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Abstract: Selecting tree species to plant for forest ecosystem restoration is critical but problematic.
Knowing tree species’ climatic niches can help, but such information is limited for most tropical tree
species. Consequently, the research presented here explored the use of climate and species record
location data, to map the potential distribution of four tree species across tropical and subtropical
Asia based on their modelled climatic niches. All were framework species, of proven effectiveness for
forest restoration: Choerospondias axillaris (Roxb.) B.L. Burtt and A.W. Hill, Ficus hispida L.f., Hovenia
dulcis Thunb., and Prunus cerasoides Buch.-Ham. ex D. Don. Potential species distributions were
projected onto maps of known climatic conditions using the maximum entropy algorithm in Maxent
software to predict where the climate is conducive for including each species in forest restoration
trials. The models predicted species location very well for F. hispida and H. dulcis and fairly well for
P. cerasoides and C. axillaris. Climatically suitable areas for C. axillaris were located mostly north of
the equator, whilst those of F. hispida, H. dulcis and P. cerasoides extended south of the equator. The
importance of each climatic niche variable differed among species. Driest-month precipitation was
critical for F. hispida, as well as mean dry-season temperature for C. axillaris and P. cerasoides and
cold-season precipitation for H. dulcis. In addition to aiding species selection for forest restoration,
potential distribution maps based on climatic niche models can indicate where novel species for tree
plantations might be successful and where species might become invasive. Applying such techniques
to a large number of species will be needed to significantly improve species selection for forest
ecosystem restoration.

Keywords: maxent; Choerospondias axillaris; Ficus hispida; Hovenia dulcis; Prunus cerasoides; framework
species method

1. Introduction

Tropical forest-ecosystem restoration can be defined as management interventions
on degraded forestlands to maximize biomass accumulation and the recovery of forest
structural complexity, biodiversity, and ecosystem functioning within prevailing climatic
and soil limitations [1]. Its significance for mitigating both biodiversity loss (e.g., [2,3])
and global climate change (by carbon sequestration [4]) is now well-recognized, under
such global schemes as the Bonn Challenge (targeting restoration of 350 million hectares
by 2030 [5]) and the UN’s “Decade on Ecosystem Restoration” (2021–2030) [6]. Its role in
climate change mitigation first rose to prominence with the inclusion of “enhancement of
carbon stocks” into the UN’s REDD+ initiative [7], with safeguards to ensure biodiversity
conservation and community participation (safeguards [d] and [e] in UNFCC COP16 [8]).
Conventional monoculture plantations of fast-growing, often exotic, tree species satisfy
neither of these safeguards [9,10]. Forest ecosystem restoration sequesters carbon 40 times
more efficiently than plantations and six times more efficiently than agroforestry systems [4].
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Despite this, about two thirds of the area pledged under the Bonn Challenge and other
planned national initiatives are (or will be) plantations and agroforests, with only one third
undergoing more natural ecological restoration [4]. Consequently, the need to develop
effective techniques to restore tropical forest ecosystems is urgent, including protocols for
the selection of indigenous forest tree species that will thrive in the prevailing climatic
conditions of deforested sites.

In northern Thailand, the framework species method (FSM) of forest restoration
(Figure 1) has been adapted, tested, and successfully used to restore various forest types
on “moderately” degraded sites, i.e., where natural regeneration is too sparse to achieve
canopy closure within 3–5 years (i.e., Stage 3 degradation, sensu Elliott et al. [1]). Framework
species are selected from among those that are characteristic of the target ecosystem for high
rates of survival and growth in the exposed conditions of deforested sites. They should
also have dense spreading crowns, capable of rapidly shading out competitive herbaceous
weeds, and they should attract seed-dispersing wildlife to foster biodiversity recovery (by
producing fleshy fruits or nectar-rich flowers at a young age). An additional advantageous
characteristic in the fire-prone seasonal tropics is resilience after fire. Selected species
are propagated in nurseries from locally collected seeds for 6–18 months. Then, they are
planted in restoration sites and maintained for two to three years (weeding and fertilizer
application three times each rainy season) until canopy closure. The technique was first
developed in Queensland, Australia [11] and it has been trialed to restore various forest
ecosystem types in Thailand [1], Cambodia [12], Indonesia [13] China [14], Tanzania [15],
and the Philippines [16].

It has proved to be highly successful in achieving ecological objectives. With care-
ful species selection, weeds are shaded out and canopy closure can be achieved within
2–3 years and biodiversity recovery is rapid. For example, the species richness of the bird
community during restoration of evergreen forest in northern Thailand increased from
about 30 before planting to 88 after 6 years, representing about 54% of bird species recorded
in nearby mature forest [17], and the birds brought in tree seeds. Sinhaseni reported that
73 species of nonplanted trees recolonized the plot system within 8–9 years, most having
germinated from seeds dispersed from nearby forest by birds (particularly bulbuls), fruit
bats, and civets [18]. Furthermore, Kavinchan et al. and Jantawong et al. recently demon-
strated remarkably rapid recovery of ecosystem carbon dynamics. Net inputs of carbon into
the soil from litterfall, the overall accumulation of soil organic carbon, and the accumulation
of above-ground carbon in the trees returned to levels that are typical of old-growth natural
forest within 14–16, 21.5, and 16 years, respectively [19,20]. However, since the technique
relies on attracting seed-dispersing animals to foster biodiversity recovery, its use is limited
where seed sources (remnant forest) are too distant and/or where seed-dispersing animals
have been extirpated [21]. Its adoption is also limited by the lengthy and in-depth research
needed to identify framework tree species.
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Figure 1. How the framework species method accelerates forest ecosystem restoration. Reprinted
with permission from Stephen D. Elliott, first published in Jantawong et al. 2022 [22]. Dotted lines
indicate positive feedback loops, by which planted framework tree species intensify key mechanisms
of natural regeneration: weed suppression, seed–rain enhancement, and creation of conditions
conducive to the establishment of recruit tree species.

A critical step in adapting the framework species method to restore a greater diver-
sity of forest types over a wider range of climatic zones is the selection of “candidate”
framework species for trialing. This is particularly difficult where target (or “reference”)
forest ecosystems have been extirpated from landscapes and where local records of in-
digenous species are sparse. Under such circumstances, matching the climatic niches of
indigenous tree species with climate maps provides an alternative way to determine where
trials of candidate frameworks the tree species are likely to be successful and can greatly
facilitate species–site matching to increase the likelihood of success of forest restoration
projects [23–25].

Herbarium labels are an underutilized source of information that could greatly fa-
cilitate and improve forest restoration practices, particularly species–site matching [26].
Modern labels usually have the GPS coordinates of the collection locality, whereas old
labels usually have written descriptions. Satellite imagery and/or field checks can often
be used to convert such descriptive notes into GPS coordinates, which can then be used
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for mapping and modelling species distributions. Old, large herbaria (mostly in Europe)
usually store multiple specimens of each species from many localities, and are thus invalu-
able in determining tree distributions. Models of species’ climatic suitability, based on
herbarium data, provide a way to expand forest restoration into wider areas [27].

In the study presented here, we mapped the potential distributions of four tree species,
previously proven to be “excellent” framework species for restoring upland evergreen
forest in northern Thailand [28], using location data from herbarium specimen labels and
the Global Biodiversity Information Facility [29], climatic data for each recorded location,
and the maximum entropy approach [30]. The maximum entropy algorithm (MaxEnt)
allows the use of a small amount of presence-only occurrence data. Development of MaxEnt
modelling is still being researched. Modelling species’ niches using MaxEnt relies on the
quality of sample data and requires attention at many stages of model calibration [31]. In
our study, MaxEnt was selected in preference to new modelling approaches [32,33] due to
its 15 years of development and its superiority in terms of computational time and ease of
use. The aim of this study was to assist with species selection for FSM trials by mapping the
potential distribution of four known framework tree species, thus exploring their potential
inclusion in forest restoration trials

2. Materials and Methods
2.1. Studied Species

Four species were selected for this study: Choerospondias axillaris (Roxb.) B.L. Burtt
and A.W. Hill (Anacardiaceae), Ficus hispida L.f. (Moraceae), Hovenia dulcis Thunb. (Rham-
naceae), and Prunus cerasoides Buch.-Ham. ex D. Don (Rosaceae) (Table 1, Figure 2). All had
been tested in multiple field trials (FORRU-CMU Database) to restore seasonal, upland,
evergreen forest (>1000 m from the sea level) in northern Thailand, resulting in their being
ranked as “excellent” framework species [28]. All had excellent or acceptable growth
and survival over the first two growing seasons after planting out in deforested sites and
suppressed weeds well beneath their crowns. All demonstrated excellent or acceptable
resilience after forest fires and were attractive to seed-dispersing animals (by producing
fleshy fruits or bird nest sites within a few years after planting [34].

Table 1. Information of the four species. Overall, they are excellent framework tree species for
forest restoration.

Species Family

Elevation (m asl) 1 Framework Species Assessment 2

Lower Upper Survival 3 Growth 4 Weed
Suppression 5

Fire
Resilience 6 Attraction to Seed Dispersers 7

Choerospondias
axillaris (Roxb.)
B.L. Burtt and

A.W. Hill

Anacardiaceae 460 1600 E E A E
Flowering and fruiting from 4th

year. Fruits attract
seed-dispersing mammals.

Ficus hispida
L.f. Moraceae 60 1525 E A E E Figs from 3rd year attract

seed-dispersing birds/squirrels.

Hovenia dulcis
Thunb. Rhamnaceae 1025 1300 E E E E

Fruit and infructescence attract
seed-dispersing birds but flowers

late: >8 years after planting.

Prunus
cerasoides

Buch.-Ham. ex
D. Don

Rosaceae 1050 1750 E E E A
Flowers, fruit, and bird nests
within 3 years. Fruits attract

seed-dispersing birds.

1 CMU-B Herbarium Database; 2 Elliott et al., (2003) [28]; 3 E > 70% (mean at end of 2nd growing season);
4 E > 2:0 m, A = 1:5–1.99 m (mean height at end of 2nd growth season); 5 E > 33%, A 16.5%–33% (mean reduction
in weed cover beneath tree crown at end of 2nd growth season); 6 E > 70%, A = 50%–69.9% (mean survival after
fire); 7 Forest Restoration Research Unit (2005) [34].
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Figure 2. Foliage and fruit of four studied species: (a) Choerospondias axillaris (Roxb.) B.L. Burtt and
A.W. Hill, (b) Ficus hispida L.f., (c) Hovenia dulcis Thunb., and (d) Prunus cerasoides Buch.-Ham. ex
D. Don.

2.2. Data Collection

Species location records were gathered from specimen labels at the herbarium of the
Royal Botanic Gardens, Kew, United Kingdom and the Global Biodiversity Information
Facility [29]. Specimen labels were photographed at Kew from September to November
2014 and the data were subsequently transcribed into a spreadsheet. For those labels
without GPS coordinates, location descriptions were checked with US GeoNames [35] and
Google Earth Pro (Google Inc., Mountain View, CA, USA) to determine most likely GPS
coordinates. Location data from specimens that could not be matched with any location
database were discarded.

Species location records in the GBIF datasets were downloaded using the “gbif”
function in the “dismo” package [36] written in the R programing language [37]. Search
terms were accepted species names [38]. Locations where the species had been artificially
introduced were removed. The numbers of records from each of the two data sources are
listed in Table 2 for each species. The native geographical ranges differed among the four
species (Table 2).

Table 2. Species and the number of data points at different steps of data preparation.

Species Herbarium
Records

GBIF Records with
Coordinate Data 1

Records within the
Native Range

Subsampled
Records

Native Geographical
Extent of Location Data Range Description

C. axillaris 57 361 183 116 Longitude 77–142◦ E
Latitude 18–40◦ N

India to China
Southeast/south-central

China to Thailand

F. hispida 60 1221 756 236 Longitude 76–154◦ E
Latitude 20◦S–38◦ N

India to Australia
Australia to

Southeast/south-central
China

H. dulcis 70 637 391 101 Longitude 77–136◦ E
Latitude 11–36◦ N

India to Japan
Japan and China to

Thailand

P. cerasoides 46 213 139 68 Longitude 76–113◦ E
Latitude 6–31◦ N

India to Thailand
South China to Thailand

Total 234 2432 1481 524

1 1 September 2019.
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Current climatic data (1960–1990) were obtained from Worldclim V. 1 [39]: a set of
global climate layers with a 2.5 arc minute resolution (approximately 20 km2). Nineteen
bioclimatic variables (Table 3) were downloaded: (1) annual mean temperature, (2) mean
diurnal range (mean of monthly (max temp–min temp)), (3) isothermality, (4) temperature
seasonality (standard deviation *100), (5) max temperature of warmest month, (6) min
temperature of coldest month, (7) temperature annual range, (8) mean temperature of
wettest quarter, (9) mean temperature of driest quarter, (10) mean temperature of warmest
quarter, (11) mean temperature of coldest quarter, (12) annual precipitation, (13) precipi-
tation of wettest month, (14) precipitation of driest month, (15) precipitation seasonality
(coefficient of variation), (16) precipitation of wettest quarter, (17) precipitation of driest
quarter, (18) precipitation of warmest quarter, and (19) precipitation of coldest quarter.

Table 3. Nineteen climatic variables and their abbreviations. After removing collinearity among the
variables, 10 variables were used in the model (variables with 3).

Abbreviation Variables (Unit) Note Used in Modelling

Bio1 Annual mean temperature (◦C)
Bio2 Mean diurnal range (mean of monthly) (◦C) max temp–min temp 3

Bio3 Isothermality (%) 1 (Bio2/Bio7) × 100 3

Bio4 Temperature seasonality (◦C) 2 standard deviation
Bio5 Max temperature of warmest month (◦C)
Bio6 Min temperature of coldest month (◦C)
Bio7 Temperature annual range (◦C) Bio5–Bio6
Bio8 Mean temperature of wettest quarter (◦C) 3

Bio9 Mean temperature of driest quarter (◦C) 3

Bio10 Mean temperature of warmest quarter (◦C) 3

Bio11 Mean temperature of coldest quarter (◦C)
Bio12 Annual precipitation (mm)
Bio13 Precipitation of wettest month (mm) 3

Bio14 Precipitation of driest month (mm) 3

Bio15 Precipitation seasonality (%) 3 coefficient of variation 3

Bio16 Precipitation of wettest quarter (mm)
Bio17 Precipitation of driest quarter (mm)
Bio18 Precipitation of warmest quarter (mm) 3

Bio19 Precipitation of coldest quarter (mm) 3

1 A value of 100 indicates the diurnal temperature range is equivalent to the annual temperature range. A value
less than 100 represents a smaller level of temperature variability within an average month relative to the year. 2

The larger the standard deviation, the greater the variability of temperature. 3 The ratio of the standard deviation
of the monthly total precipitation to the mean monthly total precipitation. A measure of the variation in monthly
precipitation totals over the course of the year.

2.3. Species Location Record Preparation

For each species, duplicate records and locations in the ocean were removed. Then, to
account for sampling bias, species location records were systematically subsampled [40].
Grid cells were created at one-degree resolution throughout each species’ known range,
and then only one record per grid cell was randomly sampled (Figure S1). The numbers of
records retained in each cleaning step are presented in Table 2.

2.4. Climatic Data Preparation

To generate a list of noncorrelated variables to use in the model, correlations among
19 variables were identified using Pearson’s correlation coefficient (Table S1). The analyses
were carried out using the function “removeCollinearity” in the “virtualspecies” pack-
age [41] in R programing language. Pearson’s correlation coefficient was used to compute
a distance matrix, which was then used to construct an ascendant hierarchical classifi-
cation (Figure S2) of the 19 variables. Variables that were 85% correlated were grouped
together. Single variables not correlated to any other variables were automatically selected,
along with one randomly selected variable from each of the groups, resulting in a total of
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10 noncorrelated variables being included in the model. The extent of the climatic variables
that were used in MaxEnt modelling was unique for each species, according to the extent
of species occurrence. Climatic data were converted to ASCII raster files.

2.5. Modelling

Climatic niche models were calibrated in Maxent 3.4.1 [42]. The operations performed
were (i) calibration, (ii) cross-validation, and (iii) projection. Maxent calculated the fre-
quency distributions of all climatic variable values, firstly for all species location record
points (species climate frequency) and secondly for a sample of 10,000 randomly selected
background points within the species’ range boundaries (geographical climate frequency).
If a species shows no climatic preference within its range, then the two proportional fre-
quency distributions would be very similar, because the species would be distributed
randomly across its range. If a species is associated with a certain climatic variable value,
then the species frequency, at that value, would be higher than the geographical frequency
and vice versa. Therefore, the ratio between the two proportional frequency distributions
can be used to derive the climatic suitability of each point on the map for growth of a
species, within its range.

For model calibration, we applied a “regularization multiplier” of two. The regu-
larization multiplier controls how closely fitted the output distribution is around species
record locations. Values of less than 1 result in very tight fit around species record locations,
whereas higher values result in wider dispersion [43]. Regularization multipliers of two to
four are suggested to reduce “over-fitting” the models [44].

The models were subjected to 10-fold cross-validation. Species location records were
randomly split into 10 equal-sized groups (called “folds”). For each species, 10 models
were run, each one using data from nine folds (training) with the omitted fold used for
validation (by determining if the models reliably predicted species presence at the record
locations in the omitted folds). Each of the 10 models was run for up to 500 iterations.

The predictive accuracy of each model was estimated using the area under the receiver-
operating characteristic curve (AUC). AUC is interpreted as how much the model can
distinguish between species location and background points. An AUC close to 0.5 indicates
that model performance is equivalent to random guessing. AUCs greater than 0.8 indicate
high model performance [45]. The AUCs were generated and averaged over 10 models for
each species.

To identify locations suitable for supporting each species (habitats matching the species’
climatic niche requirements) beyond its current range, the climatic conditions across the
whole of tropical and subtropical Asia (latitude 11◦S to 40◦N and longitude 60◦E to 160◦E)
were used. Maxent model outputs (cloglog outputs) were imported into the R programing
language and potential distribution maps were generated. The results were re-grouped into
four classes of climatic suitability as: (i) <0.1 = “unsuitable”, (ii) 0.1–0.3 = “low suitability”,
(iii) 0.3–0.6 = “suitable”, and (iv) >0.6 = “highly suitable” (see [46]).

In addition, the relative contributions of each climatic variable to explain variance
in the MaxEnt models were estimated. The values of each climatic variable on training
species location and background data were randomly permutated. Then, the model was
re-evaluated using the permutated data and decreases in training AUC were measured
(permutation importance) [44]. The permutation importance values were normalized to
percentages. A high value of permutation importance indicated that the model depended
on the variable to a high degree [44] (see Appendix S1).

3. Results
3.1. Model Performance and Potential Distributions of Four Studied Species

The models predicted species location fairly well for P. cerasoides and C. axillaris, and
very well for the other two species. Average AUCs ranged from 0.782 for P. cerasoides to
0.830 for H. dulcis (Table 4, Figure S3). The predicted distributions of suitable habitats
according to climatic conditions are presented in Figures 3–6. Overall, areas with climates
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highly suited for C. axillaris tended to be located north of the equator, including parts of
China, Vietnam, Thailand, Myanmar, India, Bhutan, and Nepal (Figure 3), whilst those of
H. dulcis, F. hispida, and P. cerasoides extended more equally both north and south of the
equator (Figures 4–6).

Table 4. Area under the receiver-operating characteristic curve (AUC), averaged over 10 models
with one standard deviation and the importance of permutation of bioclimatic variables contributing
to climatic niche models of each species. The first three most important variables and the average
suitable range and optimum value of those variables are presented.

Species Average AUC Permutation Importance (Normalized Percentage) and Suitable Range of Variables

(1 Standard
Deviation) The First Suitable Range

(Optimal Value) The Second Suitable Range
(Optimal Value) The Third Suitable Range

(Optimal Value)

C. axillaris 0.783 (0.062)

Mean
temperature of
driest quarter

(36.3%)

4.7–18.8 ◦C (13.9 ◦C)
Precipitation of

driest month
(19.3%)

8.8–81.6 mm
(22.5 mm)

Precipitation of
wettest month

(11.8%)

161.0–397.7 mm
(215.3 mm)

F. hispida 0.811 (0.039)
Precipitation of

driest month
(20%)

≥7.9 mm (14.3 mm)
Precipitation
seasonality

(17.4%)
21–95% (72.4%)

Mean
temperature of
driest quarter
(◦C) (15.4%)

11.3–27.0 ◦C
(25.6 ◦C)

H. dulcis 0.830 (0.059)
Precipitation of
coldest quarter

(32.3%)
≥87 mm (558 mm)

Precipitation of
warmest quarter

(24.2%)

448.0–2127.2 mm
(526.0 mm)

Mean
temperature of
wettest quarter

(9.6%)

18.5–25.1 ◦C
(23.1 ◦C)

P. cerasoides 0.782 (0.079)

Mean
temperature of
driest quarter

(59.5%)

4.3–18.8 ◦C (11.1 ◦C)

Mean
temperature of

warmest quarter
(27.9%)

12.7–25.6 ◦C
(18.4 ◦C)

Isothermality
(9.6%)

43.3–62.6%
(49.2%)

The model predicted that the most suitable climatic conditions for C. axillaris occur
mostly in SE China and northern Vietnam, where most of the records are located (Figure 3).
The population in Thailand appears to exist under suboptimal climatic conditions, towards
the southern limit of the species’ range. Although the species has spread westward along
the Himalayas, it has yet to be recorded in highly suitable climatic areas in Pakistan,
Afghanistan, and Tajikistan, nor has it colonized highly suitable climatic areas in southern
Indonesia and Papua New Guinea.
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Figure 3. Choerospondias axillaris: confirmed records (brown circles) and potential current climate
suitability, modelled from climatic variables (green)—darker green represents higher climatic suit-
ability. Four classes of climatic suitability are (i) <0.1 = “unsuitable”, (ii) 0.1–0.3 = “low suitability”,
(iii) 0.3–0.6 = “suitable”, and (iv) >0.6 = “highly suitable”.
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Figure 5. Hovenia dulcis: confirmed records (brown circles) and potential current climate suitabil-
ity, modelled from climatic variables (green)—darker green represents higher climatic suitabil-
ity. Four classes of climatic suitability are (i) <0.1 = “unsuitable”, (ii) 0.1–0.3 = “low suitability”,
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Areas with highly suitable climatic conditions for F. hispida were widely spread from
southern China through Indomalaya to Papua New Guinea (latitudes 30◦ N and 11◦ S)
(Figure 4), although the highest density of records was concentrated in southern China
and Indochina. Most of the Philippines appears to have suitable climatic conditions
for this species, but F. hispida has not yet been recorded there. The records in central
India exist under apparently unfavorable climatic conditions, on the western edge of the
species’ range.

The model predicted suitable climatic conditions for H. dulcis both inside and outside
the species’ native range. Figure 5 shows two disjunct climatically suitable zones—a
northern zone where the species is present and a southern zone where the species has yet
to be recorded. The northern zone includes SE China, Taiwan, S. Korea, and Japan. The
southern zone includes Malaysia, Indonesia, southern Philippines, and Papua New Guinea.
The outlying population in northern Thailand appears to exist under suboptimal climatic
conditions at the southernmost edge for the species’ current range.
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Figure 6. Prunus cerasoides: confirmed records (brown circles) and potential current climate suit-
ability, modelled from climatic variables (green)—darker green represents higher climatic suitabil-
ity. Four classes of climatic suitability are (i) <0.1 = “unsuitable”, (ii) 0.1–0.3 = “low suitability”,
(iii) 0.3–0.6 = “suitable”, and (iv) >0.6 = “highly suitable”.

The recorded range of P. cerasoides is centered in SW China and northern Thailand
and Lao PDR, spreading westward along the Himalayas (Figure 6). Scattered records
exist under suboptimal climatic conditions in India and Sri Lanka at the western edge of
the species’ range. Suitable (but unoccupied) climatic areas south of Thailand occurred
sparsely and mostly in highland areas of the Indonesian islands, Borneo, the Philippines,
and eastern Papua New Guinea.

3.2. Importance of Climatic Variables

The variables that contributed most to explaining the variance in the climatic niche
models varied among the species (Table 4, see Appendix S1). The mean temperature of
the driest quarter was the most important variable for C. axillaris and P. cerasoides. The
mean temperature of the driest quarter (bio9) was highly correlated with annual mean
temperature, minimum temperature of the coldest month, and the mean temperature
of the coldest quarter. Precipitation of the driest month was among the top three most
important variables for C. axillaris and F. hispida. Precipitation in the driest month was
highly correlated with precipitation in the driest quarter. For H. dulcis, the most important
variable was precipitation in the coldest quarter.

4. Discussion
4.1. Interpreting the Maps

Based on a comprehensive review of existing records, this study mapped habitat
suitability in tropical and subtropical regions for four framework tree species in greater
detail than previously reported. The four studied species are previously proven effective
at catalyzing forest ecosystem restoration in northern Thailand, when included in mixed-
species plantings [28].

Using climatic data from recorded locations, we mapped beyond each species’ recorded
range the potential distribution according to climatic conditions conducive for supporting
growth of each species (i.e., fundamental climatic niches). Conventionally, outputs from
such models have been interpreted as “probability of presence”. However, we interpreted
the models’ outputs as an index of “climatic suitability”, since we used only climatic vari-
ables in their construction and climate is only part of a species’ fundamental niche. This
means that areas on the maps, marked as climatically suitable, may be subject to other niche
limitations (e.g., unsuitable soil conditions or lack of biotic factors, such as pollinators,
seed dispersers, or other essential symbionts). Dispersal barriers, particularly oceans, are
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another obvious explanation of why species are absent from areas with a highly suitable
climate, hence our substitution of “probability of presence” with “climatic suitability”.
This view is supported by Merow at al. (2013) [47], who stated that interpreting Maxent’s
predictions as indices of habitat suitability is useful for qualitative exploratory analyses
(such as that of the present study).

The maps reliably show where the climate is not suitable for each species. Obviously,
planting a species in such locations would be a waste of time and money. However, caution
should be exercised when using the maps, to aid species selection decisions for restoration
plantings. Although success is highly likely within the species’ now more clearly defined
ranges (particularly when mixed with other framework tree species), additional factors
must be taken into account when considering climatically suitable areas that are far outside
a species’ range, i.e., soil preferences and the presence/absence of essential pollinating
and seed-dispersing animals and microbial symbionts. Caution should be applied when
considering climatic zones that have long been separated from historical ranges by dispersal
barriers (e.g., sea), since where climate is non-limiting, the risk that a species becomes
invasive (threatening local flora) is high. This is, of course, anathema to the principles of
forest ecosystem restoration [1].

4.2. Predicted Potential Distribution of Choerospondias Axillaris and Contributing Variables

Suitable climatic conditions, to support the growth of C. axillaris, were predicted
in both tropical and subtropical parts of the region north of the equator. This species
preferred cooler areas of the subtropics, where mean dry season temperature ranged from
5 to 19 ◦C. This species can occupy habitats with a wide range of precipitation, suggesting
a certain degree of drought tolerance. In Nepal, for example, Guatum ranks this species as
moderately drought-tolerant [48].

Topography and suboptimal climatic conditions along the Himalayas may prevent
C. axillaris from expanding its range west into highly suitable climatic areas in Pakistan,
Afghanistan, and Tajikistan. To the south, the Javan sea and a wide band of hostile climatic
conditions in northern Indonesia and East Malaysia may have prevented expansion of this
species’ range into more climatically suitable areas on Java, the Lesser Sunda Islands, Irian
Jaya, and Papua New Guinea. C. axillaris produces fleshy fruits that are very attractive to
a diverse range of terrestrial and arboreal vertebrate frugivores [49]. This contributes to
its framework species status, since such animals disperse seeds into restoration sites from
nearby forest remnants, thus promoting biodiversity recovery. However, it may also limit
the species’ capability to expand its range over long distances, across large areas where a
suitable habitat for such animals does not exist.

C. axillaris is not known to be invasive [50].

4.3. Predicted Potential Distribution of Ficus Hispida and Contributing Variables

F. hispida is very widespread, with the present range and geographic extent of its
predicted climatic niche closely matching previous reports [51]. Of the four species studied,
F. hispida had the widest climatic suitability range. In decreasing order of importance,
precipitation of the driest month, precipitation seasonality, and mean temperature of the dry
season most explained the species’ current geographic range. F. hispida inhabits areas where
variability in monthly precipitation is low or high, relative to mean annual precipitation
(precipitation seasonality ~21%–95%). The species may be highly drought-tolerant, since it
is predicted to grow where precipitation of the driest month falls to ~8 mm.

This species occupies most of the areas where the models predicted that climatic con-
ditions fall within the species’ climatic niche, with the notable exception of the Philippines.
The models predicted that climatic conditions throughout the Philippines were suitable for
F. hispida. However, the species has not yet been recorded in the Philippines. Its absence
from the Philippines may be explained by the fact that the country was not connected
to the rest of the Sunda Shelf islands when sea levels fell during ice ages [52]. Figs of F.
hispida are highly coevolved with fig pollination wasps (Ceratosolen solmsi marchali Mayr in
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Chalcidoidae: Agaomidae) [53]. Another possible explanation for the absence of F. hispida
from the Philippines may be that other factors, i.e., nonclimatic factors, may be detrimental
to the survival of the pollinators.

F. hispida is not known to be invasive, although other Ficus species are, e.g., F. macro-
carpa [50].

4.4. Predicted Potential Distribution of Hovenia Dulcis and Contributing Variables

High precipitation favors H. dulcis. The first two most contributing variables were
precipitation of the coldest and warmest quarter. H. dulcis requires humidity during the
cold season (>87 mm with optimum value of 558 mm) and summer (range ~448–2127 mm
with optimum value of 526 mm). In addition, mean temperatures in the wettest quarter
ranging from 18 to 25 ◦C during the rainy season were suitable for this species. Northern
Thailand marks the southern limit of H. dulcis’ known distribution [54].

Unsuitable climatic conditions in central Thailand and dispersal limitation may pre-
vent spread of the species southwards. The species has not yet been recorded in highly
climatically suitable areas, predicted in the Malay Peninsula, Borneo, western Philippines,
and most parts of Indonesia. Seed dispersal of this species is by medium-sized birds such as
wedge-tailed green pigeons [55,56]. Even though the range of wedge-tailed green pigeons
stretches from southern China to Indonesia, dispersal distance by the birds may not be far
enough to deliver seeds escaping unsuitable climate conditions of central Thailand.

H. dulcis is well-known as an invasive species in Brazil and Tanzania [57–60]. In Brazil,
black capuchin monkeys consume the fruit and may facilitate seed dispersal [58]. Figure 5
illustrates the potential of this species to become invasive in Malaysia, the Philippines,
and Indonesia. Bergamin and his team modelled the distribution of H. dulcis worldwide
under various climate change scenarios [60]. They predicted that the species range is likely
to contract slightly at low and medium latitudes, but with a strong potential for range
expansion in the northern boreal zone [60]. They stated that “it is essential to implement
policies to prevent H. dulcis introduction in suitable areas worldwide, as well as local
population control, especially in biodiversity hotspots. We concur that this species should
not be introduced for forest restoration projects outside of its native range, despite it being
an excellent framework tree species in northern Thailand” [28].

4.5. Predicted Potential Distribution of Prunus Cerasoides and Contributing Variables

P. cerasoides grows in low-temperature habitats. Mean temperature of the driest quarter
was the most important climatic variable. The upper limits of suitable ranges of mean
temperature of dry season and summer were relatively low: 19 and 26 ◦C, respectively.
Furthermore, suitable climatic conditions included medium temperature variability within
a month relative to the year (~43%–63%). In Thailand, relatively low temperatures are
found at high elevations (>1000 m asl.), resulting in the occurrence of P. cerasoides in
upland evergreen forest, evergreen and deciduous forest, and evergreen and pine forest,
particularly in disturbed areas and the forest edge [61]. Our findings suggest that high
temperature and high temperature fluctuations limit the distribution of this species.

Despite highly suitable climatic conditions in northern Myanmar, P. cerasoides has
not been recorded there, abruptly truncating the recorded distribution of the species at
the national border between Myanmar, China, and Thailand. This suggests that a lack of
collection effort in Myanmar may be responsible for the lack of records there. Its occurrence
in the mountains of northern Myanmar is therefore highly likely.

The species has been introduced to Zimbabwe [62], Australia [63], New Zealand [64],
and Japan [65]. It is not known to be invasive [50].

4.6. Study Limitations and Future Direction for Species Distribution Modelling for Forest Restoration

One of the limitations of our study may have been sampling bias in herbarium speci-
men collection. Herbarium specimens are more likely to be collected closer to roads and
herbaria [66]. Furthermore, the density and distribution of the species records are likely
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to be influenced by both geographical accessibility and political history. For example, the
GBIF database contained 0.08 records of vascular plant species per square kilometer in
Myanmar compared with 0.25 records per square kilometer in China [29]. This may indicate
lower sampling effort in Myanmar in comparison to China. The missing data on species
presence affect the differentiation of the environmental conditions between the occurrence
points and the background points [67]. In our study, we addressed sampling bias by
(1) systematic subsampling and (2) restricting the calibration of the model to the extent of
species occurrence data and obtaining the prediction by projecting potential distributions
across tropical and subtropical Asia [67]. In this study, we removed duplicate records and
used systematic subsampling to account for sampling bias [40]. It is important to remove
duplicate records because they lead to overfitting of the models and overestimating habitat
suitability in unsuitable sites. In addition, we systematically sampled the occurrence data,
to account for sampling bias. However, this subsampling method may underestimate the
contribution of highly suitable areas of occurrence, where the high density of records truly
reflected the commonness of the species in those areas.

Further studies may include model calibration with more environmental variables
and field validations of model predictions. Adding other environmental variables to the
models may produce more accurate predictions of species potential distributions, e.g.,
soil variables [68,69] such as soil type, pH, and nitrogen content [70]. Because some soil
properties are likely to be influenced by climatic conditions [71], correlations among the
variables should still be considered when selecting variables to include in the models. In
addition, independent field validation of models is scarce, especially in forest restoration
ecology. To test whether species can grow where models predict suitable habitat, classic
transfer experiments should be performed—transplanting seedlings from their home range
to the predicted suitable habitat.

Potential distributions of more species should be determined to improve future forest
restoration projects. Furthermore, modeling how the distribution of species niches might
change as a result of climate change is also important (e.g., [25,72,73]) to help climate-proof
future forest restoration initiatives. This includes site selection, the selection of indigenous
tree species, and the potential need for assisted species migration.

5. Conclusions

The climatic niches of four tree species were modelled using MaxEnt. Potentially
suitable habitats based on climatic conditions were mapped both inside and outside their
native ranges across tropical and subtropical Asia. The four species studied—Choerospondias
axillaris, Ficus hispida, Hovenia dulcis, and Prunus cerasoides—had already been classified as
excellent tree species for restoring evergreen seasonal forests [28]. The important variables
contributing to their distribution differed among species. Precipitation in the driest month
contributed most to determining the distribution of F. hispida. Mean temperature of the
dry season contributed the most to the species distribution of C. axillaris and P. cerasoides,
while for H. dulcis the precipitation of the cold season was the most important contributing
factor. The predictive potential distribution maps can be used to facilitate species selection
in restoration trials and to determine where not to plant, because a species may become in-
vasive. While this study establishes the usefulness of the techniques used, their application
to a much large number of species is needed, to significantly improve species selection for
forest restoration initiatives.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f13070993/s1, Figure S1: An example of systematic subsampling
of the occurrence data; Table S1: Pearson’s correlation coefficient between each pair of climatic
variables of tropical and subtropical Asia region; Figure S2. An ascendant hierarchical clustering
classification of 19 bioclimatic variables into 10 internally correlated groups (see Table 2 for full
variable names); Figure S3: The area under the receiver-operating characteristic curve (AUC) of each
species.; Appendix S1: Analysis of variable contributions of each species.
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