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Abstract: The prediction of fuel load areas and species associated with these events reduces the
response time to fight forest fires. The objective of this study was to estimate the annual fuel load from
2009–2013, predict the annual fuel load in the rest of the ecosystem, identify species that contribute
most to this load and compare the percentage of area by risk category in the temperate forests of
Tamaulipas. Fuel load was estimated with inventory data using three models. Fuel load was predicted
with elevation, total annual precipitation, mean annual temperature, and enhanced vegetation index
from satellite scenes using partial least squares regression. The highest concentration of fuel load
was associated with the oak, oak-pine, pine forest and mountain mesophyll forest ecosystems. The
contribution of genera to fuel load was different. Quercus contributed the most variation among
clusters, and the contribution among Quercus species was similar. The results highlight the importance
of focusing fuel management programs on this type of ecosystem, emphasizing actions in particular
Quercus, and the results can also serve as a basis for future research, such as carbon sequestration and
forest management programs.

Keywords: forest fire; clusters; vegetation index; partial least squares; PERMANOVA

1. Introduction

Fuel load estimation allows the prediction and identification of forest fire risk areas [1,2].
Forest fires affect approximately 34 million ha/year worldwide [3]. Fuel load can be
estimated from direct measurements [4], by allometric equations [5–7] and by expansion
factors, which transform the volume of forest per tree or per unit area into fuel load
density in m3/ha [8–10]. Point estimates are useful for predicting fuel load in areas where
measurements are lacking [11]. Predictions are made by mathematical models using
independent environmental variables, such as topography [12], vegetation, and climatic
indices [13–17]. The models represent a means to reduce the economic and logistical costs
associated with their estimation and in combination with field data help to reduce the bias
in fuel load estimation [18,19]. However, factors that determine fuel load vary over time;
therefore, it is necessary to include variables that reflect the variation, such as vegetation
indices. Vegetation indices are derived from satellite images, which express the reflectance
of the red and near-infrared electromagnetic regions [20].

Vegetation indices, derived from satellite imagery, reflect spatiotemporal variations in
primary productivity and allow the characterization of different vegetation covers [21,22].
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Among the most used indices are the normalized green–red difference index, ground-
adjusted vegetation index and enhanced vegetation index (EVI). The normalized green–red
difference index is widely used, but it is affected by the presence of aerosols in the at-
mosphere and canopy interference and is less sensitive to dense areas [23,24]. Therefore,
it is necessary to explore the use of other indices that reduce these biases, such as the
EVI, which is used to predict fuel load and fuel moisture and evaluate forest cover [25,26].
The advantage of these layers is that they are available from 2000 to the present, have a
periodicity of 16 days and are freely available [20,27]. The EVI is sensitive to regions of
high biomass, such as those generated by temperate forests [28].

Temperate forest ecosystems, which cover approximately 10 million square kilometers
in the world [29], occupy third place in net primary productivity [30], and from them,
it is possible to obtain parameters of vegetation cover, such as density, leaf area index
and chlorophyll activity, to estimate fuel load and to generate fire severity models [31–35].
Mexico’s temperate forests cover approximately 16.5% of its surface and are a priority for
conservation. The temperate forests of Mexico represent one of the three global hotspots,
regions characterized by their high endemism of plants that survive in 30% or less of their
original distribution [36]. The Madrean pine-oak forests contain nearly 5,300 species of
flowering plants and have a high diversity of pines, with 44 of the 110 recognized species
of pines, more than 135 species of oaks and more than 30% of the species of this genus in
the world, 85 of which are endemic to Mexico [37]. In addition, it is an important source of
environmental services due to its high degree of endemism and species diversity [38], such
as pines, shrubs, bromeliads, and orchids [39]. However, these ecosystems face constant
forest fires that in the last 16 decades have affected 7 million ha of temperate and boreal
forests [3]. In the state of Tamaulipas, 40% of fires occur in temperate forests [40]. Temperate
forests represent 7.21% of the state’s native surface, of which 28.3% are coniferous and
broadleaf species [41]. The temperate forests of Tamaulipas occupy 524 thousand ha, of
which approximately 27% were conserved in the biosphere reserve “El Cielo” [42]; due to
the importance of the ecosystem, it is necessary to generate fuel load maps that identify
temporal and spatial changes.

In this study we predict fuel load from three models to select the optimal method
in the temperate forests of Tamaulipas, identify temporal variations among ecosystem
types, and identify forest genera and species that contribute most to fuel load in the study
area. We propose that the improved vegetation index increases the predictive capacity of
fuel load than variables that do not change over long periods of time such as topography,
altitude, and orientation. Determining the fuel load in these ecosystems is fundamental
for continuing the conservation and use of temperate forests such as the reduction of the
fuel load.

2. Materials and Methods
2.1. Study Area

The state of Tamaulipas is localized in the northeastern part of Mexico, bordered to
the north by the United States of America, to the east by the Gulf of Mexico, to the south
by the state of Veracruz, to the southwest by San Luis Potosí and to the west by Nuevo
León (Figure 1). The temperate forests of Tamaulipas are found in Sierra Madre Oriental,
southwest of the state, and in part of the Northern Gulf Coastal Plains physiographic
province, which extends from sea level to a 4000 m elevation [43]. The temperate forests of
Tamaulipas cover an area of 524,000 ha and comprise the largest area of oak forest, followed
by oak-pine, cloud forest, pine-oak forest and tascate forest [44].

2.2. Description of the Study Area

The climate corresponds to the temperate (C) group, but the semi-warm subhumid
(A)C(wo) subtypes dominate, characterized by an average annual temperature of 18 ◦C,
a temperature of the coldest month lower than 18 ◦C, and a temperature of the hottest
month higher than 22 ◦C. The precipitation of the driest month is less than 40 mm, summer
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rainfall has a total precipitation index less than 43.2, and the percentage of winter rainfall
ranges from 5% to 10.2% of the annual total. The dominant soil units are lithosols, vertisols
and redzins.
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2.3. Database

The fuel load was estimated with data from the State Forest and Soil Inventory
2009–2014 (IEFyS, 2009–2014) [42]. We evaluated 141 conglomerates obtained from Tamauli-
pan forests from 2009 to 2013 (Figure 1). The conglomerates evaluated consist of four
sampling subsites of 400 m2 of woodland, giving an area of 1600 m2. The IFEyS method fol-
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lowed a systematic stratified sampling design, which was separated by a linear equidistance
of 2.5 × 2.5 km. The conglomerate consisted of two sampling units, a primary sampling
unit (PSU) and four secondary sampling units (SSUs). The conglomerate consisted of a
one-hectare circular plot (56.42 m radius), and the four secondary sampling units (SSUs),
or sites, were separated at 45.14 m, arranged in a north-facing inverted Y-shape (Figure 2).
The tree canopy variables recorded were diameter, height, and canopy cover.
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Figure 2. Conglomerates and sampling sites in the forest area. Data are from the State Forest and Soil
Inventory of Tamaulipas 2009–2014.

2.4. Fuel Load Estimation

The fuel load per conglomerate was estimated with three models for temperate forests
using the aboveground biomass of Quercus, Pinus, Arbutus, Juniperus, Juniperus, Liquidambar,
Cedrela, Carpinus, Cupressus, Conestegia, Cercocarpus and Sargentia genus. Model 1 was the
volume equation for temperate forest species, which considers the total real stock or volume
per hectare [9]. Model 2 included equations to estimate the aboveground biomass of five
species of Quercus, four species of Pinus, Juniperus flaccida and broadleaved species that
included the normal diameter (DN), height in cm, a constant and a weighting exponent
by species [17,45,46] as parameters. Model 3 used the equation designed for coniferous
species involving normal diameter (DN), constant value and a weighting exponent [47]
(Table 1). The models consider different parameters; therefore, it is necessary to identify
the best model for the temperate forests of Tamaulipas.

2.5. Fuel Load Comparison between Models

The three models to estimate fuel load to temperate forest use different variables;
therefore, we compared them to identify the differences in fuel load estimation. We
compare the fuel load of each conglomerate obtained from the three models, and since
each conglomerate has three estimates, we use a student’s t-pair test with an α of 0.05.
This method tests whether the mean of sample differences between pairs of models is
significantly different from zero [48].

2.6. Prediction Fuel Load

The fuel load was predicted with topographic (slope and elevation), climatological
(annual evapotranspiration, annual total precipitation, and annual average temperature),
vegetation (canopy height) and the enhanced vegetation index from February to September
(2008 to 2014) (Table 2). The EVI was obtained from MOD13Q1 imagery at a temporal
resolution of 16 days and a spatial resolution of 250 m.

The EVI reduces both atmospheric interference and soil saturation, is more sensitive
to canopy structural variations and is more reliable under high-biomass conditions [49].
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The index incorporates an “L” value to adjust for canopy background and a “C” value to
compensate for atmospheric drag and blue band B values [50]. The relationship of the EVI
to fuel load derived from Terra satellite scenes dated February to September coincided with
the period when field sampling was conducted. The layers were rescaled from a cell size
of 250 m to an arcsecond. The images were projected to Universal Transverse Mercator
Zone 14N.

Table 1. Equations of three models used to estimate fuel load.

Model Species Equation Source

Model real stock Temperate forest Vt = α × DB1 × HB2 Silva-Arredondo y Návar-Cháidez, (2009)

Model aboveground
biomass

Quercus cambyi B = α − 2.3112 × D2.4497 Rodríguez-Laguna et al. (2007)
Quercus laceyi B = α − 2.4344 × D2.5069 Rodríguez-Laguna et al. (2007)

Quercus rysophylla B = α − 2.2089 × D2.3736 Rodríguez-Laguna et al. (2007)
Quercus rugosa B = 0.089 × DN2.5226 Rojas-García et al. (2015)

Quercus ssp B = 0.45534 × DN2 Rojas-García et al. (2015)
Pinus greggi B = −0.177 + (0.015 × DN2) × h) Rojas-García et al. (2015)

Pinus moctezumae B= 1.30454 × DN2.3644444 Rojas-García et al. (2015)
Pinus nelsonni B = 0.1229 × DN2.3964 Rojas-García et al. (2015)
Pinus teocote B = 0.032495 × DN2.766578 Rojas-García et al. (2015)

Juniperus flaccida B = α − 1.6469 × DN2.1255 Rodríguez-Luna et al. (2007)
Broadleaf forest B = EXP(−B0) × (DN2 ∗ h) B1 Soriano-Luna et al. (2015)

Model coniferous
species Coniferous forest B = 5.0 + 150000 × DN − 2.7/DN

− 2.7 + 364946 Brown et al. (1997)

Table 2. Variables used to predict fuel load in the Tamaulipan temperate forest.

Variable Source Accessed Date

Vegetation height (m) http://www.earthenv.org

5 April 2020

Evapotranspiration https://worldclim.org
EVI https://earthexplorer.usgs.gov

Elevation (msnm) https://www.inegi.org.mx
Slope % https://www.inegi.org.mx

Annual precipitation (mm) https://worldclim.org
Annual average temperature (◦C) https://worldclim.org

The variables considered to predict the fuel load were 118 variables, which included
vegetation height, evapotranspiration, the EVI of 112 satellite images, elevation, slope, total
precipitation, and average temperature. We used the variance inflator factor (VIF = 1/(1 − r2))
as a criterion to exclude redundant variation among variables. We applied a multiple
regression, where variables with higher correlation coefficients were used as predictor
variables and the rest of the variables were used as independent variables. We excluded
dependent variables if the VIF was greater than 5.0 because variation in this variable was
contained in the rest of the independent variables. The procedure was repeated until no
variable had a VIF higher than 5. The variables retained to predict fuel load were elevation,
total annual precipitation, average annual temperature, and average and standard deviation
of the EVI of the rainiest months from 2009–2014.

2.6.1. Prediction Models

The prediction of fuel load in the temperate forests of Tamaulipas was performed for
each year. In 2009, we used 29 conglomerates, 22 conglomerates for 2010, 30 for 2011, 31
for 2012 and 29 for 2013. Seventy-five percent of the conglomerates were used to generate
the model, and the remaining 25% were used to validate the model [51]. The choice of
conglomerates to generate the model and validate it was random, using a random function
in the Excel program. Since the choice of conglomerates was random, 10 models per year
were generated. The environmental variables were correlated with the fuel load of the

http://www.earthenv.org
https://worldclim.org
https://earthexplorer.usgs.gov
https://www.inegi.org.mx
https://www.inegi.org.mx
https://worldclim.org
https://worldclim.org
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partial least square regression model with factor analysis in the STATISTICA Version 13
program [52]. The CMP model is a prediction technique that combines the features of
principal component analysis and multiple regression; the model has fewer restrictions
than other multivariate multiple linear regression multivariate models [53]. The CMP
algorithm extracted a set of latent factors that efficiently explained the covariance between
the dependent and independent variables [54]

The generic equation included the effect of each variable, where the number of interac-
tions was equal to the number of independent variables used, in this case five. Thus, the
interactions used were single, double, triple, quadruple, and quintuple.

Y = b0 + b × S + b × D + b × T + b × C + b × Q (1)

wherein:

Y = dependent variable (fuel load obtained from models)
b = coefficient
S = single variable
D = double interaction of variables
T = triple interaction of variables
C = quadruple interaction of variables
Q = quintuple to interaction of variables

The models retained to predict fuel load were those that had a correlation equal to or
greater than 0.5 between those obtained from models and those expected to be obtained
from CMP. The coefficients of the retained models were averaged to generate the final
prediction model. The average model was used to predict the fuel load.

2.6.2. Model Validation

Model validation was performed using two methods: regression and comparison of
means between observed and obtained fuel loads on conglomerates. The comparison of
the fuel load estimation models was performed through Student’s t-test for paired samples
with α = 0.05. Student’s t-test evaluates the significant difference between the means of
two groups, where the hypothesis to test is the absence of differences between the mean
values of the three models used for fuel load prediction [55]. Twenty-five percent of the
clusters were used to validate the models. The validation consisted of comparing the
estimated values with respect to the values obtained with the prediction. The comparison
was performed with Student’s t-test for independent samples, which compares the mean of
the two groups; the data used to validate the model were randomly assigned. The analysis
was performed with the STATISTICA program [52].

2.7. Genus and Species Contribution

This study compared the number of individuals by genus and species among three
fuel load categories through multivariate PERMANOVA using Past [56]. Fuel load was
classified into three risk categories, taking as a reference the fuel behavior model, which
separates the load into low (0 to 13 Mg ha−1), medium (13.1 to 23 Mg ha−1), and high
(23.1 ≥ Mg ha−1) [57]. PERMANOVA is a variant of the ANOVA test, which compares
multidimensional distance within and between groups [58]. The Bray–Curtis analysis
compared the specific composition within and between 12 genera, as well as between 31 tree
species, under the null hypothesis that there is no difference between the structure (number
of individuals per genus) of the three risk categories [59]. The percentage contribution
of species was determined with the SIMPER test to determine the difference or similarity
between groups [60].

2.8. Temporal Variations in Fuel Load Categories by Type of Forest

The temporal variations (years) by fuel load categories were determined with a simple
correspondence test. The year variable was composed of five categories and fuel risk with
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three categories (low, medium, and high) and areas with clouds. The simple correspondence
test is a modification of the X2 test that measures the association of the categories of two
categorical variables and plots them on a two-dimensional graph based on the association
between the categories [61]. The position of the categories on the graph represents the
degree of association between categories of different variables. The interpretation of the
graph is based on the canonical position of categories on the biplot graph. When two
categories of different variables were near, it was associated with a high percentage of area
in a fuel load category and a specific year; otherwise, if the positions of two categories
were separated, then there was a low proportion of area per fuel load category in the year
evaluated. The fuel load categories and years were ranked according to the percentage in
the area in which each fuel load category occurred in each year. The types of vegetation
present were pine forest, tascate forest, pine-oak forest, cloud forest, oak-pine forest, and
oak-oak forest [42].

3. Results
3.1. Fuel Load

The estimated fuel load was similar among the three models in the years evaluated.
Real stock presented the highest estimated fuel load values, where the estimated fuel load
was statistically similar for 2009 and 2013 (Table 3). The fuel load estimation among the
three models was statistically similar. The estimation with aboveground biomass and
coniferous species models was statistically similar for 2009, 2010, 2011, but different in 2012.
Real stock and aboveground biomass estimates were similar. The real stock and coniferous
species models were different in 2010 and 2011 (Table 4).

Table 3. Comparison of fuel load prediction models by year.

Year Model x s Dif x t Value d.f P

2009

Real stock 17.1 21.3
3.7 0.7 28.0 0.483Aboveground biomass 13.4 16.7

Real stock 17.1 21.3
3.6 0.7 28.0 0.458Coniferous species 13.4 16.4

Aboveground biomass 13.4 16.7
0.0 0.0 28.0 0.981Coniferous species 13.4 16.4

2010

Real stock 17.1 9.9
6.1 1.7 21.0 0.097Aboveground biomass 10.9 11.9

Real stock 17.1 9.9
6.5 2.4 21.0 0.024Coniferous species 10.6 10.8

Aboveground biomass 10.9 11.9
0.4 0.1 21.0 0.915Coniferous species 10.6 10.8

2011

Real stock 18.4 14.1
2.7 0.977 29.0 0.336Aboveground biomass 15.7 14.1

Real stock 18.4 14.1
4.7 6.9 29.0 0.000Coniferous species 13.65 11.8

Aboveground biomass 15.7 14.1
2.0 0.7 29.0 0.432Coniferous species 13.7 11.9

2012

Real stock 19.3 15.9
2.5 1.5 30.0 0.129Aboveground biomass 16.7 12.9

Real stock 19.3 15.9
5.5 3.2 30.0 0.029Coniferous species 13.8 11.1

Aboveground biomass 16.7 12.9
3.0 5.9 30.0 0.000Coniferous species 13.8 11.1
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Table 3. Cont.

Year Model x s Dif x t Value d.f P

2013

Real stock 16.7 26.2
5.4 0.8 28.0 0.427Aboveground biomass 11.3 26.4

Real stock 16.7 26.2
7.0 1.1 28.0 0.278Coniferous species 9.7 27.3

Aboveground biomass 11.3 26.4
1.6 0.2 28.0 0.833Coniferous species 9.7 27.3

x = average, s = standard deviation, Dif. x = average differences, t value = value of paired t test, d.f. = degree of
freedom, and P = probability.

Table 4. Analyses of validation results for 25% of the conglomerates in the three prediction models
by year.

Year Model Data x s Dif. x t Value d.f P

2009

Real stock
Observed 20.27 17.00

3.14 0.45 7 0.67Predicted 17.13 30.27

Aboveground
biomass

Observed 20.27 17.00
11.15 1.63 7 0.15Predicted 9.12 23.99

Coniferous species Observed 20.27 17.00
10.30 1.56 7 0.16Predicted 9.97 19.27

2010

Real stock
Observed 20.21 7.90

2.37 1.55 8 0.16Predicted 17.83 8.69

Aboveground
biomass

Observed 17.26 7.66
2.44 1.83 8 0.11Predicted 14.82 7.71

Coniferous species Observed 15.18 5.56
1.13 1.08 8 0.31Predicted 14.06 4.50

2011

Real stock
Observed 17.70 13.63 −11.31 −5.90 6 0.001Predicted 29.01 13.80

Aboveground
biomass

Observed 18.31 13.70 −5.66 −1.48 6 0.19Predicted 23.97 12.45

Coniferous species Observed 18.31 13.70 −2.49 −1.20 6 0.27Predicted 20.80 11.02

2012

Real stock
Observed 17.89 11.01 −8.93 −1.15 7 0.29Predicted 26.82 19.68

Aboveground
biomass

Observed 17.89 11.01 −4.43 −0.92 7 0.39Predicted 22.32 8.25

Coniferous species Observed 13.03 8.35 −5.88 −1.62 7 0.15Predicted 18.91 6.12

2013

Real stock
Observed 13.07 17.01 −1.13 −0.26 6 0.81Predicted 14.20 26.45

Aboveground
biomass

Observed 11.60 14.81 −0.65 −0.24 6 0.82Predicted 12.24 20.31

Coniferous species Observed 9.57 12.98 −0.86 −0.24 6 0.82Predicted 10.43 20.42

x = average, s = standard deviation, Dif. x = average differences, t value = value of paired t test, d.f. = degree of
freedom, and P = probability.

3.2. Prediction

The correlation coefficient (r2) between the conglomerate estimated fuel load and that
obtained by prediction with the partial least square regression model varied from 0.54
(coniferous species model of 2009), while the highest values were presented in the real
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stock and coniferous species models of 2011 and the real stock model of 2013 (Figure 3).
Therefore, predictions had a medium- to high-predictive capacity to predict fuel load on
temperate forests. The highest fuel load was in areas of higher elevation in the eastern part
of the state, as well as in the Sierra Madre Oriental, Sierra de San Carlos, and Sierra de
Tamaulipas (Figure 4).
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The estimated fuel load values were statistically like those predicted with the CMPs,
except for real stock from 2011, which showed differences between observed and expected
values (Table 4).

3.3. Contribution of Genera and Species to Fuel Load

The fuel load categories presented significant differences in plant structure (PER-
MANOVA, F = 6.48, p > 0.0001). Differences occurred between three fuel load categories,
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high and medium (F = 2.9, p > 0.0001), high and low (F = 8.5, p > 0.02), and medium and
high (F = 2.9, p > 0.02), as well as between low and medium (F = 5.6, p > 0.007). Quercus con-
tributed the greatest differences among the three categories; the frequency of individuals of
the genus was the highest in the risk category, followed by the medium-risk category, and
the lowest frequency of individuals was recorded in the low-risk category (Table 5). Species
of Pinus contributed the second highest variation among the three fuel load categories.
The contribution analysis of the 31 species of Quercus was similar among the risk intervals
(F = 0.88 and p = 0.70).

Table 5. Genus’s contribution.

Genus
Contribution

(%)
Acumulative

Contribution (%)

Risk Forest Fire

High Medium Low

Quercus 68.7 68.7 66.7 57.2 31.1
Pinus 17 85.7 11.9 2.8 3.1

Arbutus 6.2 91.9 3.6 3.1 1.8
Juniperus 3.5 95.4 3.8 2 0.6

Liquidambar 2.6 98 1.7 0.9 0.1
Cedrela 0.5 98.5 0.2 0.1 0.1

Carpinus 0.5 99.1 0.3 0 0.1
Cupressus 0.4 99.4 0.1 0 0.1
Conestegia 0.2 99.7 0.1 0 0

Cercocarpus 0.2 99.9 0 0 0.2
Randia 0.1 100 0 0 0.1

Sargentia 0 100 0 0 0

3.4. Variation in Fuel Load by Risk Forest Fires

The percentage of area by risk category varied between years, and medium- and
low-risk fire loads were more frequent in oak and pine-oak forest in 2009. Clouds were
more frequent in pine and cloud forest in 2011 and 2013. A high category of fuel load,
oak-pine and tascate, as well as 2012 and 2010, were not associated with a particular year,
type of forest or category of fuel load (Figure 5).
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4. Discussion

This study estimated fuel load using inventory data through allometric, volume
and temperate forest equations reported in the literature, grouped into three different
models (Table 1). The real stock model could not predict fuel load in 2011 and tended
to generate higher values, while the coniferous species models could predict fuel load in
all years but tended to estimate lower values. Aboveground biomass was a model that
predicted all years and estimated intermediate values. The real stock model underestimated
the fuel load, while the coniferous species model overestimated the fuel load. Model
2 avoided overestimating or underestimating the fuel load in temperate forests. The
aboveground biomass model included species equations for temperate forests, making it
easier to estimate fuel load [17,45,46]. The use of species equations combined with field
data helps to reduce prediction bias [62]. Although the models allowed the prediction of the
fuel load within the temperate forest ecosystem in Tamaulipas, it is advisable to carry out
measurements to contrast the results obtained in this research. The values reported in this
study were like those reported by other authors for temperate forest ecosystems [9,17,33,44],
which ranged from 0.54 Mg ha−1 to 157.01 Mg ha−1, by clusters and by species in pine
forest, Quercus Forest, and mountain mesophyll forest. The values are similar to those
reported by other authors in other parts of the world; for example, in Indonesian forests
an average of 70 to/ha was estimated [63], in forests of southeastern Utah in the United
States estimates ranged from 10 Mg ha−1 to 100 Mg ha−1 [64], in Chinese forests an average
of 69 Mg ha−1 was reported [65] and in eastern North Carolina an average of 20 Mg ha−1

to 120 Mg ha−1 was estimated [66]. The variables used in this study that contributed
to predicting fuel load are related to primary productivity, such as the EVI. Vegetation
indices reflect the spatiotemporal variation in primary productivity [21,49,67] and are
better predictors than variables that remain constant over long periods of time, such as
topography [12]. Vegetation indices, which can be freely obtained, are variables that can
reduce economic and logistical costs in the evaluation of forestry resources. The uses of
these variables include characterization of grasslands [33,68], phenological development
of crops and forests [69,70], biomass estimation, carbon sequestration [71–73] and fire
monitoring and recovery of burned areas [74–77], to generate fire severity models [34]. In
the temperate forests of Tamaulipas, they contributed to predicting the fuel load, identifying
the sites with the highest fuel load. The highest fuel load is in the highest elevation areas
of the Sierra Madre Oriental and the eastern part of the study area, namely, areas that
present the highest humidity coming from the Gulf of Mexico. The months of higher
humidity are related to the greater photosynthetic period of the vegetation and greater
accumulation of fuel material; characteristics that coincide with the forest fire season
in Mexico [78]. However, EVI values may vary according to the season and vegetation
type [79], and EVI values in different seasons should be considered to generate future fuel
models. Additionally, clouds can reduce our capacities to predict fuel load due to their
high reflectance. We found temporal variations in surface cover by area covered by clouds,
where 2011 and 2013 were more frequent in clouds and Pinus forests, which can reduce
our capacity to estimate the fuel load. However, the frequency of months of clouds in an
area can be used as a variable to predict load fuel because it is an indicator of humidity and
primary productivity.

The spatial and temporal variations in forest fuel load are necessary for planning forest
management strategies as well as for modeling and predicting fire behavior [2,80]. In the
present study, fuel load was classified into three risk categories for the occurrence of forest
fires and could also be used for carbon sequestration programs among other uses. Fuel
load and its characteristics are used as variables in forest fire prediction models [81–83]
because they present information on vegetation change, structure, and characteristics in
very short periods of time. Fuel load, as reported in the present study, can be incorporated
into the national forest fire early warning system because it provides better information
than the hot spots involved in the current system since the hot spot is detected after the
occurrence of a forest fire [84]. The fuel load and its characteristics can also be incorporated
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into forest fire prevention systems, such as the systems used in Canada [85] and the United
States [86]. The fuel load could be considered for the current Forest Fire Danger Prediction
System for Mexico, since this system involves the dry fuel variable [83], and the fuel load
would provide information about the intensity of the forest fire.

Temporal variation in fuel load from 2009 to 2013 could be related to droughts, hurri-
canes, rainfall, and frost that occurred in the years evaluated, which are variables that can
be included in the prediction models. The results obtained from the present study can be
used to predict the areas with the highest fire risk, since areas with a high-fuel load tend
to present fires of greater intensity [87]. Fuel load can also be used to estimate structural
changes after a wildfire [88]. The temperate forests of Tamaulipas can present fires of great
magnitude, since they exceed 23 Mg ha−1 [57], which is the amount necessary to generate
surface-to-crown fires [57]. The fuel load of higher plants influences the generation of litter
and bark fuels. However, we recommend evaluating fuel load by type and stratum in
temperate forests due to fuel load variations between types of forests. These estimates
will allow for the evaluation of the evolution, direction and intensity of fires generated in
forest ecosystems.

The present study highlights that fuel load was related to vegetation structure. Species
of Quercus (oaks) contributed the greatest variation to fuel load, followed by oak-pine and
oak-pine-oak forests. Quercus species are characterized by deciduous leaves, grouped on
twigs. The trees can reach up to 20 m in height [89] and tend to be associated with different
species of shrubs and herbaceous plants in the understory, in addition to numerous groups
of epiphytes and mosses [39]. Species of Quercus present a wide plasticity in terms of
resource arrangement, allowing them to adapt to a wide range of environments, which
contributes to their great abundance and diversity [90,91]. Tamaulipas is one of the states
with the highest species richness of Quercus, with 30% of the species reported nationally.
However, it is necessary to use other models that include scrubs and herbaceous strata. The
0.5- to 2-m-high thickets and undergrowth in coniferous forests produce a fuel quantity
of 10–15 t/ha (Rothermel Model 7) [92]. The contribution of Quercus to the fuel load in
this research could be related to the high degree of association with other species, to its
ecological functions such as the capacity to retain water and to being part of the habitat of
other plant species [93].

Quercus presented the highest contribution to fuel load; therefore, in the temper-
ate forests of Tamaulipas, fuel management operations oriented to this genus should be
planned. In these ecosystems, Quercus species coexist with endemic species that are un-
der special protection (Brahea berlandieri, Brehea moori and Tilia mexicana) and threatened
species (Beucarnea recurvata, Abies vejori and Carpinus caroliniana) that are listed in NOM-
059-SEMARNAT-2010 and that can be affected in the case of forest fires [44]. The prediction
of fuel load and the species that contribute most to this parameter can be the subject of
other studies, such as evaluating the health of the ecosystem, monitoring fires, creating a
carbon inventory, prioritizing areas for fuel reduction and implementing forest manage-
ment programs, and monitoring the structural changes of ecosystems before and after the
occurrence of wildfires.

5. Conclusions

This study demonstrated the usefulness of the improved vegetation index (EVI) to
predict the variation in fuel load in temperate forests of Tamaulipas. The aboveground
biomass model allowed a model that can be used to predict fuel load. The results coincide
with those reported by other authors in other forests around the world. The temperate
forests of Tamaulipas present fuel loads ≤ 23 Mg ha−1 capable of causing the different
types of fires up to those of high intensity or crown fires. The highest concentration of fuel
load was distributed in areas of higher productivity and elevation, located to the east of
the temperate forest ecosystem, an area that receives moisture from the Gulf of Mexico
and presents the highest occurrence of forest fires in the state. Pine, pine-oak and oak
forests contain the highest fuel load. Quercus contributed significantly to the fuel load. The
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results of this study can be considered a tool for the management of forest ecosystems
and for the prevention of forest fires, forest stand monitoring, and continued evaluation of
field data using other satellite data and models. They can also be considered a basis for
future research.
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