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Abstract: The Mediterranean forests, particularly Cork oak (Quercus suber L., 1927), make a major
contribution to the fight against climate change through Carbon sequestration. Hence, there is a
great interest in the accurate quantification of biomass and carbon stock. In this context, this study
aims at assessing the performance of a new approach, based on the combination of Unmanned
aerial vehicle airborne Aerial laser scanning (ALS-UAV) and Terrestrial laser scanning (TLS) data,
in the determination of dendrometric parameters (Circumference at 1.30 m and Tree Height), and
consequently the estimation of biomass and carbon stock, considering field data as reference. This
study takes the Maamora forest in Morocco as an example of a Mediterranean Cork oak forest. The
methodology consists of collecting data at three levels: the entire area level for an ALS-UAV scan,
the plot and tree levels for TLS surveys, as well as field data collection. Afterwards, dendrometric
parameters (Circumference at 1.30 m and the Tree height) were estimated using individual tree
segmentation and biomass; the carbon stock (aboveground, belowground, and total) was estimated
using allometric equations. The comparison of the estimated dendrometric parameters with those
measured in the field shows a strong relationship, with a Pearson coefficient of 0.86 and 0.83, a
correlation coefficient (R2) of 0.81 and 0.71, and a Root mean square error (RMSE) of 1.84 cm and
0.47 m, respectively. Concerning the biomass and carbon stock estimation, the proposed approach
gives a satisfactory accuracy, with a Pearson coefficient of 0.77, an R2 of 0.83, and an RMSE of 36.40 kg
for biomass and 20.24 kg for carbon stock.

Keywords: biomass; carbon stock; combination of ALS-UAV and TLS data; segmentation tree;
Mediterranean region; allometric equations; Cork oak forest

1. Introduction

Terrestrial ecosystems, such as forests and soils, sequester and store globally critical
stocks of carbon, but they are threatened by deforestation and Climate change [1]. In
fact, the CO2 sink in these ecosystems increased from 1.3 ± 0.4 GtC yr−1 in the 1960s to
3.4 ± 0.9 GtC yr−1 from 2010–2019, with important inter-annual variations of up to 2GtC
yr−1 [2]. Forest ecosystems are the largest part of terrestrial ecosystems [3,4], containing
about 80% of aboveground carbon and 40% of belowground terrestrial carbon [5]. On the
one hand, terrestrial ecosystems contribute to the mitigation of ~31% of global emissions
from land use change and fossil-fuel burning [2]. On the other hand, forest degradation
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and deforestation are leading to carbon dioxide (CO2) emissions and the worsening of
global Climate change [6]. In fact, degraded forests contained 45.1% of the carbon stocks in
intact forests, and these differences persisted even after 15 years of regrowth [7]. Thus, the
tree biomass and the rate of carbon sequestration decreased from undisturbed to degraded
forests by 62% and 73%, respectively [8].

In the Mediterranean region, carbon sequestration by forests ranges between 0.01 and
1.08 t C /hectare annually [9]. Quercus suber L., 1927 or Cork Oak forests are among the most
important Mediterranean forest stands. They provide several environmental, economic,
and social functions and they widely contribute to the fight against climate change.

Aboveground biomass (AGB) is a major component of the terrestrial carbon cycle,
and its accurate estimation is critical for supporting policies of ecosystem conservation
and Climate change mitigation [10]. It is a sensitive indicator of environmental change
and ecological functions [11]. The carbon captured (or stored) by a tree is the amount of
carbon accumulated in its biomass. It is expressed in kg/tree and by geographical area
(ton/hectare and ton/hectare/tree).

Carbon stock and biomass quantification are crucial in environmental fields, but they
are also constraining at the same time, especially in large areas. In fact, biomass estimation
is especially important for arid and semiarid regions, which are particularly susceptible
to environmental degradation and desertification [12]. Forest biomass can be estimated
through field measurements. Two methods are available: a destructive one, also known as
the harvest method, and a non-destructive method using allometric equations [13].

Although the field measurements provide a more accurate estimation of forest biomass,
they are labor intensive as well as time-consuming and rather expensive. In addition, the
manual collection of the biometrical data of Cork oak trees is difficult due to their varied
architecture. However, the estimation of their aboveground biomass and carbon stock with
remote sensing provides a reasonable alternative, saving time and effort.

Remote sensing is recognized as an effective tool for quantifying carbon stocks over
large areas, enabling accurate monitoring at the landscape scale [13,14]. Several researchers
have studied the use of remote sensing tools in this field, such as aerial photos [15], Landsat
image data [16,17], imaging spectrometry [18], hyperspectral imaging (HSI), and very
high-resolution data [19,20]. However, the use of satellite imagery in AGB and carbon stock
estimation is limited because it cannot capture the sub-canopy properties of vegetation.

Hence the interest of using Aerial Laser Scanning (ALS), which characterizes complex
forest structures due to its ability to capture three-dimensional information of the land
surface [21] and reduce the cost of obtaining AGB and carbon stock estimation to a specific
level [22]. Many researchers have used ALS alone [23] or combined with other remote
sensing tools to estimate the aboveground biomass and the carbon stock in many forests
all around the world. ALS has been used with Landsat 8 OLI (Operational Land Imager)
data andallometric equations to derive mangroves’ height, biomass, and carbon stock in
north-western Australia [24], and with Sentinel-2 imagery, using a new upscaling method
to estimate the AGB in a Mangrove Forest [25]. ALS and hyperspectral data used separately
yield good results and their combination provides more accurate AGB estimations [26].

In addition to the estimation of biomass and carbon stock at a given time, some studies
have focused on the use of ALS in combination with ancillary remote sensing tools to
explore temporal changes in forest cover and degradation aspects. In fact, ALS data were
used with forest inventory data to quantify the aboveground carbon density (ACD) in
intact and degraded forests [27]. High density ALS data and Landsat imagery time series
were used to investigate the forest degradation caused by logging and fire [7]. Landsat-
derived tree canopy cover, height, intactness, and forest cover loss and The Geoscience
Laser Altimeter System (GLAS) Lidar-derived forest biomass were used to estimate the
tropical forest aboveground carbon (AGC) loss from 2000 to 2012 [28]. In addition, ALS and
Landsat Imagery Data were used to study the changes in vegetation cover and to quantify
its impact on aboveground carbon (AGC) stocks in Auckland, New Zealand, between 1989
and 2014 [29].
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ALS can be carried by different platforms; in particular, Unmanned Aerial Vehicles
(UAVs), which have recently proven their efficiency in forest resource investigation and
data acquisition, possess much higher spatial and temporal resolutions than other remote
sensing tools [30]. In addition to UAV-based Lidar (ALS-UAV), many researchers have ex-
perimented the use of UAV imagery for aboveground biomass and carbon stock estimation.
For this purpose, a cost-effective method integrating UAV-imagery and Terrestrial Laser
Scanning (TLS) data was deployed in a tropical rainforest in Malaysia [31]; a combined field
and object-based image analysis (OBIA) approach, based on UAV multispectral imagery,
was used in a Mediterranean Riparian Forest [32]; and aerial photos from a UAV were
used to estimate the aboveground biomass and carbon Stock in the Karimunjawa-Kemujan
Islands [33].

In addition to Aerial Laser Scanning (ALS), Terrestrial Laser Scanning (TLS) has been
used in several forestry studies, notably in the estimation of the dendrometric parameters
of trees and their aboveground biomass and carbon stock [32].

New technologies have been widely tested in several forests throughout the world;
however, few studies have concerned Mediterranean forests and in particular Cork oak
forests. Indeed, these forests present an exceptional natural setting and greatly contribute
to the sustainable development of the area. Hence the importance of appropriate and
simplified management, involving innovative technologies such as UAV, ALS, and TLS.

This study assesses the performance of using a new approach, based on the combina-
tion of Unmanned Aerial Vehicle airborne Aerial Laser Scanning (ALS-UAV) and Terrestrial
Laser Scanning (TLS) data, towards the determination of dendrometric parameters (C1.30m
and Tree Height) and consequently the estimation of biomass and carbon stock, considering
field data as reference.

The specific objectives are:

- To assess the potential of estimating trees’ attributes (C1.30m and Tree Height) based
on the combination of ALS-UAV and TLS data, and to compare it with the dendromet-
ric parameters measured in the field.

- To estimate tree biomass and biomass at the plot level; then, to assess their accuracies
by comparing them with the biomass estimated based on the dendrometric parameters
measured in the field.

- To calculate the carbon stock at the tree and plot levels with ALS-UAV-TLS data and
to study their precision in comparison to the field data.

This paper is organized as follows: In Section 2, we describe the methodological
approach, starting with describing the study area, detailing the data acquisition, preprocess-
ing, processing, biomass, and carbon stock estimations, followed by a statistical analysis.
The results are then presented in Section 3 and discussed in Section 4.

2. Materials and Methods

The methodology of this research work is organized in three stages: firstly, the data
acquisition, which was carried out at three levels (ALS-UAV acquisition, TLS acquisition,
and field data acquisition); secondly, preprocessing, processing, biomass, carbon stock
estimation; and thirdly, a statistical analysis, which assessed the relationship between
field-measured variables and those extracted from ALS-UAV-TLS data (Figure 1).
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Figure 1. Flowchart of the research method.

2.1. Study Area

This study is conducted in a Mediterranean Cork oak forest, located in Maamora forest
in Morocco (Figure 2). This forest is considered the largest Cork oak forest in the world [34].
It is spread over 131,921 ha [35], of which 60,000 ha consists of pure Cork oak stand, and it
is sectioned from west to east in five cantons: A, B, C, and D. This area is characterized by a
sub-humid bioclimate in its western part and is semi-arid in its central and eastern parts.
The tree layer vegetation is marked by almost pure Cork oak (Quercus suber) [36].
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The Maamora forest greatly contributes to local and regional development. Its so-
cioeconomic and environmental roles are of great importance. Nevertheless, she is under
very strong anthropogenic pressure due to the appropriation of timber for various uses,
overgrazing, and the systematic collection of sweet acorns for local consumption and
marketing. These destructive practices, which exacerbate the weaknesses caused by the
forests senescence, render it very vulnerable [37]. The present study was conducted in the
central canton C, group III, parcel 10, inside a pure adult Cork oak stand with a density
less than 100 stem/ha.

2.2. Data Acquisition
2.2.1. ALS-UAV Data Acquisition

Before The ALS-UAV mission, we explored the study area, looking for reference points
and preparing the equipment. The choice of the reference points found in planimetry (ITRF
and Merchich) and altimetry (NGM) was made after performing homogeneity tests. After
that, the mission planning was carried out to set flight parameters. Then, the ALS-UAV
data were collected on 17 July 2020, with Velodyne VLP-16 Lidar sensor mounted on an
Unmanned Aerial Vehicle DJI Matrice 600 pro (Figure 3). This sensor has an effective range
of 75 m, a point accuracy up to 3 cm, and a data rate of 300,000 points per second. The
height of flight was 40 m with a speed of 3 m/s and a side overlap of 30%. The area covered
by the mission is about 10 ha.
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2.2.2. TLS Data Acquisition

The data survey with TLS was performed using a multiscan configuration with
four scan stations (Figure 4). The first scan position was at the center of the plot and
the other three scans were conducted on the border separated by an angle of 120 degrees.
In the field, these scans were operated one after another. The multiple scan approach can
reduce the problem of occlusion, which is caused by tree stems, branches, or other forms
of understory vegetation near the scanner’s location [38]. The acquisition of the TLS data
was performed by a Trimble X7 scanner (Figure 3). Before carrying out the scans, the target
points (reference retro-reflectors) were installed on the ground and their positions were
collected by the Comnav T300 GNSS receiver. These points are important for accurately
co-registering and geo-referencing the four separate scans of the plot.
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Figure 4. (a) Configuration of the Terrestrial laser scanner (TLS) multiscan; (b) Terrestrial laser
scanner (TLS) operating a scan on the border of the plot.

2.2.3. Field Data Collection

Field measurements were taken to provide a basis for comparing the ALS-UAV-TLS
data. In effect, we used a sampling plan of data acquisition on six randomly distributed
plots. The latter plots were circular with a radius of 20 m and each one covering 1256 m2.

For every plot, we measured the circumference at 1.30 m aboveground for all existing
trees (67 trees) using measuring tape. Then, we randomly selected sample trees (38 trees),
for which we measured the total height using a Vertex Hypsometer (Figure 3) and the
circumference at 1.30 m from the ground using circumference tape.

2.3. Data Processing
2.3.1. ALS-UAV-TLS Data Pre-Processing and Processing

Before using the point cloud, a pre-processing step is necessary. It consists of three
main steps, automatic consolidation to group all the clouds from the different stations
together, geo-referencing to position the spatial entities in a specific coordinate system, and
noise cleaning to eliminate points. Once the TLS and ALS point clouds are pre-processed,
the resulting files are combined. The combined file follows a workflow pattern to extract
tree attributes or dendrometric parameters (Figure 5).
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• Normalization by ground point

Normalization of the point cloud (Figure 6) removes the effects of topographic relief
on the elevation values of the point cloud data. This operation requires the input data to
have already been classified into ground points and non-ground points. The normalization
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process is performed by subtracting the elevation of the terrain (represented by the elevation
of the ground points) of the Z value of each point.
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• Tree segmentation

The point cloud segmentation method uses shortest-path algorithm (CSP), which can
segment both broadleaved and coniferous forests scanned using T-Lidar and trees scanned
using mobile Lidar [39]. This algorithm functions via two steps: firstly, the trunk detection,
and secondly, the subsequent crown segmentation, and it presents a high accuracy in
terms of the number of detected trees and crown segmentation. Individual Tree attributes,
including Tree height and Diameter at Breast Height (DBH), can be then determined for
each Tree segmented out of the inputs’ TLS dataset.

• Tree attributes extraction

Point cloud segmentation tool generates a file containing tree attributes for all trees’ ID
records including: location (x,y), tree height, crown diameter, crown area, crown volume,
and DBH, which is closely related to circumference at 1.30 m (C1.30m). The latter is
calculated by multiplying the DBH by π (3.14).

2.3.2. Field Data Processing

The processing of field data concerns the study of the relationship between the circum-
ference at 1.30 m and the heights of trees. This relationship is studied by simple modeling
using R software. The resulting model allowed us to calculate the total height of all trees in
the study area.

• Model Specifications:

To study the relationship between the tree height and the circumference at 1.30 m from
the ground, we tested the six following mathematical models from observations collected
in the field (Table 1):

Table 1. Models used to characterize relationship between tree height and circumference at 1.30 m.
Where H is the tree height and C1.30 m is the circumference of tree at 1.30 m from the ground.

Models Models’ Equations

Model 1 Linear simple model: H = b0 + b1 C 1.30m
Model 2 Allometric model (2nd degree): H = b0 + b1 C 1.30m+ b2 C2

1.30m
Model 3 Allometric model (3nd degree): H = b0 + b1 C 1.30m + b2 C2

1.30m + b3 C3
1.30m

Model 4 Allometric model (4th degree): H = b0 + b1 C 1.30m + b2 C2
1.30m + b3 C3

1.30m +
b4 C4

1.30m

Model 5 Allometric model (5th degree): H = b0 + b1 C 1.30m + b2 C2
1.30m + b3 C3

1.30m +
b4 C4

1.30m + b5 C5
1.30m

Model 6 Logarithmic model: lnH = a0 + a1 lnC 1.30m
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• Criteria for choosing models

The best model is the one that satisfies the following conditions:

1. Multiple and adjusted R2—Coefficient of determination is the proportion of the varia-
tion in the dependent variable that is predictable from the independent variable(s).

2. Residual standard error—The mean square error is the mean of the sum of squared
residuals; it measures the average of the squares of the errors. Lower values (closer to
zero) indicate better fit.

3. AIC—The Akaike information criterion is an estimator of prediction error and thereby
relative quality of statistical models for a given set of data.

4. BIC—Bayesian information criterion (BIC) is a criterion for model selection among a
finite set of models; models with lower BIC are generally preferred.

2.4. Biomass and Carbon Stock Estimation

To estimate biomass and carbon stock, we have used two methods: the first method is
based on data from the field survey inputs and the second one is based on ALS-UAV-TLS
data inputs. Then, the allometric equations explained in the following sections were used.

2.4.1. Biomass Estimation

• Biomass estimation of Stem, Coarse branches, and Cork

To calculate the biomass of the stem, coarse branches, and the cork of the trees studied
and in the absence of direct equations, we used volume equations established in the same
forest on the basis of 34 trees representative of all stands in Maamora. As Moroccan law
does not allow trees to be sampled destructively in the protected cork oak stands, an
indirect method of geometrical cubing was used [40].

We first calculate the volume of the tree (Equation (A1)) and then the volume of the
cork and the stem with coarse branches (Equations (A2) and (A3)) based on equations
established from nearby Cork oak forests [41]. Then, the biomass is obtained by multiplying
the volume of each component by the specific tissue density (Equations (A4) and (A5))
(Table A1).

• Biomass estimation of medium and small branches and foliage

Concerning medium and small branches and foliage, we directly calculated the
biomass based on Equations (1) and (2) from a comparable ecosystem in Spain [42].

Bmedium−branch = 0,127 × D130 × H (1)

Bsmall−branch−foliage = 0,0463 × D130 × H (2)

where D130 is the diameter at breast height (in cm), H is the tree height (in m), Bmedium-branch
is the biomass of medium branches (diameter 2–10 cm) in kg, and Bsmall-branch-foliage is the
biomass of small branches (<2 cm diameter) and foliage (kg).

• Aboveground, belowground, and total biomass estimation

The estimation of Belowground biomass of each tree was determined based on Equation (A6) [42].
Then, the aboveground and total biomasses were calculated (Equations (3) and (4)).

Btree-AGB = Bstem-bigB + Bcork + Bmedium−branch + Bsmall−branch−foliage (3)

Btree−Total= Btree−BLG + Btree-AGB (4)

where Btree-AGB is the tree’s aboveground biomass (in kg) and Btree−Total is the total biomass
of an individual tree in kg, Btree-BLG is the belowground biomass of an individual tree in
kg, Bcork is the biomass of cork (kg), and Bstem-bigB is the biomass of the stem and coarse
branches without bark (kg).
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The field plot biomass in (kg/ha) is obtained by first summing the biomass of all trees
and then dividing the total by the area of the field plot; then, we convert it into Mg/ha
(Equation (5)).

B plot = ∑B tree−Total/Area plot (5)

where B plot is the biomass at the plot level in kg/ha, B tree−Total is the total biomass of an
individual tree in kg, and Area plot is the area of the sample plot in ha.

2.4.2. Carbon Stock Estimation

To calculate the carbon stock contained in each part (aboveground and belowground)
of the cork oak tree, we multiply the correspondent biomass by the mean carbon concentra-
tion and by a conversion factor (Equation (6)), and then the total carbon stock corresponds
to the sum of the aboveground and belowground carbon stock (Equation (7)).

Cst−part = ∑10−3 (Btree−part × Cconc−part) (6)

where Cst-part is the aboveground or belowground carbon stock (in kg) for n individual
trees, 10−3 is a conversion factor, Btree-part is the aboveground or belowground biomass
(in kg), and Cconc-part is the mean carbon concentration of the respective aboveground or
belowground tissues (in g kg−1—values from Table A1.

Cst−total = ∑(Cst−AGB + Cst−BLG) (7)

where Cst-total is the total carbon stock content in the Cork oak tree (in kg), Cst-AGB is the
aboveground carbon stock (in kg), and Cst−BLG is the Belowground carbon stock (in kg).

The field plot carbon stock in (kg/ha) is obtained by first summing the carbon stock of
all trees and then dividing the total by the area of the field plot; then, we convert it into
Mg/ha (Equation (8)).

Cplot = ∑Cst−total/Area Plot (8)

where Cplot is the carbon stock at the plot level in kg/ha, Ctree−Total is the total carbon stock
of an individual tree in kg, and Area plot is the area of the sample plot in ha.

2.5. Statistical Analysis

In this study, we used descriptive statistics to describe variables of ALS-UAV-TLS data
and field data. Then, to compare the means of variables with the two methods (field survey
and ALS-UAV-TLS data), we have firstly examined the normality of data with Shapiro–
Wilk test, and secondly applied the Wilcoxon test to compare means. Then, to understand
the relationship between Field and ALS-UAV-TLS variables, we used Pearson Coefficient
of Correlation, which measures the statistical relationship, or association, between two
continuous variables, and Coefficient of Determination (R2), which shows the percentage
of variation in one variable associated to other variables and can be explained by the
given regression. In addition, the Root Mean Error Square (RMSE) (Equation (9)), is
used to represent the performance of the model to explain the deviation between the
measured variables (field data) and those estimated (ALS-UAV-TLS data). Then, to assess
the relationship between field-measured variables and those extracted from ALS-UAV-TLS
data, we used linear regression with a logarithmic transformation.

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)2 (9)

where n is the number of measurements, yi is the value of the ith observation in the
validation dataset, and ŷi is the predicted value for the ith observation
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3. Results
3.1. Relationship between Tree Height and Circumference at 1.30 m

To characterize the relationship between the tree height and circumference at 1.30 m
aboveground, three types of models (six equations) were used: a simple linear model,
an allometric model (1st, 2nd, 3rd, 4th, and 5th degrees), and a linear model with a
logarithmic transformation.

The criteria for choosing the right model linking the dependent variable “Tree height”
to the explanatory variable “Circumference at 1.30 m” used in this study are: the R2,
Residual standard error, AIC, and BIC. The table below (Table 2) show models N◦ 1, 2, 3, 4,
5, and 6, along with their evaluation criteria.

Table 2. Models N◦ 1, 2, 3, 4, 5, and 6, with their evaluation criteria.

Models Multiple R2 Adjusted R2 Residual Standard Error AIC BIC

Model 1—Linear simple model 0.66 0.65 1.198 130.40 125.48
Model 2—Allometric model (2nd degree) 0.67 0.65 1.194 126.20 132.75
Model 3—Allometric model (3rd degree) 0.71 0.68 1.147 124.04 132.23
Model 4—Allometric model (4th degree) 0.73 0.69 1.124 123.38 133.21
Model 5—Allometric model (5th degree) 0.75 0.71 1.087 121.63 133.09
Model 6—Logarithmic model 0.66 0.65 0.098 −64.47 −59.55

Based on the evaluation criteria, the best model is N◦ 6, which is the model with
a logarithmic transformation, because it represents the lower Residual standard error,
AIC, and BIC. The tree height of all trees in the study area was then calculated with the
logarithmic model (Model 6):

Log H = 2.01285 + 0.63842 Log C 1.30m (Model 6)

3.2. Statistical Analysis, Relationship, and Regression of Tree Dendrometric Parameters, Biomass,
and Carbon Stock

In this section, we compare the dendrometric parameters, biomass, and carbon stock
measured and calculated from the field measurements and those estimated from the ALS-
UAV-TLS data at tree level. In the first level, we present the descriptive statistics. In the
second one, we compare the means by studying the data distribution and performing
the Wilcoxon–test. In the third level, we analyze the relationship between the data of the
two methods by the Pearson correlation coefficient, RMSE, and the Regression analysis.

3.2.1. Statistical Analysis and Comparison of Means

• Dendrometric parameters (C1.30m and Tree Height)

The results of the descriptive statistics show that the averages of the dendrometric
parameters are generally close. In fact, the average circumference at 1.30 m obtained from
the field data collection was 94.16 cm and that obtained by the ALS-UAV-TLS data was
92.32 cm (Table 3). In addition, for the heights of the trees, the values 10.55 m and 10.08 m
(Table 3) were recorded for the field and the ALS-UAV-TLS data, respectively. The other
descriptive statistics concerning the height and circumference at 1.30 m of the trees obtained
by the two methods are shown in Table 3 and illustrate in Figure 7.

To compare the means, we first study the distribution of data and then compare the
means with the appropriate test. The representation by histograms, show that distributions
of tree height and circumference at 1.30 m measured by field field data collection and the
circumference at 1.30 m extracted from UAV-ALS-TLS data, do not seem to follow a normal
distribution, except tree height extracted from UAV-ALS-TLS data (Figure 8).
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Table 3. Descriptive statistics of dendrometric parameters (H, C 1.30m), biomass, and carbon stock
(aboveground, belowground, and total) measured and estimated with field data collection and from
UAV-ALS-TLS data. Where, Btree−AGB is the tree aboveground biomass (in kg), Btree-BLG is the
belowground biomass of an individual tree in kg, Btree−Total is the total biomass of an individual tree
in kg, Cst-AGB is the aboveground carbon stock (in kg), Cst-BLG is the carbon stock in the belowground
tissues, and Cst-total is the total carbon stock content of an individual tree in kg.

Min 1st Qu Median Mean 3rd Qu Max

C 1.30m (cm) Field measurements 50.00 74.75 90.00 94.16 108.50 202.00
ALS-UAV-TLS 41.76 71.46 90.12 92.32 106.05 195.94

Height field (m) Field measurements 8.10 9.45 10.69 10.55 11.77 14.36
ALS-UAV-TLS 5.07 8.89 10.30 10.08 11.17 14.73

Btree−AGB field (kg) Field measurements 145.5 336.1 506.9 619.9 759.8 2826.9
ALS-UAV-TLS 87.81 306.20 474.54 586.80 729.20 2609.16

Btree−BLG field (kg) Field measurements 21.02 46.98 68.11 81.75 98.98 343.08
ALS-UAV-TLS 14.66 42.94 68.28 78.46 94.56 322.79

Btree-total field (kg) Field measurements 166.5 383.1 575.0 701.7 858.8 3169.9
ALS-UAV-TLS 102.5 348.7 542.8 665.3 825.1 2932.0

Cst− AGB field (kg) Field measurements 80.96 187.34 282.68 345.86 423.89 1579.41
ALS-UAV-TLS 48.89 170.62 264.74 327.39 406.82 1457.79

Cst−BLG field (kg) Field measurements 11.35 25.37 36.78 44.14 53.45 185.26
ALS-UAV-TLS 7.91 23.18 36.87 42.36 51.06 174.30

Ctree-total field (kg) Field measurements 92.31 212.71 319.46 390.00 477.34 1764.68
ALS-UAV-TLS 56.81 193.59 301.61 369.75 458.60 1632.10
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Figure 7. (a) Boxplot of circumference at 1.30 m (cm) measured and estimated with field data
collection (1) and from UAV-ALS-TLS data (2), (b) boxplot of tree height (m) measured and esti-
mated with field data collection (1) and from UAV-ALS-TLS data (2), (c) boxplot of aboveground
biomass (kg) measured and estimated with field data collection (1) and from UAV-ALS-TLS data (2),
(d) boxplot of aboveground carbon stock (kg) measured and estimated with field data collection (1)
and from UAV-ALS-TLS data (2), (e) boxplot of belowground biomass (kg) measured and estimated
with field data collection (1) and from UAV-ALS-TLS data (2), (f) boxplot of belowground carbon
stock (kg) measured and estimated with field data collection (1) and from UAV-ALS-TLS data (2),
(g) boxplot of Total biomass (kg) measured and estimated with field data collection (1) and from
UAV-ALS-TLS data (2), and (h) boxplot of Total carbon stock (kg) measured and estimated with field
data collection (1) and from UAV-ALS-TLS data (2).
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The p-values from the Shapiro–Wilk test (Table 4) confirm that the circumference at
1.30 m, the tree height measured by the field data collection, and the circumference at
1.30 m extracted by ALS-UAV-TLS data do not follow a normal distribution, except for the
tree height extracted from ALS-UAV-TLS data. To compare the means of the two methods,
a non-parametric test was used (Wilcoxon-test). The p-values of this test (Table 4) showed
that the means of the circumference at 1.30 m and tree height derived from the two methods
are not significantly different (since we rejected the null hypothesis of normality for both
distributions at the 5% significance level).

Table 4. Shapiro–Wilk test of dendrometric parameters (H, C1.30m), biomass, and carbon stock
(aboveground, belowground, and total) measured and estimated with field data collection and
from UAV-ALS-TLS data. Wilcoxon test between dendrometric parameters (H, C1.30m), biomass,
and carbon stock (aboveground, belowground, and total) measured and estimated with field data
collection and from UAV-ALS-TLS data.

Shapiro-Test

W p-Value

C1.30m (cm) Field measurements 0.9181 0.0002995

ALS-UAV-TLS 0.95394 0.0145

Height field (m) Field measurements 0.94178 0.003553

ALS-UAV-TLS 0.98596 0.6532

B tree−AGB field (kg) Field measurements 0.7748 9.217 × 10−9

ALS-UAV-TLS 0.81877 1.269 × 10−7

B tree−BLG field (kg) Field measurements 0.78662 1.804 × 10−8

ALS-UAV-TLS 0.83436 3.529 × 10−7

B tree-total field (kg) Field measurements 0.77616 9.944 × 10−9

ALS-UAV-TLS 0.82049 1.417 × 10−7

Cst− AGB field (kg) Field measurements 0.77443 9.03 × 10−9

ALS-UAV-TLS 0.81842 1.241 × 10−7

C st−BLG field (kg) Field measurements 0.78662 1.804 × 10−8

ALS-UAV-TLS 0.83436 3.529 × 10−7

C tree-total field (kg) Field measurements 0.77579 9.741 × 10−9

ALS-UAV-TLS 0.82013 1.384 × 10−7

Wilcoxon-test

Field C1.30m (cm)/ C1.30m ALS-UAV-TLS (cm) 2308 0.7792

Field height (m)/Height ALS-UAV-TLS (m) 2605 0.1091

B tree−AGB field (kg)/B tree−AGB ALS-UAV-TLS (kg) 2335 0.6888

B tree−BLG field (kg)/B tree−BLG ALS-UAV-TLS (kg) 2308 0.7792

B st−total field (kg)/B st−total ALS-UAV-TLS (kg) 2328 0.7119

C tree−AGB field (kg)/C tree−AGB ALS-UAV-TLS (kg) 2335 0.6888

C tree−BLG field (kg)/C tree−BLG ALS-UAV-TLS (kg) 2308 0.7792

C st−total field (kg)/C st−total ALS-UAV-TLS (kg) 2329 0.7085

• Aboveground, belowground, and total biomass

The statistical analysis of the aboveground, belowground, and total biomass of each
tree showed that the two methods (field data collection and data acquisition by ALS-UAV-
TLS) provided close averages with respective values of 619.9 kg and 586.80 kg for the
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aboveground biomass, 81.75 kg and 78.46 kg for the belowground biomass, and 701.7 kg
and 665.3 kg for the total biomass. Other descriptive statistics of the tree biomasses,
obtained by the two methods, are shown in Table 3.

The representation via histogram used to study the data distribution of the above-
ground, belowground, and total biomass, calculated with inputs derived from the field
measurements and those extracted from the UAV-ALS-TLS data, shows that the data do
not seem to follow a normal distribution (Figure 9). The p-values of the Shapiro–Wilk tests
(Table 4), confirm this result (since we rejected the null hypothesis of normality for both
distributions at the 5% significance level).
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Figure 9. Histograms distribution of aboveground, belowground, and total biomass (kg) calculated
with two types of inputs (forest parameters from field data collection and those extracted from
UAV-ALS and TLS data (Lidar)).

To compare the means of the two methods, a non-parametric test was used (Wilcoxon-
test). The p-values of this test (Table 4) showed that the means of the aboveground,
belowground, and total biomass derived from the two methods are not significantly dif-
ferent (since we rejected the null hypothesis of normality for both distributions at the 5%
significance level).

• Aboveground, belowground, and total carbon stock

The quantification of the aboveground, belowground, and total carbon stock of each
tree showed that the two methods (field data collection and data acquisition by ALS-UAV-
TLS) yielded close averages with values of 345.86 kg and 327.39 for the aboveground carbon
stock, 44.14 kg and 42.36 kg for the belowground carbon stock, and 390.00 kg and 369.75 kg
for the total carbon stock. Other descriptive statistics of the trees’ carbon stock, obtained by
the two methods, are shown in Table 3.
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The representation via histograms (used to study the data distribution of the above-
ground, belowground, and total carbon stock, calculated from equations detailed in the
Materials and Methods section) show that distributions of the data do not seem to follow a
normal distribution (Figure 10). The p-values of the Shapiro–Wilk tests (Table 4) confirm
this result (since we rejected the null hypothesis of normality for both distributions at the
5% significance level).

Forests 2022, 13, x FOR PEER REVIEW 15 of 25 
 

To compare the means of the two methods, a non-parametric test was used (Wil-

coxon-test). The p-values of this test (Table 4) showed that the means of the aboveground, 

belowground, and total biomass derived from the two methods are not significantly dif-

ferent (since we rejected the null hypothesis of normality for both distributions at the 5% 

significance level). 

• Aboveground, belowground, and total carbon stock 

The quantification of the aboveground, belowground, and total carbon stock of each 

tree showed that the two methods (field data collection and data acquisition by 

ALS-UAV-TLS) yielded close averages with values of 345.86 kg and 327.39 for the 

aboveground carbon stock, 44.14 kg and 42.36 kg for the belowground carbon stock, and 

390.00 kg and 369.75 kg for the total carbon stock. Other descriptive statistics of the trees’ 

carbon stock, obtained by the two methods, are shown in Table 3. 

The representation via histograms (used to study the data distribution of the 

aboveground, belowground, and total carbon stock, calculated from equations detailed 

in the Materials and Methods section) show that distributions of the data do not seem to 

follow a normal distribution (Figure 10). The p-values of the Shapiro–Wilk tests (Table 4) 

confirm this result (since we rejected the null hypothesis of normality for both distribu-

tions at the 5% significance level). 

  

  

  

Figure 10. Histogram distributions of aboveground, belowground, and total carbon stock (kg) 

calculated with two types of inputs (forest parameters from field measurements and those ex-

tracted from UAV-ALS and TLS data (Lidar)). 

To compare the means of the two methods, a non-parametric test was used (Wil-

coxon-test). The p-values of this test (Table 4) showed that the means of the aboveground, 

belowground, and total carbon stock derived from the two methods are not significantly 
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calculated with two types of inputs (forest parameters from field measurements and those extracted
from UAV-ALS and TLS data (Lidar)).

To compare the means of the two methods, a non-parametric test was used (Wilcoxon-
test). The p-values of this test (Table 4) showed that the means of the aboveground,
belowground, and total carbon stock derived from the two methods are not significantly
different (since we rejected the null hypothesis of normality for both distributions at the 5%
significance level).

3.2.2. Relationship between Dendrometric Parameters, Biomass, and Carbon Stock of the
Two Methods (Pearson Correlation, RMSE and Regression Analysis)

A total of 67 trees were used to assess the relationship between the parameters (C1.30m
and tree height), biomass, and carbon stock measured in the field measurements and those
extracted from the ALS-UAV-TLS data. Therefore, we have used a linear regression with a
logarithmic transformation to remedy the abnormal distribution of data.

• C1.30m and tree height

The results show a strong relationship between tree height and circumference at 1.30 m
calculated with the two methods (field data collection and ALS-UAV-TLS data), with a
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coefficient of Pearson correlation equal to 0.86 and 0.83, respectively. Thus, the root mean
square error (RMSE) is equal to 1.84 cm for the circumference at 1.30 m and 0.47 m for the
tree height (Table 5).

Table 5. Relationship between dendrometric parameters (H, C1.30m), biomass, and carbon stock
(aboveground, belowground, and total) measured and estimated with field measurements and from
UAV-ALS-TLS data (Pearson Coefficient and RMSE).

Pearson Coef RMSE

C1.30m (cm) field/C1.30m
ALS-UAV-TLS (cm) 0.86 1.84

Height (m) field/Height
ALS-UAV-TLS (m) 0.83 0.47

B tree−AGB field (kg)/B
tree−AGB ALS-UAV-TLS (kg) 0.77 33.11

B tree−BLG field (kg)/B
tree−BLG ALS-UAV-TLS (kg) 0.78 3.29

B tree−total field (kg)/B
tree−total ALS-UAV-TLS (kg) 0.77 36.40

C tree−AGB field (kg)/C
tree−AGB ALS-UAV-TLS (kg) 0.77 18.47

C tree−BLG field (kg)/C
tree−BLG ALS-UAV-TLS (kg) 0.78 1.77

C st−total field (kg)/C st−total
ALS-UAV-TLS (kg) 0.77 20.24

The scatter plots (Figure 11) and Table 6 show a strong relationship with a coefficient
of determination (R2) equal to 0.81 and 0.71 for the circumference at 1.30 m and tree height
calculated with the two methods (field data collection and ALS-UAV-TLS data), respectively.
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Figure 11. Relationship between C1.30m and tree heights measured in the field and those extracted
from ALS-UAV-TLS data, represented using linear regression with logarithmic transformation.

Table 6. Relationship between dendrometric parameters (H, C1.30m), biomass, and carbon stock
(aboveground, belowground, and total) measured and estimated with field measurements and from
UAV-ALS-TLS data using linear regression with a logarithmic transformation.

Dendrometric Parameters

Multiple R2 Adjusted R2

lnC1.30m field/lnC1.30m ALS-UAV-TLS 0.818 0.815
lnHeight field/lnHeight ALS-UAV-TLS 0.712 0.708

Estimate Std. Error t Value Pr(>|t|)
Intercept1 0.28266 0.24605 1.149 0.255
lnC1.30m field 0.93247 0.05455 17.093 <2 × 10−16 ***
Intercept2 −0.65355 0.23238 −2.812 0.0065 **
lnHeight field 1.25423 0.09885 12.689 <2 × 10−16 ***
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Table 6. Cont.

Aboveground, belowground, and total Biomass

Multiple R2 Adjusted R2

lnB tree−AGB field/lnB tree−AGB
ALS-UAV-TLS 0.833 0.831

lnB tree−BLG field/lnB tree−BLG ALS-UAV-TLS 0.818 0.8152
lnB tree−total field /lnB tree−total ALS-UAV-TLS 0.832 0.829

Estimate Std. Error t value Pr(>|t|)
Intercept1 0.18394 0.33292 0.553 0.583
lnB tree−AGB field 0.96027 0.05322 18.044 <2 × 10−16 ***
Intercept2 0.24263 0.23259 1.043 0.301
lnB tree−BLG field 0.93247 0.05455 17.093 <2 × 10−16 ***
Intercept3 30.21400 0.34009 0.629 0.531
lnB tree−total field 0.95675 0.05329 17.953 <2 × 10−16 ***

Aboveground, belowground, and total carbon stock

Multiple R2 Adjusted R2

lnC tree−AGB field/lnC tree−AGB
ALS-UAV-TLS 0.8335 0.831

lnC tree−BLG field/lnC tree−BLG ALS-UAV-TLS 0.712 0.708
lnC st−total field/lnC st−total ALS-UAV-TLS 0.8321 0.8296

Estimate Std. Error t value Pr(>|t|)
Intercept1 0.16194 0.30202 0.536 0.594
lnC tree−AGB field 0.96006 0.05322 18.040 <2 × 10−16 ***
Intercept2 0.20102 0.19935 1.008 0.317
lnC tree−BLG field 0.93247 0.05455 17.093 <2 × 10−16 ***
Intercept3 0.18904 0.30893 0.612 0.543
lnC st−total field 0.95667 0.05329 17.951 <2 × 10−16 ***

The symbols ** and *** represent the significance code. In the summary of a regression model the significance
code is a measure of its p-value variation. The range of p-value for ** is (0.001, 0.01]. The range of p-value for *** is
[0, 0.001].

• Aboveground, belowground, and total biomass

The results reveal important relationships, with a Pearson coefficient equal to 0.77,
0.78, and 0.77 and a root mean square error (RMSE) equal to 33.11 kg, 3.29 kg, and 36.4 kg,
for the aboveground, belowground, and total biomass, respectively (Table 5).

The scatter plots (Figure 12) and Table 6 shows a strong relationship with a coefficient
of determination (R2) equal to 0.83, 0.81, and 0.83 for the aboveground, belowground, and
total biomass, respectively.
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• Aboveground, belowground, and total carbon stock

The results deduced important relationships, with a Pearson coefficient equal to 0.77,
0.78, and 0.77 and a root mean square error (RMSE) equal to 18.47 kg, 1.77 kg, and 20.24 kg
for the aboveground, belowground, and total carbon stock, respectively (Table 5).

The scatter plots (Figure 13) and Table 6 show a strong relationship with a coefficient
of determination (R2) equal to 0.83, 0.81, and 0.83 for the aboveground, belowground, and
total carbon stock, respectively.
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Figure 13. Relationship between aboveground, belowground, and total carbon stock calculated with
two types of inputs (forest parameters from field measurements and those extracted from UAV-ALS
and TLS data), represented using linear regression with logarithmic transformation.

3.3. Analysis at Plot Level of Aboveground, Belowground and Total Biomass and Carbon Stock

After having analyzed the biomass and the carbon stock (aboveground, belowground,
and total) per tree, we studied the estimation of these parameters at the plot scale (Figure 14)
to obtain an idea of the biomass and carbon stock of the cork oak stand. The table below
(Table 7) presents the biomass and the carbon stock (aboveground, belowground, and total)
of each plot and their mean, minimum, and maximum in the studied plots (six plots),
calculated with the two methods (field measurements and ALS-UAV-TLS data).

Forests 2022, 13, x FOR PEER REVIEW 19 of 25 
 

Table 7. Aboveground, belowground, and total biomass and carbon stock (Mg/ha) by plot and 

their mean, minimum, and maximum in the six plots. 

 Btree−AGB 

Feild 

Btree-BLG 

Feild 

Btree−Total 

field 

Cst-AGB 

Feild 

Cst−BLG 

Feild 

Cst-total 

Feild 

Btree−AGB 

Lidar 

Btree-BLG 

Lidar 

Btree−Total 

Lidar 

Cst-AGB 

Lidar 

Cst−BLG 

Lidar 

Cst-total 

Lidar 

Plot 1 56.02 7.31 63.33 31.26 3.94 35.21 67.16 8.73 75.89 37.49 4.71 42.20 

Plot 2 27.86 3.69 31.55 15.54 3.94 35.21 25.26 3.44 28.70 37.49 4.71 42.20 

Plot 3 80.19 10.26 90.45 44.76 5.54 50.30 69.95 9.16 79.10 39.04 4.94 43.98 

Plot 4 59.45 7.81 67.26 33.18 4.22 37.40 50.71 6.79 57.51 28.30 3.67 31.97 

Plot 5 50.19 6.86 57.05 27.98 3.71 31.68 47.19 6.60 53.79 26.31 3.56 29.87 

Plot 6 56.98 7.68 64.66 31.77 4.15 35.92 52.75 7.14 59.89 29.41 3.85 33.27 

Mean 55.11 7.27 62.38 30.74 4.25 37.62 52.17 6.98 59.15 33.01 4.24 37.25 

Min 27.86 3.69 31.55 15.54 3.71 31.68 25.26 3.44 28.70 26.31 3.56 29.87 

Max 80.19 10.26 90.45 44.76 5.54 50.30 69.95 9.16 79.10 39.04 4.94 43.98 

Where B tree−AGB is the plot Aboveground biomass in Mg/ha, B tree-BLG is the plot belowground bio-

mass in Mg/ha, B tree−Total is the total plot biomass in Mg/ha, C st-AGB is the plot Aboveground carbon 

stock in Mg/ha , C st-BLG is the plot carbon stock in the belowground tissues and C st-total is the total 

plot carbon stock in Mg/ha  

 

Figure 14. Total Biomass and carbon stock (Mg/ha) for the six plots. 

Where B tree−Total Field is the total plot biomass, estimated in the basis of data field, in Mg/ha, B tree−Total 

Lidar is the total plot biomass, estimated in the basis of ALS-UAV-TLS data, C st-total Field is the total 

plot carbon stock, estimated in the basis of data field in Mg/ha and C st-total Lidar is the total plot 

carbon stock, estimated in the basis of ALS-UAV-TLS data in Mg/ha.   

 

Based on the values of Table 7 and Figure 14, we conclude that the means of the 

aboveground, belowground, and total biomass calculated with the two types of input 

(forest parameters from the field data collection and those extracted from UAV-ALS-TLS 

data) are very close, yielding (55.11; 52.17 Mg/ha), (7.27; 6.98 Mg/ha), and (62.38; 59.15 

Mg/ha). In addition, the means of the aboveground, belowground, and total carbon stock 

calculated with the two methods are also very close, yielding (30.74; 33.01 Mg/ha), (4.25; 

4.24 Mg/ha), and (37.62; 37.25 Mg/ha). 

4. Discussion 

Biomass and carbon stock estimations using new technologies (ALS, UAV, and TLS) 

have been performed using different methodologies in previous research. The new ap-

proach that we have proposed in this study, consisting of a combination of 3D clouds of 

ALS and TLS at the plot level, has rarely been applied in other studies. So, the compari-

son of our results is made, on the one hand, with results from research using conven-

0

20

40

60

80

100

Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 Plot 6

T
o

ta
l 

B
io

m
as

s 
an

d
 T

o
ta

l 

C
ar

b
o

n
 s

to
ck

 (
m

g
/h

a)

Plots 

Btree−Total Feild

Btree−Total Lidar

Cst-total Feild

Cst-total Lidar

Figure 14. Total Biomass and carbon stock (Mg/ha) for the six plots. Where B tree−Total Field is
the total plot biomass, estimated in the basis of data field, in Mg/ha, B tree−Total Lidar is the total
plot biomass, estimated in the basis of ALS-UAV-TLS data, C st-total Field is the total plot carbon
stock, estimated in the basis of data field in Mg/ha and C st-total Lidar is the total plot carbon stock,
estimated in the basis of ALS-UAV-TLS data in Mg/ha.
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Table 7. Aboveground, belowground, and total biomass and carbon stock (Mg/ha) by plot and their
mean, minimum, and maximum in the six plots. Where B tree−AGB is the plot Aboveground biomass
in Mg/ha, B tree-BLG is the plot belowground biomass in Mg/ha, B tree−Total is the total plot biomass
in Mg/ha, C st-AGB is the plot Aboveground carbon stock in Mg/ha , C st-BLG is the plot carbon stock
in the belowground tissues and C st-total is the total plot carbon stock in Mg/ha.

Btree−AGB
Feild

Btree-BLG
Feild

Btree−Total
Field

Cst-AGB
Feild

Cst−BLG
Feild

Cst-total
Feild

Btree−AGB
Lidar

Btree-BLG
Lidar

Btree−Total
Lidar

Cst-AGB
Lidar

Cst−BLG
Lidar

Cst-total
Lidar

Plot 1 56.02 7.31 63.33 31.26 3.94 35.21 67.16 8.73 75.89 37.49 4.71 42.20

Plot 2 27.86 3.69 31.55 15.54 3.94 35.21 25.26 3.44 28.70 37.49 4.71 42.20

Plot 3 80.19 10.26 90.45 44.76 5.54 50.30 69.95 9.16 79.10 39.04 4.94 43.98

Plot 4 59.45 7.81 67.26 33.18 4.22 37.40 50.71 6.79 57.51 28.30 3.67 31.97

Plot 5 50.19 6.86 57.05 27.98 3.71 31.68 47.19 6.60 53.79 26.31 3.56 29.87

Plot 6 56.98 7.68 64.66 31.77 4.15 35.92 52.75 7.14 59.89 29.41 3.85 33.27

Mean 55.11 7.27 62.38 30.74 4.25 37.62 52.17 6.98 59.15 33.01 4.24 37.25

Min 27.86 3.69 31.55 15.54 3.71 31.68 25.26 3.44 28.70 26.31 3.56 29.87

Max 80.19 10.26 90.45 44.76 5.54 50.30 69.95 9.16 79.10 39.04 4.94 43.98

Based on the values of Table 7 and Figure 14, we conclude that the means of the
aboveground, belowground, and total biomass calculated with the two types of input (forest
parameters from the field data collection and those extracted from UAV-ALS-TLS data) are
very close, yielding (55.11; 52.17 Mg/ha), (7.27; 6.98 Mg/ha), and (62.38; 59.15 Mg/ha). In
addition, the means of the aboveground, belowground, and total carbon stock calculated
with the two methods are also very close, yielding (30.74; 33.01 Mg/ha), (4.25; 4.24 Mg/ha),
and (37.62; 37.25 Mg/ha).

4. Discussion

Biomass and carbon stock estimations using new technologies (ALS, UAV, and TLS)
have been performed using different methodologies in previous research. The new ap-
proach that we have proposed in this study, consisting of a combination of 3D clouds of
ALS and TLS at the plot level, has rarely been applied in other studies. So, the comparison
of our results is made, on the one hand, with results from research using conventional
methods, and on the other hand, with research using Lidar (Aerial or Terrestrial), alone or
combined with other remote sensing tools.

4.1. Dendrometric Parameters (Tree Height and Circumference at 1.30 m)

The estimation of tree heights and circumference at 1.30 m are very important because
they constitute the inputs of allometric equations used for the estimation of biomass and
carbon stock. The determination of these dendrometric parameters depends among other
things on the tree segmentation method (algorithm segmentation), which must be adapted
to the nature of the study stand [43].

The statistical analysis results of the circumference at 1.30 m with the two methods
(field data and ALS-UAV-TLS data) show a very strong relationship, with an R2 equal to
0.81, a Pearson coefficient equal to 0.86, and RMSE equal to 1.84 cm. This corresponds
to the results of [32], where the researchers found that the DBH measured in the field is
highly related to that extracted from the TLS with an R2 equal to 0.98 and an RMSE equal
to 1.48 cm, and those of [44], with an R2 equal to 0.96.

In addition, the results deduced for the tree height, when comparing the two methods
(field data and ALS-UAV-TLS data), present an R2 equal to 0.71, a Pearson coefficient equal
to 0.83, and an RMSE equal to 0.47 m, which is very close to the results concluded in the
Ayer Hitam Forest Reserve Malaysia, where an R2 equal to 0.98 was obtained and with
no significance difference between the height measured from the field data collection and
the one estimated from Lidar data [45]. Others results deduced that there is an important
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relationship between manually obtained and ground-based Lidar (TLS) tree heights, with
an R2 equal to 0.79 for [44] and to 0.69 for [32].

4.2. Estimation of Aboveground, Belowground, and Total Biomass

The application of allometric equations to estimating biomass (aboveground and
belowground) is the best method since it enables an estimation of the biomass without
destructing forests. Nevertheless, data acquisition by conventional field data collection in a
large area is painful and time consuming, hence the interest of using the new technologies
(ALS-UAV and TLS). The choice of the appropriate allometric equation is not evident and
largely influences the results. In our study area, unfortunately, little research has concerned
this aspect and there is no direct allometric equation for estimating biomass. So, to estimate
biomass on the basis of the two types of inputs, we first calculated the volume and then
the biomass of cork and stems with coarse branches, and we used direct equations for the
other parts of the tree (medium and small branches, foliage, and roots) established for cork
oak trees in Spain.

The proposed method (ALS-UAV-TLS data acquisition) provides more accurate results
for biomass estimation compared to field data, with an R2 equal to 0.82, a Pearson coefficient
equal to 0.77, and an RMSE equal to 36.4 kg. This result has been confirmed by many
researchers, with an R2 equal to 0.93 in [46], and an R2 ranging from 0.68 to 0.85 depending
on the species [47].

The values of the aboveground biomass per tree ranged from 145,47 to 2826.86 kg
(mean value of 619.9 kg) for the field data and from 87.8 to 2609.16 kg (mean value of
586.79 kg) for the ALS-UAV-TLS data. These values are close to those concluded by [40] for
the Maamora forest (26 to 2177 kg with a mean value of 379 kg), by [41] for another cork
oak Moroccan forest (11 to 1255 kg), and by [42] for a Spanish cork oak forest (11 to 2412 kg
with mean value of 512 kg).

The aboveground biomass of cork oak stand varies from 27.86 to 80.18 Mg/ha (mean
of 55.11 Mg/ha) for the field data and from 25.26 to 69.94 Mg/ha (mean value of 52.17)
for ALS-UAV-TLS data, which is very close to the 64.27 Mg/ha concluded in the same
forest [40], where the stand has a density of less than 100 stem/ha, and is fairly comparable
to the 34 and 183 Mg/ha for Quercus ilex stands in the high and middle Atlas mountains
in Morocco, respectively [48].

The results concerning the belowground biomass peer tree range between 21.2 and
343.08 kg (mean value of 81.74 kg) for the field data and between 14.66 and 322.79 kg (mean
value of 78.45 kg) for the ALS-UAV-TLS data.

The belowground biomass of the cork oak stand varies from 3.69 to 10.26 Mg/ha
(mean value of 7.2 Mg/ha), equivalent to 11.65% of the total tree biomass, for the field
data and from 3.43 to 9.15 Mg/ha (mean value of 6.97 Mg/ha), which is equivalent to
11.73%, for the ALS-UAV-TLS data. These results fairly overlap with those obtained in [40],
representing 10 Mg/ha, the equivalent to 14% of the total tree biomass, and are thus close
to the lower values reported for deciduous species (10–49%) [42,49].

The values of tree total biomass of the cork oak stand are equal to 62.38 Mg/ha for
the field data and 59.14 Mg/ha for the ALS-UAV-TLS data, which are very close to the
74.27 Mg/ha concluded in the same forest [40], where the stand has a density less than
100 stem/ha.

4.3. Estimation of Aboveground, belowground, and total Carbon Stock

The results show that the method proposed in this study, consisting in the collection
of data with ALS-UAV at the top of the stand and multiscan TLS within the cork oak stand,
provides accurate forest parameters that are very close to those measured in the field; in
fact, the Wilcoxon-test demonstrated that the means of the circumference at 1.30 m and tree
height derived from the two methods are not significantly different (p = 5%).

This accuracy in the determination of the dendrometric parameters is reflected in the
results obtained for the estimation of the biomass and carbon stock. The ALS-UAV-TLS data
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could accurately estimate carbon stock compared to the traditional forest data collection
method, with a Pearson coefficient of 0.77, an R2 of 0.83, and an RMSE of 20.24 kg.

In this study, the aboveground carbon stock per tree varied from 80.96 to 1579.41 kg
(mean value of 345.86 kg) for the field data and from 48.89 to 1457.79 kg (mean value of
327.39 kg) for the ALS-UAV-TLS data.

The values of aboveground carbon stock of Cork oak stand ranged between 27.97
and 44.76 Mg/ha (mean value of 33.36 Mg/ha) for the field data and between 26.3 and
39.04 Mg/ha (mean value of 33 Mg/ha) for the ALS-UAV-TLS data. These results are very
close to those resulting in the same forest [40]; in fact, for the stand with a density less than
100 stem/ha, the values of the aboveground carbon stock are ranged between 21.3 and
58 Mg/ha (mean value of 35.8 Mg/ha). In addition, the observed range compares well
with species of the same genus, such as Quercus ilex (17–91 Mg/ha) [48].

4.4. Biomass and Carbon Stock in the Cork Oak Stand

The use of data from an ALS onboard a UAV and the TLS provide interesting results
with respect to the quantification of biomass and carbon stock with more precision and a
greater economy of time and effort. In fact, the quantification of the biomass and carbon
stock in the Maamora Cork Oak stand using these two methods yields very close values
ranging between 27.86 to 80.18 Mg/ha (mean of 55.11 Mg/ha) for the field data and
from 25.26 to 69.94 Mg/ha (mean value of 52.17) for the ALS-UAV-TLS data, respectively,
and between 27.97 and 44.76 Mg/ha (mean value of 33.36 Mg/ha) for the field data and
between 26.3 and 39.04 Mg/ha (mean value of 33 Mg/ha) for the ALS-UAV and TLS data,
respectively. These low values of biomass and carbon stock are explained by the state of
the degradation of this forest, which is the result of the combined effect of several factors
(natural and anthropogenic) and by the low density of the population in the study area.

In effect, the biomass and carbon stock per cork oak tree in the study area are rel-
atively high but given that the number of stems per hectare is low this results in a low
biomass and carbon stock per hectare. So, in order to increase the contribution of this
forest towards carbon sequestration and the fight against climate change, it is significantly
important and stimulating to program the artificial regeneration of cork oak, to reforest
sylvopastoral species, and to create other sources of income, all in an effort to reduce
anthropogenic pressure.

The results show that the biomass and carbon stock (aboveground, belowground, and
total) extracted from ALS-UAV-TLS data are more consistent with the reference values
based on the field survey data. This confirms the conclusions of numerous studies that had
experimented with the use of airborne or terrestrial Lidar, alone or combined with other
remote sensing tools, towards the estimation of the biomass and the carbon stock either at
the tree level or at the forest stand level.

The objective of our work was to estimate the biomass and the carbon stock at the tree
and plot scales. Furthermore, it would be very interesting to quantify and map biomass
and carbon stock over large areas. This is in line with the prospects of our future work.
Indeed, to map the biomass and carbon stock over a large area, we will perform another
methodology, using regression analysis between the plots’ values of biomass and carbon
stock calculated by forest inventory and metrics extracted from UAV-ALS-TLS data on the
one hand and with metrics extracted from satellite images on the other.

5. Conclusions

In this study, our main goal was to estimate the biomass and carbon stock in a cork
oak forest using a new approach based on the combination of Aerial laser scanning carried
by Unmanned Aerial Vehicle (ALS-UAV) and Terrestrial laser scanning (TLS) data and to
compare their results with those of field measurements. To achieve this goal, we collected
data via an ALS scan of the entire area, a multiscan TLS, and field data collection at the
plot level. Then, we proceeded to the automatic extraction of the dendrometric parameters
of all the existing trees in the study area. These dendrometric parameters (tree height
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and circumference at 1.30 m) served as inputs for the allometric equations used in the
biomass and carbon stock (aboveground, belowground, and total) estimation. The results
of the statistical analysis show that the proposed approach provides very interesting
results compared the to field data, with a considerable reduction in time and effort. The
results show that the ALS-UAV-TLS data could accurately estimate biomass and carbon
stock compared to the field data, with a Pearson coefficient of 0.77, an R2 of 0.83, and
an RMSE of 36.40 kg for the biomass and 20.24 kg for the carbon stock. The low values
of biomass and carbon stock in the cork oak stand of the Maamora forest reflect this
forest’s state of degradation. Thus, this study can provoke interest in future studies of the
degradational aspects and the carbon stock changes over time with respect to this forest
and its contribution in the fight against climate change, using satellite images and new
technologies such as UAVs, ALS, and TLS.
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Appendix A

Vtree = 0.6 (C1.30m) 2.18 (A1)

where Vtree is the tree volume of wood, thick branches, and cork (in m3), and C1.30m the
circumference at 1.30 m (in m).

Vcork = 0.0151 (C1.30m) 1.9827 (A2)

Vstem-bigB = Vtree−Vcork (A3)

where Vstem-bigB is the volume of the stem with coarse branches (in m3), Vcork is the volume
of the cork (in dm3), C1.30m the circumference at 1.30 m (in cm), and Vtree is the tree
volume of wood, thick branches, and cork (in m3 from Equation (A1)).

Bcork = Vcork × D (A4)

Bstem-bigB = Vstem -bigB × D (A5)

where Bcork is the biomass of cork (kg), Vcork is the volume of cork (m3), Bstem-bigB is the
biomass of the stem and coarse branches without bark (kg), Vstem-bigB is the volume of the
stem with coarse branches (m3), and D is the specific tissue density (Table A1).
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Table A1. Specific tissue density and mean carbon concentration of the tissues adapted from [40].

Specific Tissue Density (kg
m−3)

Mean Carbon Concentration
(g/kg)

Stem and Coarse branches (Ø
> 10 cm) 830 560

Cork 540 560
Medium branches (2 ≤ Ø ≤
10 cm) - 540

Small branches (Ø < 2 cm) - 530
Foliage - 520
Roots -

B tree−BLG = 0.0829*D1.30m
2 (A6)

where B tree-BLG is the belowground biomass of an individual tree in kg and D1.30m is the
diameter at breast height (1.30 m) in cm.
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