in the model are the monthly average temperature,
precipitation, and relative humidity. Moreover, the gross primary productivity (GPP)
in the model is calculated by photosynthetically active radiation, leaf area index, and
conversion constant, as well as modifiers that are limited by forest age, temperature, soil
water, nitrogen, and frost duration. Respiration includes both autotrophic (including
growing and maintaining respiration) and heterotrophic respiration. The maintenance
of respiration is the product the carbon content of each plant component (foliage, roots,
and wood) and the temperature sensitivity of respiration (Q10) [23]. Growth respiration
is assumed to be one-fifth of the difference of maintaining respiration and GPP [19]. Net
primary productivity (NPP) is allocated to the stems, leaves, and roots according to the
allocation parameters. The stand structure is simulated using an empirical Weibull diameter
distribution model. Forest thinning is driven by thinning time, thinning type, and thinning
intensity [18]. Previously, Peng et al. [19] and Wang et al. [18] described the characteristics,
structure, mathematical algorithms, sensitivity analysis, and development strategies of this
model in detail.

2.1.2. Modification of the Carbon Allocation Module

The TRIPLEX-Management model uses a fixed proportion as the allocation coeffi-
cient [24]. This study developed and tested a different method that depended on light, water
availability, and nitrogen (W, L, and N, respectively) [4] for improving carbon allocation in
the TRIPLEX-Management model:

EtaS = 3S0
min(W, N)

2L + min(W, N)

EtaFR = 3R0
L

L + 2min(W, N)

EtaF = 1− EtaS− EtaFR

where EtaS, EtaFR, and EtaF are the allocation coefficients for the stems, roots, and leaves,
respectively; L is the light availability factor; W is the water availability factor; min (W, N)
is the minimum availability of water and nitrogen; R0 and S0 are the allocation fractions
for roots and stems under non-limiting conditions, respectively, and R0 = S0 = 0.3 [25].

2.1.3. Calculation of the Water, Light, and Nitrogen Availability Factors

The light availability factor was calculated using the leaf area index [26]:

L = exp(−knLAI)

where LAI is the leaf area index and kn is the light extinction coefficient.
The water availability factor was used to adjust the allocation to roots:

W = max

[
0, min

(
1,

θi − θwilt
θ f ield − θwilt

)]



Forests 2022, 13, 1212 4 of 14

where θi is the actual soil moisture, θ f ield is the soil water content at field capacity, and θwilt
is the soil moisture at the wilting point.

The nitrogen availability factor was calculated by combining the temperature (Ts) and
moisture (Ws) limitations. The temperature limitation was calculated based on a standard
Q10 equation and the moisture limitation was modeled using the following equations [27]:

N = Ts ×Ws

Ws =
1(

1 + 30× e−8.5×( PPT
PET )

)
Ts = Q

T−15
10

10

where T is the monthly mean air temperature, PPT is the monthly precipitation, PET is the
potential evapotranspiration, and Q10 = 2.92.

2.2. Study Sites

We used published poplar (dominated by Populus deltoids) plantation data for the
sites in northern Jiangsu Province to validate the modified model (Table 1). The soils that
dominated a fluvisol, according to the World Reference Base (WRB), at the sites were mostly
alkaline and sandy, and they were planted with Populus section Aigioros clones during
1996 to 2007. The planted densities across these sites were from 200 to 1000 trees ha−1.
These sites were mostly located in subtropical and warm temperate transition zones. The
mean annual temperature and precipitation ranged from 14.5–16 °C and 972.5–1069 mm,
respectively. Site climate data were obtained from the China Meteorological Data Service
Center (http://data.cma.cn/, accessed on 20 July 2021).

Table 1. Stand, climate, and soil characteristics of the sampling sites in northern Jiangsu Province.

Site Location Planting
Year MAT MAP Soil Type Soil Texture Age SD DBH H Reference

Dongtai1 120◦49′ E, 33◦05′ N 2006 14.6 1069 Desalted
meadow Sandy loam 9 333 23.23 21.28 [28]

Dongtai2 120◦49′ E, 33◦05′ N 2006 14.6 1069 Desalted
meadow Sandy loam 7 667 16.21 18.08 [29]

Dongtai3 120◦49′ E, 33◦05′ N 1996 14.6 1069 Desalted
meadow Sandy loam 15 333 33.2 27.3 [30]

Dongtai4 120◦49′ E, 33◦05′ N 2006 14.6 1069 Desalted
meadow Sandy loam 10 607 20.85 18.91 [31]

Dongtai5 120◦49′ E, 33◦05′ N 2006 14.6 1069 Desalted
meadow Sandy loam 10 312 27.82 20.63 [31]

Suining1 118◦04′ E, 33◦53′ N 1998 16 1300 Alluvial sandy Sandy loam 9 204 31.2 25.9 [32]
Suining2 118◦04′ E, 33◦53′ N 1998 16 1300 Alluvial sandy Sandy loam 9 278 30.5 26.4 [32]
Suining3 118◦04′ E, 33◦53′ N 1998 16 1300 Alluvial sandy Sandy loam 9 400 24.8 26.2 [32]
Suining4 118◦04′ E, 33◦53′ N 1998 16 1300 Alluvial sandy Sandy loam 9 625 20.4 25 [32]

Zhoushan 119◦40′ E, 32◦20′ N 2002 14.5 1000 Lacustrine
sediments Clay texture 10 1111 19.8 18.2 [33]

Sihong1 118◦36′ E, 33◦28′ N 2007 14.4 972.5 Deposited soil Sandy black 13 400 21.75 24.48 [34]
Sihong2 118◦36′ E, 33◦28′ N 2007 14.4 972.5 Deposited soil Sandy black 13 278 24.79 25.62 [34]
Ganyu 119◦07′ E, 34◦50′ N 2002 13.2 976.4 Tibba sandy Sandy loam 8 1111 11.96 12.6 [35]

MAT: mean annual temperature (◦C); MAP: mean annual precipitation (mm); SD: stand density (stems ha−1);
DBH: diameter at breast height (cm); H: tree height (m).

2.3. Simulations
2.3.1. Parameterization and Initialization

The TRIPLEX-Management model was parameterized and verified for jack pine (Pinus
banksiana Lamb.) and trembling aspen (Populus tremuloides Michx.) using the growth and
yield data in Canada from several previous studies [18,19]. It was also parameterized for
subtropical forest regions in southeastern China [36] and temperate forest ecosystems in
northeastern China [24]. In this study, we maintained the most general and non-species

http://data.cma.cn/
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or site-specific parameters, including the radiation extinction coefficient, soil water depth,
and lignin–nitrogen ratio. We updated some species-specific parameters retrieved from
the literature (Table 2). Site-specific parameters were estimated using the site and stand
characteristics of the sampling plots (e.g., environmental or site conditions, stand stock,
and growth characteristics of tree species). The site-specific parameters included species,
renewal year, latitude, site type, soil organic carbon, and stocking level. We modified the
initial stocking level using the planting density.

Table 2. Parameters used within the model simulations.

Parameter Description Note

Absorb = 0.15 Atmospheric absorption factor [37]
Cloud = 0.45 Time fraction of cloudy days This study

PAR factor = 0.65 Solar radiation fraction This study
BlCond = 0.12 Canopy boundary layer conductance (mL m−2 s−1) This study

MaxCond = 0.26 Max. canopy conductance (mL m−2 s−1) This study
StomCond = 0.012 Stomata conductance (mL m−2 s−1) This study

ExtCoef = 0.46 Radiation extinction coefficient [38]
TaMin = 7 Min. temperature for growth (◦C) This study

TaMax = 40 Max. temperature for growth (◦C) This study
Topt = 25 Optimum temperature for growth (◦C) This study

N factor = 0.2 N factor for tree growth [38]
Na = 3 Effects of age on GPP [38]
Sla = 13 Specific leaf area (m2 kg−1) [39]

GamaF = 1 Leaf turnover per year This study
GamaR = 0.21 Fine root turnover per year This study

Lnr = 26 Lignin–N ratio [38]
Ls = 0.215, 0.215, 0.2351, 0.255, 0.255 Lignin in leaf, fine root, coarse root, branch, and wood [38]

A1, A2, A3 = 15, 45, 125 Soil water depth of layer 1, 2, and 3 (cm) [38]
AWL1, 2, 3 = 0.5, 0.3, 0.2 Relative root density for layer 1, 2, and 3 [38]

KF = 0.5 Fraction of H2O flow to stream [40]
KD = 0.5 Fraction of H2O flow to deep storage [40]
KX = 0.3 Fraction of deep storage water to stream [40]

AWater = 250 Max. soil water (mm) [40]
MiuNorm = 0 Normal mortality This study

CSP = 0.26 Wood C density (t C m−3) This study
CD = 20 Crown to stem diameter ratio This study

AlphaC = 0.08 Canopy quantum efficiency This study
MaxHeight = 30 Max. height (m) This study
AgeMax = 100 Max. stand age (year) This study

2.3.2. Model Evaluation

The mean absolute error (MAE) and normalized root mean square error (NRMSE)
were used to evaluate the differences between the predicted and observed values.

MAE = 100
∑n

i=1|Pi −Oi|
nO

NRMSE = (Omax −Omin)
−1

[
∑n

i=1(Pi −Oi)
2

n

]0.5

where Pi is the ith predicted value; Oi is ith the observed value; O is the mean observed value;
Omax and Omin are the maximum and minimum observed values, respectively; and n is the
number of observations. The lower the value of the two indicators, the smaller the difference
between the model predictions and observations, indicating a more accurate simulation.
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The Willmott index of agreement (d) was used as an indicator of modeling efficiency,
with values ranging from 0 to 1.0, with 1.0 indicating perfect agreement; it is expressed as
follows [41]:

d = 1−
[

∑n
i=1|Pi −Oi|2

∑n
i=1
(∣∣Pi −O

∣∣+ ∣∣Oi −O
∣∣)2

]

2.3.3. Simulation Experiments

According to the planted density of the stand in the study area, the densities were adjusted
to 200, 400, 600, 800, 1000, and 1200 stems ha−1. Under the same climate and soil conditions,
the growth status of the poplars began from the regeneration year of each stand to the end of
20 years of growth. Variables such as DBH, height, and biomass were simulated.

3. Results
3.1. Comparison of Stand Characteristics

A comparison of the observed and predicted DBH and heights showed good consis-
tency (Figure 1a–d). The determination coefficient (R2) of the mean DBH and mean height
ranged from 0.7 to 0.8 (p < 0.001, Figure 1), and the modified model by W, L, and N had
higher regression coefficients than the original model. The MAE range of the mean DBH
and mean height was 15.4%–24.8% and the NRMSE range of all of the stand variables was
0.2–0.4 (Table 3). The Willmott indices of agreement between the observed and simulated
basic stand variables were 0.6–0.8 (Table 3). In the modified model, the MAE, NRMSE, and
Willmott index were better than the original model.
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Table 3. Performance of the original and modified TRIPLEX-Management model.

Variable MAE NRMSE d

Original model
Mean DBH (cm) 24.8 0.3 0.6
Mean height (m) 24.4 0.4 0.7

Aboveground biomass (t ha−1) 60.5 0.6 0.5
Modified model

Mean DBH (cm) 18.7 0.2 0.7
Mean height (m) 15.4 0.2 0.8

Aboveground biomass (t ha−1) 26.6 0.3 0.8
MAE is the mean absolute error, NRMSE is the normalized root mean square error, and d is the refined Willmott index.

The coefficient of determination between the simulated and estimated aboveground
biomass in the modified version (RW,L,N

2 = 0.54) was better than in the original model
(Roriginal

2 = 0.48, Figure 2). For the modified model, the slope was 0.8 and the intercept was
16.6 t ha−1 (Figure 2b). The MAE and NRMSE for the modified model were lower than
these for the original model, and the Willmott index was higher than for the original model
(Table 3).
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3.2. Carbon Allocation and Growth Change with Stand Density

Overall, EtaS was higher than EtaFR and EtaF (Figure 3). Stands with a high density
generally allocated more carbon to the stem for the tree architecture, while stands with a
low density allocated more carbon to the nutrient organs, such as the foliage and fine roots,
for the improved allocation method (Figures 3 and 4). The effect of density on EtaS and
EtaF was obvious, especially at the late growth stage of the stand, while the effect on EtaFR
was not large (Figure 3).
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Figure 4. Simulated seasonal dynamics of the carbon allocation ratio to stems (a,b), foliage (c,d), and
fine roots (e,f) for the 6-year-old (a,c,e) and 13-year-old (b,d,f) stands with different densities (200 vs.
1200 stems ha−1) using the modified model.

The average DBH decreased from 31.7 to 21.5 cm and the average tree height decreased
from 26.9 to 21.9 m with the increasing stand density for the improved method (Table 4).
The aboveground biomass increased with density until 400 stems ha−1, and then became
relatively stable thereafter.

Table 4. Simulated effects of the planting density on the stand characteristics at a stand age of 20
years old using the modified model.

Poplar
Density (Stems ha−1)

200 400 600 800 1000 1200

Site 9 (Age = 20 years)
D 31.7 26.6 24 22.7 22 21.5
H 26.9 25.3 23.6 22.7 22.3 21.9

AGB 246.9 261.2 252.9 231.9 221.9 217.1
SC 124.5 124.7 124.8 126.4 127.3 127.5

D is the mean diameter at breast height (cm), H is the mean tree height (m), AGB is the aboveground biomass
(t ha−1), and SC is soil carbon (t C ha−1).
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3.3. Seasonal Dynamics of Carbon Allocation

There were obvious seasonal dynamics for the three allocation ratios in the growth
stage. When the stand was in the 6-year-old stage, EtaS reached its peak in July and then
began to decline for the simulated densities (200 vs. 1200 stems ha−1), while those in the
13-year-old stage peaked in May (Figure 4a,b). In the 6-year-old stage of stand development,
EtaF and EtaFR remained relatively consistent across the growing season (Figure 4c,e), while
in the 13-year-old stand, carbon allocation to foliage and fine roots generally decreased
(Figure 4d,f).

4. Discussion
4.1. Module Improvement

The method of determining the allocation ratio according to the relative intensity of
the water, light, and nutrient constraints (W, L, and N) was better than for the method that
used a fixed proportion in the original model. Nutrition (such as nitrogen and phosphorus)
plays an important role in the carbon cycle and plant growth. Previous field measurements
and theoretical studies have shown that nitrogen limitation has a significant effect on the
response of the carbon cycle to a change in stand density [42]. When the stand density
is too high or during the rapid growth stage of trees, nutrition is a limiting factor for
growth, and the impact of water and light on plants is lower. The allocation of carbon in
plants, especially the allocation to stems owing to nutrition, cannot be fully determined
without considering nutrition-limiting factors [43]. The soil in the study area is often
heavily weathered, and nutrients, such as N, are low in concentration and availability. The
W, L, and N module, where nitrogen limitation is roughly controlled by the temperature
and water availability [44], can better simulate the allocation change constrained by the
nutrient availability. Furthermore, there was one stand that underestimated the biomass
using W, L, and N model; this could have been caused by soil texture factors. The particle
composition and total porosity of different texture soils are different. These factors affect
the distribution of the plant biomass by affecting water, gas, heat, and nutrition.

4.2. Effects of Stand Density on Carbon Allocation and Stand Growth

In our study, more carbon was allocated to the stems, and less was allocated to the
nutritional organs, especially the fine roots, as the density increased. With the increase in
density, the percentage change of the stem carbon allocation was from −0.9% to 1.9%, the
change in leaf allocation was from 1.0% to −3.3%, and the change in fine root allocation
was from 4.0% to −5.2%. With the increase in density, the leaf and root allocation slightly
decreased and the stem allocation slightly increased, because the near-unidirectional nature
of the light in the closed canopy was related to the position of the leaves at the top of the
canopy, which are crucial for light interception [5]. However, other studies have reported
contradictory results. For example, stem growth has been shown to increase significantly
under uninhibited conditions and is the highest under medium shade conditions [45]. With
an increase in competitive pressure, trees invest more carbon in their photosynthetic organs
to compete for limited light resources [3]. In stands with a low stand density, trees are
usually not inhibited by light, water, or nutrition conditions. Under these conditions, trees
allocate more resources to nutritional organs for increasing photosynthesis and absorbing
more nutrients in order to grow fast. When the forest cover rate or density is high, the
competition for resources such as light, water, and nutrients restricts tree growth. Under
these conditions, to better collect light, trees allocate more NPP to the stems for achieving
the highest canopy. During water or nutrient stress, the allocation of carbon to fine roots
increases to maintain water absorption and growth [4]. Therefore, competition for light
under high density conditions increases the proportion of stem carbon allocation.

We found that competition induced by a high stand density negatively affected DBH
growth. The growth range of DBH decreased with the increase in stand density. Our results
are consistent with those of previous studies [46–48]. Most previous surveys of other tree
species found similar results [49]. This occurs because, under the condition of canopy
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closure, the competition between individual trees for nutrition restricts the growth of DBH.
To compete for more nutrients, nutrient organs such as foliage and fine roots grow fast,
while the stems grow relatively slowly. In accordance with previous studies, we also found
that density had little effect on height. According to a study on the impacts of different
planting densities on growth factors and the physical and mechanical properties of Populus
wood, Liu et al. [46] found that planting density had no significant effect on height growth.
After a 7-year study on the effects of density on the growth of self-thinning Eucalyptus
urophylla stands, Xue et al. [50] found that density had a smaller effect on tree height than
that on DBH. A study on eight different afforestation densities of southern type clones
of Aigeiros poplars showed that there was no significant difference in tree height among
poplar stands with different densities before 7 years of age; however, there were significant
differences when the stand age was more than 8 years old [51]. At lower densities, trees
grow faster to dominate at the stand. As the density increases, trees compete for more
sunlight by increasing their height. Therefore, regardless of a high density or low density,
trees need to increase their height for better survival. The results of this study show that
the biomass of poplar stands first increased and then decreased with the stand density,
and the growth rate of the biomass slowed. Unlike our results, Alatan [52] found that the
biomass decreased with the increase in density. This discrepancy may be attributed to the
low density (severe thinning) and lack of competition between trees. The yield increased
rapidly with the increase in density. At an intermediate density, owing to the increasing
competition between trees, the yield increased at a decreasing rate with higher densities
(lightly thinned or controlled).

4.3. Uncertainties of Model Simulation and Future Work

Differences between simulated and observed results may have occurred because of
the low sampling frequency of typical fieldwork. A low sampling frequency leads to low
field data, which makes it impossible to carry out more comprehensive comparisons and
verification. In our study, the observed stand growths that were used to test the model
were from relatively young (7–11 years old) poplar plantations, resulting in uncertainties
for simulating 20-year-old stands. Another source of uncertainty is attributed to the lack
of soil and local meteorological data. For some sites, climate data were obtained from the
nearest weather station. In future studies, more observation data, especially soil organic
matter, should be collected to reduce model uncertainty.

Regarding carbon allocation, further refinements are still required. With ongoing
climate change, severe and extensive droughts are expected to occur in many regions
in the future [53]. An increase in nitrogen deposition can significantly change the soil
nitrogen availability. Changes in drought and nitrogen deposition directly affect the
terrestrial carbon cycle and indirectly affect the allocation of assimilated carbon among
plant components [7,25]. Therefore, uncertainty over nitrogen availability may lead to
uncertainties in the model performance of allocation. In addition, there have only been
a few experiments on carbon allocation [45]. The model simulation cannot be corrected
by experimental data and an accurate allocation mode cannot be obtained for model
improvement and parameter design. More empirical studies on carbon allocation are thus
needed to reduce the uncertainty surrounding the carbon allocation patterns and carbon
utilization efficiency of woody plants.

The tree DBH growth differed significantly between stands with different densities,
but the relationship between stand density and height was not significant. Therefore,
according to management purposes, directional cultivation could be realized through
density control in order to achieve the highest yield. In the early stages, afforestation areas
should be increased appropriately. When trees grow to maturity, density should be reduced
to provide sufficient growth space for trees. Our study showed that increasing the planted
density could increase the biomass of poplar stands and improve the ecological function
related to biomass, possibly achieving increased carbon sequestration without sacrificing
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wood production. Therefore, it is necessary to select suitable afforestation densities or
implement thinning measures according to the forest management objectives.

5. Conclusions

By introducing light, water, and nitrogen availability factors to the carbon allocation
module, the TRIPLEX-Management model was modified to simulate the growth response
of poplar plantation forests to density change. The stem allocation coefficients rose with
increase in density due to competition for light. The optimum poplar planting density in
northern Jiangsu Province could be approximately 400 stems ha−1, which could have higher
ecological functions related to carbon sequestration, without sacrificing wood production.
Reasonable stand density regulation should thus be performed depending on the climate
and site conditions. The modified process-based model might be a useful tool for predicting
the response of forest growth and carbon sequestration to stand density change in different
climate and soil conditions.
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