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Abstract: Forests in alpine mountainous regions are sensitive to global climate change. Accurate
measurement of tree height is essential for forest aboveground biomass estimation. Unmanned aerial
vehicle light detection and ranging (UAV-LiDAR) in tree height estimation has been extensively
used in forestry inventories. This study investigated the influence of varying flight heights and
point cloud densities on the extraction of tree height, and four flight heights (i.e., 85, 115, 145, and
175 m) were set in three Picea crassifolia plots in the Qilian Mountains. After point cloud data were
classified, tree height was extracted from a canopy height model (CHM) on the basis of the individual
tree segmentation. Through comparison with ground measurements, the tree height estimations
of different flight heights and point cloud densities were analyzed. The results indicated that (1)
with a flight height of 85 m, the tree height estimation achieved the highest accuracy (R2 = 0.75,
RMSE = 2.65), and the lowest accuracy occurred at a height of 175 m (R2 = 0.65, RMSE = 3.00). (2) The
accuracy of the tree height estimation decreased as the point cloud density decreased. The accuracies
of tree height estimation from low-point cloud density (R2 = 0.70, RMSE = 2.75) and medium density
(R2 = 0.69, RMSE = 2.80) were comparable. (3) Tree height was slightly underestimated in most cases
when CHM-based segmentation methods were used. Consequently, a flight height of 145 m was
more applicable for maintaining tree height estimation accuracy and assuring the safety of UAVs
flying in alpine mountain regions. A point cloud density of 125–185 pts/m2 can guarantee tree height
estimation accuracy. The results of this study could potentially improve tree height estimation and
provide available UAV-LiDAR flight parameters in alpine mountainous regions in Northwest China.

Keywords: tree height; alpine forest; UAV-LiDAR; flight height; point cloud density

1. Introduction

Picea crassifolia (Kom., 1923) is a typical vegetation in Northwest China and is mainly
distributed in the Qilian Mountains (approximately 1.3 × 105 ha), accounting for over
94.6% of the total area of Picea crassifolia in this region [1]. Picea crassifolia within the Qilian
Mountains has been found mostly at altitudes of 2500–3200 m and in shady and semi-shady
alpine areas with slopes of 12–24◦ [2]. As one of the main species of water conservation
forest in the Qilian Mountains, correctly monitoring the forest structural parameters of
Picea crassifolia is vital for the ecological protection and sustainable development of the
Qilian Mountains.

Forest inventory in the mountainous regions of Northwest China is extremely chal-
lenging due to the presence of external constraints such as high altitude and inaccessibility.
LiDAR is an active remote sensing method that has been utilized frequently in forests.
LiDAR uses laser energy to determine the distance between the sensor and the target,
providing accurate information regarding the forest structure, especially vertical structure
information such as tree height. LiDAR can acquire forest structural parameters more
conveniently and quickly than traditional field inventory methods [3–7]. As one of the
major parameters of forest structure, tree height can help provide forest aboveground
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biomass [8–12]. Increasing the precision of tree height extraction in point cloud data can
significantly improve the estimation of aboveground biomass [8–11].

Terrestrial laser scanning (TLS) provides dense point cloud data with millimeter-level
resolution from which forest structure indicators can be accurately extracted [13]. Although
TLS is a good alternative to traditional forestry survey methods, as it is a nondestructive
method, it is more difficult to use TLS in inaccessible mountainous areas, and the spatial
extent of one performance acquisition by TLS is relatively small [14]. TLS is often suitable for
accurately acquiring forest structure features in small areas and the reconstruction of forest
3D structures. In terms of estimating tree height, TLS tends to be underestimated [15,16].
TLS is better for the bottom of the canopy measurement and is suitable for extracting
parameters such as DBH (diameter at breast height) [17,18], but detecting the canopy
top is problematic, as the accuracy of tree height extraction is lower compared to ALS or
UAV-LiDAR [7].

Compared to TLS, airborne laser scanning (ALS) has a clear advantage in estimating
tree height with a much larger measurement range. However, ALS seems to be more
suitable for areas with flat terrain. The point cloud density obtained with ALS is usually
between 1 and 25 pts/m2, and it is more expensive to use [19,20]. In recent years, with the
increase in UAV loads and the availability of lightweight LiDAR sensors, some studies have
integrated LiDAR sensors with UAV platforms [21,22]. Therefore, it is a wise choice to use
UAV-LiDAR in mountainous areas, as it is cheaper and more flexible in flight. UAV-LiDAR
can change flight parameters to better capture forest structure information for sample plots
with different characteristics [23,24].

Nevertheless, there are still difficulties in using UAV-LiDAR for forest inventory in
alpine mountains with relatively large terrain changes and dense forests. Using UAV-
LiDAR to acquire forest parameters in mountain forests is a simple and quick approach;
however, there are still limitations such as easy loss of signal and the possibility of hitting
obstacles when flying the UAV. With the increase in flight height, the safety of the UAV is
improved, while the point cloud density is lowered. Finally, this will cause the accuracy
of the tree height estimation to decrease. Therefore, proper flight height and point cloud
density are necessary to strike a balance between flight safety and data quality. In addition,
flying UAVs in mountainous areas is also affected by the terrain, tree species, tree height,
and performance of the LIDAR itself. Some studies have been conducted to investigate
the relationship between the accuracy of tree height estimation and different point cloud
densities [25] or sensors [26]. Furthermore, the majority of current studies on tree height
extraction have been undertaken in areas with lower altitude and plain terrain [27–29], with
fewer studies on tree height in alpine mountainous regions. As a result, for operational
mountainous forest management, dependable, cost-effective methods are required for
practical tree attributes [30].

In order to determine the UAV-LiDAR flight parameters suitable for collecting the
tree heights of Picea crassifolia forests in the alpine mountains of Northwest China, we
collected data at different flight heights and point cloud densities. These data were
used to investigate (1) the optimal flight height for tree height estimation and (2) the
appropriate point cloud density for tree height estimation in alpine mountainous areas in
Northwest China.

2. Materials and Methods
2.1. Study Area

The tree species studied was a Picea crassifolia forest in the eastern part of the Qilian
Mountains in Northwest China, which is a tall coniferous forest, using sample plots located
above 2800 m (36◦41′ N, 102◦50′–102◦50′30′′ E) (Figure 1b). The growth of mature Picea
crassifolia forests tends to be slow [31], and the selected sample plots are all mature forests.
This area has a special geographic location and is a transitional intersection of three geo-
ecoregions (including the eastern monsoon, northwestern dry, and Qinghai–Tibet plateau
geo-ecoregions) (Figure 1a) [32], and the total forest area is approximately 25,000 ha, which
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is the largest distribution area of pure Picea crassifolia forest in the Qilian Mountains at
present, according to Google Earth [33].

Forests 2022, 13, x FOR PEER REVIEW 3 of 16 
 

 

forests. This area has a special geographic location and is a transitional intersection of 
three geo-ecoregions (including the eastern monsoon, northwestern dry, and Qinghai–
Tibet plateau geo-ecoregions) (Figure 1a) [32], and the total forest area is approximately 
25,000 ha, which is the largest distribution area of pure Picea crassifolia forest in the Qilian 
Mountains at present, according to Google Earth [33]. 

 
Figure 1. The specific site of the sample plots in China and the Qilian Mountains (a); the locations 
of three plots in a Google Earth satellite image (b); orthophotos of the three plots (c–e). 

2.2. Datasets and Methods 
2.2.1. UAV-LiDAR Data 

The locations of the three plots are shown in Figure 1b, and the orthophotos of these 
plots are shown in Figure 1c–e. Figure 2a shows an overview of Plot 1. LiDAR point cloud 
data within the sample plots were collected using the RIEGL miniVUX-1 UAV (minimum 
measurement level of airborne laser scanner) (Figure 2b), which was carried out using a 
DJI M600 Pro on 17 June and 10 October 2021. 

 
Figure 2. An overview of Picea crassifolia Plot 2 (a); the condition of the UAV-LiDAR (b). 

Figure 1. The specific site of the sample plots in China and the Qilian Mountains (a); the locations of
three plots in a Google Earth satellite image (b); orthophotos of the three plots (c–e).

2.2. Datasets and Methods
2.2.1. UAV-LiDAR Data

The locations of the three plots are shown in Figure 1b, and the orthophotos of these
plots are shown in Figure 1c–e. Figure 2a shows an overview of Plot 2. LiDAR point cloud
data within the sample plots were collected using the RIEGL miniVUX-1 UAV (minimum
measurement level of airborne laser scanner) (Figure 2b), which was carried out using a
DJI M600 Pro on 17 June and 10 October 2021.
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RTK-GPS measurement data were obtained from the UniStrong GPS base station. The
specific parameters of the LIDAR are shown in Table 1. Four different heights were flown
above the ground surface at all three plots, taking into account the complex terrain in the
mountainous area; 85 m was the minimum safe height that could be flown, and the speed
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of each flight was 4 m/s. In this study, four flight heights (i.e., 85, 115, 145, and 175 m)
(Table 2) were set in three Picea crassifolia plots, and UAV-LiDAR data were categorized with
three point cloud densities. The forest cover calculated for each sample plot at four flight
heights was calculated using Fusion software (USDA Forest Service, Pacific Northwest
Research Station).

Table 1. The parameters of the UAV-LiDAR.

Metrics Parameters

Maximum field of view 360◦ self-adjusting
Maximum pulse emission frequency 100 kHz

Distance measuring accuracy 10 mm
Ranging repeatability accuracy 15 mm

Maximum distance range 250 m
Laser levels Level 1 human eye safety laser

Size 243 mm × 99 mm × 85 mm
Weight 1.85 kg

Power consumption 16 W
Inertial navigation unit IMU/GNSS

Plane positioning accuracy 0.05 m
Elevation positioning accuracy 0.1 m

Table 2. Flight height, point cloud density of the UAV-LiDAR, and the sample plot cover obtained.

Plot Flight Height (m) Average Density of the Point Cloud (pts/m2) Cover (%)

1

85 555 81.25
115 435 79.87
145 318 78.05
175 125 76.89

2

85 388 88.16
115 254 85.81
145 185 84.71
175 134 83.88

3

85 351 85.19
115 306 84.02
145 184 82.35
175 144 81.76

2.2.2. DOM Data

As auxiliary data for individual tree segmentation, the digital orthophoto model
(DOM) can help to identify the accuracy of individual tree extraction. The DOM data were
acquired on 17 June and 10 October 2021, using a DJI Phantom 4 RTK as a tool for obtaining
orthophotos. The flight parameters were consistent at each plot (85 m and 5 m/s). Image
orthomosaic was used with Pix4D Mapper software.

2.2.3. Ground Measurement Data

The measured data were obtained in July 2018 including tree height (TH) and diameter
at breast height (DBH) (Table 3). To subsequently match the estimated data, the coordinates
of the sample plots and the relative x and y coordinate positions of each tree within the
sample plots were also measured. The TH was measured using a laser rangefinder, and in
each sample plot, only trees with a DBH > 5 cm were measured with tape. Finally, every
tree that was measured was recorded in the sample plots with its relative coordinates.

Table 3. Statistical data of each sample plot.

Plot Area (m2) Slope (◦) Tree Number
DBH (cm) TH (m)

Mean SD Mean SD

1 28 × 25 14 43 26.50 14.36 18.76 7.54
2 32 × 30 17 73 21.85 10.67 15.41 5.47
3 32 × 30 19 56 24.42 15.14 15.91 8.05

DBH = diameter at breast height; TH = tree height.
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2.2.4. Data Preprocessing

First, to reduce the gross error in the raw point cloud data, the base station data and
the raw inertial measurement unit (IMU) data were input into POSPacUAV software to
obtain smoothed best estimate of trajectory (SBET) data as postprocessed POS data. Second,
raw point cloud and postprocessed POS data were added into RiPROCESS software. The
collected data were projected onto the plane coordinates for automatic detection, and then
the LiDAR point cloud was automatically aligned and adjusted according to the precision
trajectory. The connection surface was fully extracted automatically, and the point cloud
alignment parameters were adjusted including the system calibration information. The
data were stitched together to export the point cloud data in a .las file. Third, the point
cloud data were denoised using LiDAR360 4.0 software (Green Valley, Beijing, China).
Finally, the LiDAR data were classified into ground points and nonground points using an
improved progressive TIN densification filtering algorithm [34].

2.2.5. Individual Tree Segmentation

The classified point cloud was interpolated by a TIN triangulation network to obtain
a digital surface model (DSM) and a digital elevation model (DEM), and a CHM was
obtained by subtracting the DEM from the DSM. Segmenting CHMs into individual trees
was performed using the watershed segmentation algorithm [35]. The precision rates (p)
and recall rates (r) were applied to determine the accuracies of individual tree segmentation
according to Equations (1) and (2), where p represents the proportion of correct segments
to the extracted data; r represents the proportion of correct segments to the actual data; TP
represents the number of correct segments; FN represents the missed segments; FP represents
oversegmentation. A flow chart of the method used in this study is shown in Figure 3.
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p =
TP

TP + FP
(1)

r =
TP

TP + FN
(2)

2.2.6. Accuracy Assessment

Field measurement data were treated as a reference for tree height. The evaluation
and validation of the estimated tree height and the reference tree height using the determi-
nation coefficient (R2) represents the reliability of the estimated tree height. To express the
deviation of the estimated value from the actual value, we used the root mean square error
(RMSE); using bias (B) to determine how much the estimated tree height was overestimated
or underestimated relative to the reference value. The equations for the RMSE, R2, and bias
values are as follows:

RMSE =

√
∑n

i=1 (Pi −Oi)
2

n
(3)

R2 = 1−
n

∑
i=1

(Pi −Oi)
2(

Oi −Oi
)2 (4)

B =
∑n

i=1(Pi −Oi)

n
(5)

In Equations (3) and (4), Pi represents the estimated tree height, Oi represents the
reference tree height, Oi represents the mean reference tree height, and n represents the
number of all correctly identified trees.

3. Results
3.1. Tree Height Estimation with Different Flight Heights

As an example, the results obtained with a flight height of 85 m in Plot 1 showing
the individual tree segmentation are depicted in Figure 4c, where the green dots represent
correctly segmented trees, and the red dots represent oversegmented trees. For some trees
with large canopies, there was an obvious oversegmentation phenomenon. The recall rates
(r) and precision rates (p) obtained from different flight heights are shown in Table 4. The
flight height of 85 m had the largest number of correct trees with the largest recall rates. The
175 m height had the smallest recall rates, indicating that the number of correctly detected
individual trees gradually decreased with the increase in flight height. The 145 m flight
height had the largest precision rates, indicating that the phenomenon of oversegmentation
decreased as the flight height increased.

Different flight heights to measured tree heights were fitted in the plots (Figure 5). The
regression analysis of the LiDAR data and measured data showed that the R2 value was
the highest and the RMSE was the lowest at the 85 m flight height, which were 0.75 and
2.65, respectively (Figure 5a); the R2 value was the lowest and the RMSE was the highest
at the 175 m flight height, which were 0.65 and 3.00, respectively (Figure 5c). At the flight
heights of 115 and 145 m, the fit was better, and the RMSE was smaller at 145 m.

Table 4. Individual tree segmentation validation.

Flight Height (m) r (%) p (%)

85 90.7 69.0
115 88.4 64.4
145 81.4 71.4
175 76.7 68.0

r (%) = recall rates; p (%) = precision rates.
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In addition, Figure 6 shows the estimated tree heights obtained from the four flight
heights. The mean differences between 85, 115, and 145 m were less than zero (Figure 6,
Table 5), which can be explained by the fact that the estimated data were smaller than
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the measured data in the field, and the estimated tree heights obtained from 85 m were
obviously smaller than the measured data. With the increase in flight height, the estimated
tree height gradually increased, but at 145 m, the increase was not obvious. However, the
mean difference at 175 m was greater than zero. In terms of bias, the 145 m flight height had
the least bias. As the flight height increased, the tree height changed from underestimation
to overestimation.
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Table 5. Accuracy assessment of the tree height extraction at different flight heights.

Flight Height (m) R2 RMSE B Mean Difference (%)

85 0.75 2.65 −0.85 −3.38
115 0.70 2.90 −0.41 −0.64
145 0.73 2.68 −0.17 −0.30
175 0.65 3.00 0.37 2.78

3.2. Tree Height Estimation with Different Point Cloud Densities

Plot 1, with the highest point cloud density at a flight height of 85 m, was used as
the reference. The point clouds obtained from different flight heights were classified into
high-density point clouds (70%–100%), medium-density point clouds (40%–70%), and
low-density point clouds (10%–40%) (Table 6). Figure 7 shows the morphology of a tree in
Plot 1 with high-density, medium-density, and low-density point clouds. The high-density
point cloud had the most complete detection of the overall morphology of the tree, and the
DBH of the tree could also be detected.

Table 6. Different densities of point clouds and percentages of point clouds.

Density of Point Cloud Plot and Flight Height (m) Percentage of Point Cloud (%)

High density
Plot 1 at 85 m 100

Plot 1 at 115 m 78
Plot 2 at 85 m 70

Medium density

Plot 1 at 145 m 57
Plot 2 at 145 m 46
Plot 3 at 85 m 63

Plot 3 at 115 m 55

Low density

Plot 1 at 175 m 23
Plot 2 at 145 m 33
Plot 2 at 175 m 24
Plot 3 at 145 m 33
Plot 3 at 175 m 26
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Figure 7. (a–c) Morphology of a tree in Plot 1 in the high-density point cloud, medium-density point
cloud, and low-density point cloud, respectively.

The fit of individual tree heights extracted from the LiDAR data at different densities
of point cloud to the measured tree heights is shown in Figure 8. The extracted tree height
from the high-density point cloud was the best fit to the measured data (R2 = 0.78). The
extracted tree height from the low-density point cloud was the worst fit to the measured
data (R2 = 0.69). However, the results were different in terms of root mean square error, with
the high-density point cloud having the highest error (RMSE = 2.88), the medium-density
point cloud having the lowest error (RMSE = 2.75), and the low-density point cloud having
an error somewhere in between. The accuracies of tree height estimation for medium-
point cloud density (R2 = 0.70, RMSE = 2.75) and low-point cloud density (R2 = 0.69,
RMSE = 2.80) were very similar.
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The bias of the high-, medium-, and low-density point clouds were −1.23, −0.45, and
0.43, respectively. The mean differences were−8.83%,−3.78%, and 0.62% (Figure 9, Table 7).
We found that low-density point clouds had the smallest bias and mean difference, high-
density and medium-density point clouds underestimated tree height, and low-density
point clouds overestimated tree height.
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Table 7. Accuracy assessment of tree height extraction at different point cloud densities.

Point Cloud Density R2 RMSE B Mean Difference (%)

High density 0.78 2.88 −1.23 −8.83
Medium density 0.70 2.75 −0.45 −3.78

Low density 0.69 2.80 0.43 0.62

4. Discussion

The flight height correlated with the accuracy of individual tree segmentation. As the
flight height increased, the number of correct individual tree segmentations decreased, and
the recall rates (r) decreased from 90.7% to 76.7%, indicating that the undersegmentation
phenomenon increased. This was due to the decrease in point cloud density caused by
the increase in flight height. However, too dense point clouds can also cause the overseg-
mentation phenomenon. Among them, the 145 m flight height had the best performance
in oversegmentation.

With the flight height increase, the oversegmentation phenomenon can be reduced to
a certain extent. The precision rates (p) of the 145 m flight height was significantly smaller
than that of 115 m, because the CHM identified neighboring and similar raster values as
individual tree vertices at higher point cloud densities. The estimation accuracy of tree
height was related to individual tree segmentation. Wu et al. [8] found that improving the
accuracy of individual tree segmentation can advance the calculation of forest biomass.
In general, the lower the flight height, the more accurate the individual tree height [26].
From a flight height of 145 m, the estimated tree height fit better than the 115 m height,
probably because the number of individual trees extracted at the two flight heights was
approximately the same. At a flight height of 115 m, individual trees were extracted with
more severe oversegmentation (Table 4), and the estimated tree height was more different
than the measured tree height (Figure 6). In terms of bias and mean difference (Table 5),
145 m was the most suitable flight height and had a certain accuracy in fitting with the
measured data (R2 = 0.73).
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Tree height estimation at different flight heights (i.e., 85, 115, and 145 m) were lower
than the measured tree height (Figure 6, Table 5). Various studies have found that individual
tree segmentation-derived tree heights based on the CHM were significantly lower than
those obtained from point cloud segmentation, because the interpolating process of point
clouds into the CHM led to an overall reduction in tree height [36,37]. The Gaussian
smoothing window was used in CHM-based individual tree segmentation, which took the
average of the surrounding raster values to determine the maximum value of the top point
of an individual tree, and this method caused the estimated tree height to be lower than
the actual value [38–40]. In other experiments that used UAV-LiDAR to obtain tree height,
the phenomenon of tree height underestimation existed. Krause et al. [41] obtained tree
heights semi-automatically based on drones and found that measured tree heights were
often overestimated, while drone measurements of tree heights were often underestimated.
With the increase in flight height, the underestimation phenomenon was gradual and not
obvious, which was probably because the acquired ground point cloud was becoming
sparser, and the inaccuracy of the ground point separation caused the acquired tree height
to become larger and the bias from the actual value to become smaller. The errors caused
by ground points may be more obvious, especially in areas with large mountain slopes.

Various studies have found that different point cloud densities affect the estimation
accuracy of tree height; the higher the point cloud density, the better the estimated tree
height fits the measured tree height [25,26]. The medium-density point cloud extracted tree
height with higher accuracy than the low-density point cloud, but the accuracy did not
increase much, which indicates that the point cloud density at 125–185 pts/m2 extracted
tree height accurately. Therefore, it was not necessary to raise the point cloud density to
254–351 pts/m2. Peng et al. [25] found that when the point cloud density increased to
17 pts/m2, the estimation accuracy of the tree height did not improve significantly. As the
point cloud density decreased, the bias tree height relative to the measured value as well as
the mean difference also decreased, and some studies have similar results [42].

We found that the extracted accuracy of tree heights of Picea crassifolia in alpine
mountainous forests was inferior to that in several existing studies [7,28,43]. Perhaps
the slope of the mountainous terrain caused some uncertainty in distinguishing ground
points and nonground points and then resulted in the lower extracted accuracy of tree
height. In addition, the actual measurement data were obtained from rolling ground, and
the measurement of tree height was affected by the slope of the mountain. Altitude and
slope are the most important influencing factors when setting the flight heights of UAVs.
Although we only set-up three Picea crassifolia sample plots in the eastern Qilian Mountains,
these plots were typically representative. Our results may be applicable to the survey of
Picea crassifolia mature forests with a certain slope. In future studies, we will add the effect
of slope on the extraction of forest structure parameters in mountainous areas in Northwest
China. In addition to the use of UAV-LiDAR, there is currently research on the use of
the more cost-effective unpiloted digital aerial photogrammetry (UAS DAP) to predict
forest attributes [44], and we can also try to use UAS DAP for forest monitoring in alpine
mountain areas in the future.

5. Conclusions

UAV-LIDAR was utilized to acquire point cloud data in alpine mountainous areas. We
found that a flight height of 145 m was more applicable to maintain tree height estimation
accuracy and assuring the safety of UAVs flying in alpine mountain regions. A point cloud
density of 125–185 pts/m2 can guarantee tree height estimation accuracy. These results can
serve as a good reference for alpine forest management. In retrospect, our study employing
UAV-LiDAR might contribute to a more automated forest inventory, which could help to
reduce the amount of field activities performed in the future.

In general, the estimation of tree height only requires LiDAR to detect the point cloud
at the top of the tree, and the accuracy difference between different flight heights was not
significant. If the ground point could be separated more accurately, the tree height would
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be extracted closer to the measured value. This study may improve the flight efficiency of
UAV-LiDAR in alpine mountain forests in Northwest China. By selecting the appropriate
flying height and point cloud density, considerable cost efficiency and time savings may be
realized, benefiting forestry employees.
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