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Abstract: Aims: Our aim was to investigate how N addition affects arbuscular mycorrhizal fungal
(AMF) growth in Chinese fir plantations. Methods: A Chinese fir plantation was treated with
four different N addition treatments for one and half years starting in April 2019. AMF colonization,
hyphal length density, community composition, and soil properties were under measurement. Results:
N addition caused inapparent effects on AMF colonization, hyphal length density, and functional
guilds (rhizophilic, edaphophilic, and ancestral). The predominant AMF species in the soil was
Septoglomus viscosum. N addition altered AMF community and some rare species (e.g., Entrophospora
infrequens) disappeared with N addition. Conclusion: AMF community structure was more sensitive
to short-time N deposition than the symbiotic relationship between AMF and host plants.

Keywords: N addition; arbuscular mycorrhizal fungi; community composition; colonization;
Chinese fir

1. Introduction

Atmospheric N deposition has increased strongly over the last decades due to N use
in agriculture, fossil fuels, and land conservation [1,2], and ammonium nitrogen (NH4

+-N),
nitrate nitrogen (NO3

−-N), and dissolved organic nitrogen deposition fluxes were up to
8.73, 8.73, and 9.98 kg N ha−1 yr−1, respectively [3]. Increased N deposition raises carbon
sinks, increases N availability and NPP in some ecosystems [4], and typically acidifies
soil [5]. Meanwhile, N deposition, due to its increasing rate and duration, possibly has a
negative impact with on the growth, composition, and function of soil microbes. [6].

Arbuscular mycorrhizal fungi (AMF) are ubiquitous components belonging to the
phylum Glomeromycota. They can form mycorrhizal symbionts with approximately 80%
of land plants [7]. AMF gain a significant presence in increasing the uptake of N and P
to their host plants [8,9] and improving disease resistance, which determines the stability
and versatility of ecosystem [10]. It should be noted that AMF have intra- and extra-
radical structures [11]. Based on their patterns at the family level, AMF can be classified as
edaphophilic, rhizophilic, or ancestral. Rhizophilic AMF help plants reduce root pathogen
infection with fine root, and edaphophilic AMF promote plant nutrients with extraradical
mycelium [12].

AMF structure and community composition can be influenced by climate change,
but the factors that affact AMF parameters are not well understood. Decreasing pH and
P availability caused by N addition can make a big difference in changing soil proper-
ties [13,14], so plants need AMF to overcome resource limitations. However, the impact of
N application on AMF remains controversial. AMF colonization might be decreased [15,16],

Forests 2022, 13, 979. https://doi.org/10.3390/f13070979 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f13070979
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0002-9702-1064
https://doi.org/10.3390/f13070979
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f13070979?type=check_update&version=2


Forests 2022, 13, 979 2 of 14

promoted [17], or have no significant effect [18] by N addition. N addition can also en-
hance [18,19], suppress [20], or have no significant effect [21] on AMF spore density and
hyphae. Some investigations showed that N addition treatments caused significant sup-
pressive impacts on AMF abundance, richness, and diversity [22,23], whereas others found
no significant impact [19,24]. Meanwhile, how these environmental factors shape the AMF
community under N addition is not fully understood. A study observed that the relative
abundance of AMF decreased the reduction of plant demand for N [25]. Importantly, the
morphological modification of AMF caused by soil nutrient changes may be relevant to
their composition owing to the differences of morphological internal responses to nutrient
manipulations [26,27].

Chinese fir (Cunninghamia lanceolata) is a quick-growing timber tree species in south
China [28]. On account of its high wood quality and termite resistance, it is frequently
planted [29]. However, the productivity of the Chinese fir is declining due to soil acidi-
fication, soil aluminum poisoning, and unreasonable planting methods. Lu [30] showed
that the number of AMF operational taxonomic units (OTUs) had an inverted V-shaped
change with the age of the Chinese fir. Liu [14] found that the Chinese fir under N addition
for 2 years would increase AMF colonization and diversity. Cao [31] observed that high N
addition exerted a significant negative effect on AMF community. However, few studies
showed the interactions of Chinese fir and AMF in terms of N deposition and nutrient
availability. Therefore, we purposed to address these questions: (1) how does N addition
affect AMF colonization and the diversity and composition of AMF in Chinese fir; (2) would
the change of soil nutrients availability affect the responses of AMF groups?

2. Materials and Methods
2.1. Study Sites and Sampling

The soil experiment was carried out in the Fengyang Mountain Nature Reserve
(28◦53′56′′ N, 190◦10′56′′ E), Zhejiang Province, China. The mean annual precipitation
and annual temperature are 2400 mm and 12.3 ◦C. Soil properties (0–10 cm) are: total
nitrogen (TN), 4.11 g kg−1; total carbon (TC), 58.73 g kg−1; NH4

+-N, 15.71 mg g−1; NO3
−-

N, 14.66 mg g−1; total phosphorus (TP), 0.3 g kg−1; and bulk density, 0.76 g cm−3. The
Chinese fir was 39 years old with an average diameter at breast height of 21.75 cm and
13.2 m height.

The local N deposition was estimated to be 34 kg N ha−1 yr−1. The N addition treat-
ments included four different levels (four plots per treatment were considered as four inde-
pendent repetitions, sixteen 10 m × 10 m plots in total) to simulate future climate change
scenarios: no fertilization, 50 kg N ha−1 yr−1, 100 kg N ha−1 yr−1, and 200 kg N ha−1 yr−1,
which were regarded as control (CK), low-nitrogen (LN), medium-nitrogen (MN), and
high-nitrogen (HN), respectively. Separated adjacent plots were separated by a 10-m-wide
buffer strip. From April 2019, N was added monthly by spraying urea (CO (NH2)2) solution
on the forest floor as N addition treatments. Meanwhile, CK plots were sprayed with the
same volume of water.

Samples were collected in November 2020. Along the “S” route, six standard trees
were selected in each plot. Weeds and litter around the sample trees were removed before
collecting. Roots and rhizosphere soil around the average standard tree were collected in
the 0–20 cm soil layer from four directions. The fine roots and about 1000 g of rhizosphere
soil (soils adhering to roots by shaking off root surface) from six standard trees were
collected and mixed as one root and one soil sample in each plot, and sixteen root and
soil samples were collected. The soil samples were used for soil physicochemical analysis
and the measurement of AMF colonization, spore isolation studies, and measured hyphal
length density (HLD). The soil samples were air-dried, and the properties were measured,
while the other soil samples were stored with root samples (washed using tap water) in the
refrigerator at 4 ◦C until used.
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2.2. Soil Properties Analysis

All the soil samples were sieved through a 2 mm sieve. Soil pH was measured in a
soil-to-water ratio of 1:2.5 (v/v). Soil NH4

+-N and NO3
−-N concentration were estimated

by colorimetric analysis [32]. Soil available nitrogen (AN) is soil NH4
+-N plus NO3

−-
N. Soil available phosphorus (AP) and total phosphorus (TP) were extracted by sodium
bicarbonate first, and their contents were followed by molybdenum blue colorimetry [33].
Soil total organic carbon was measured by TOC-L CPH/CPN [34]. Soil total carbon (C) and
total nitrogen (N) were measured by an elemental analyzer (Vario MACRO cube, Elementar
Trading Shanghai, Shanghai, China).

2.3. AMF Colonization and Extraradical Hphae Length Density

To highlight AMF structures, roots samples were strained following the methods
described by Philips and Hayman [35], and the percentage of mycorrhizal colonization was
estimated in the light of McGonigle et al. [36]. Extraradical HLD was determined on the
basis of the description by Jakoben et al. [37].

2.4. AMF Spore Separation and Identification

The AMF spores used for identification were obtained from the 20 g air-dried rhizo-
sphere soil samples following the wet sieving and decanting techniques as described by
Brundrett [38]. In order to determine the spore density, the isolated intact healthy spores
were extracted and placed on filter paper. We separated them by color, spore size, orna-
mentations, hyphal attachments, and wall layers, and then used a dissecting microscope
at 45×magnification to observe them. Spores were mounted on slides in polyvinyl–lactic
acid–glycerine (PVLG) and a mixture of PVLG with Melzer’s (1:1; v/v). The spores were
identified according to the International Culture Collection of Vesicular Arbuscular Mycor-
rhizal fungi (INVAM) (http://invam.caf.wvu.edu, last accessed in 21 May 2022) and recent
advances in Glomeromycota taxonomy [39,40].

2.5. AMF Community Parameters and Statistical Analysis

The spore density (SD), frequency of occurrence (FO), relative abundance (RA), impor-
tance value (IA), Shannon–Wiener index (H), Simpson index (D), species richness (SR), and
percentage were used to estimate the AMF community structure [41–43].

Correlation analysis was performed using SPSS 26.0 to test for relationship between
the AMF community composition, parameters and soil properties. Venn was pictured for
Venny 2.0. Graphical presentation was carried out using Origin 2022. Redundancy analysis
(RDA) was conducted with Canoco 5.0 to reveal the influence of soil properties on the
AMF communities.

3. Results
3.1. Effects of N Addition on Soil AMF Colonization, Spore Density, and External Hyphal
Length Density

AMF colonization (p = 0.824), spore density (p = 0.229), and external hyphal length
density (p = 0.435) were not significantly influenced by the nitrogen treatment (Table 1). The
AMF colonization ranged from 74% to 88%. Spore density was highest in MN treatment,
which averaged up to 365 spores per 1g air-dried soil, and spore density was lowest value in
the control treatment. External HLD was highest in the control treatment, which averaged
up to 5.10 m g−1, and was the lowest in the LN treatment.

http://invam.caf.wvu.edu
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Table 1. Responses of arbuscular mycorrhizal fungi under different nitrogen (N) treatments.

CK LN MN HN F-Value p-Value

Colonization (%) 81.75 ± 2.25 84.75 ± 1.60 83.00 ± 3.10 82.00 ± 2.70 0.30 0.82
SD (spore g−1 air-dried soil) 255.69 ± 39.84 297.69 ± 32.33 364.63 ± 37.85 318.94 ± 41.76 1.65 0.23

HLD (m/g) 5.10 ± 0.95 3.53 ± 0.77 3.73 ± 0.46 4.53 ± 0.68 0.98 0.44
SR 21 21 20 19 - -
H 1.89 ± 0.11 1.96 ± 0.11 1.67 ± 0.21 1.94 ± 0.01 1.02 0.42
D 0.79 ± 0.02 0.80 ± 0.03 0.69 ± 0.07 0.81 ± 0.01 1.92 0.18

SD, spore density; HLD, external hyphal length density; SR, species richness; H, Shannon–Wiener index; D,
Simpson index. CK: no fertilization; LN: 50 kg N·ha−1·yr−1; MN: 100 kg N·ha−1·yr−1; HN: 200 kg N·ha−1·yr−1.
Error bars represent ± SE of mean (n = 4).

3.2. Effects of N Addition on Soil AMF Community Composition

Although there was no significant effect of nitrogen treatment on the Shannon index
and Simpson index, nitrogen addition decreased total spore richness (Table 1). The number
of unique AMF species decreased gradually with N addition (Figure 1).
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Figure 1. Venn diagram showing the unique and shared arbuscular mycorrhizal fungi species under
different nitrogen treatments. CK: no fertilization; LN: 50 kg N ha−1 yr−1; MN: 100 kg N ha−1 yr−1;
HN: 200 kg N ha−1 yr−1.

In total, 26 AMF species of spore were detected in four nitrogen treatments (Figure 2;
Table 2; Figure A1). These AMF belonged to 12 genera (Acaulospora, Archaeospora,
Claroideoglomus, Dentiscutata, Diversispora, Entrophospora, Funneliformis, Gigaspora,
Glomus, Rhizophagus, Sclerocystis, and Septoglomus) within six families (Acaulosporaceae,
Ambisporaceae, Claroideoglomus, Diversisporaceae, Gigasporaceae, and Glomeraceae).
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Table 2. Occurrence frequency, relative abundance, and important values of arbuscular mycorrhizal
fungi species in Chinese fir under nitrogen treatment.

Species Number AMF
Nitrogen Treatment

FO (%) RA (%) IV (%)
CK LN MN HN

1 Acaulospora bierticulata + + + + 81.25% 11.79% 46.52%
2 Acaulospora denticulata − + + − 12.50% 1.59% 7.05%
3 Acaulospora excavat + + + + 93.75% 81.63% 87.69%
4 Acaulospora foveata + + + + 25.00% 4.99% 15.00%
5 Archaeospora schenckii + − − − 6.25% 0.91% 3.58%
6 Claroideoglomus claroideum + + − − 12.50% 15.00% 13.75%
7 Claroideoglomus ethunicatum + + + + 43.75% 85.00% 64.38%
8 Dentiscutata heterogama − − + + 12.50% 100.00% 56.25%
9 Diversispora etunicatum − + + + 25.00% 100.00% 62.50%
10 Entrophospora infrequens + − − − 6.25% 100.00% 53.13%
11 Funneliformis mosseae + + + + 37.50% 100.00% 68.75%
12 Funneliformis geosporum + + + + 31.25% 54.41% 42.83%
13 Gigaspora albida − + + + 25.00% 45.59% 35.30%
14 Glomus aggregatum + − + − 6.25% 100.00% 53.13%
15 Glomus ambisporum + − − − 6.25% 2.21% 4.23%
16 Glomus clarum + + + + 93.75% 0.12% 46.94%
17 Glomus melanosporum + + + + 68.75% 6.39% 37.57%
18 Glomus microaggregatum + + − + 18.75% 3.14% 10.95%
19 Glomus multicaule + + + + 62.50% 3.72% 33.11%
20 Glomus multiforum + + + + 93.75% 27.53% 60.64%
21 Glomus reticulatum + + + + 100.00% 34.61% 67.31%
22 Rhizophagus aggregatus + + + + 100.00% 97.39% 98.70%
23 Rhizophagus intraradices − + − − 6.25% 2.61% 4.43%
24 Sclerocystis liquidambaris + + + + 37.50% 40.98% 39.24%
25 Sclerocystis sinuosum + + + + 87.50% 59.02% 73.26%
26 Septoglomus viscosum + + + + 100.00% 100.00% 100.00%

FO, RA, and IV are the frequency of occurrences, relative abundance, and importance value, respectively. CK: no
fertilization; LN: 50 kg N ha−1 yr−1; MN: 100 kg N ha−1 yr−1; HN: 200 kg N ha−1 yr−1.

Acaulospora bireticulata, Acaulospora excacat, Glomus clarum, Glomus melanosporum, Glo-
mus multicaule, Glomus reticulatum, Rhizophagus aggregatus, Sclerocystis liquidambaris, and
Septoglomus viscosum were the dominant species.

Among all treatments, we observed that IV top five were: Septoglomus viscosum
(100%) > Rhizophagus aggregatus (98.70%) > Acaulospora excavat (87.69%) > Sclerocystis sinuo-
sum (73.26%) > Glomus reticulatum (67.31%) (Table 2).

For the CK treatment, Septoglomus viscosum and Entrophospora infrequens (100%)
had the highest IV, followed by Acaulospora excavat (92.13%), Rhizophagus aggregatus
(89.29%), and Funneliformis mosseae (75.00%). For the LN treatment, Septoglomus vis-
cosum (100%) presented the highest IV, followed by Rhizophagus aggregatus (93.75%),
Acaulospora excavat (87.62%), Sclerocystis sinuosum (79.17%), and Diversispora etunica-
tum (75.00%). For the MN treatment, Septoglomus viscosum was the highest IV, followed
by Acaulospora excavat (80.56%), Rhizophagus aggregatus (77.38%), Claroideoglomus
etunicatum (75.00%), and Glomus multiform (66.35%). For the HN treatment, Septoglomus
viscosum had the highest IV, followed by Acaulospora excavat (90.42%), Rhizophagus ag-
gregatus (88.33%), Claroideoglomus etunicatum (75.00%), and Glomus reticultaum (69.56%)
(Figure 3).
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Figure 3. The importance value among arbuscular mycorrhizal fungi under different nitro-
gen treatments. CK: no fertilization; LN: 50 kg N ha−1 yr−1; MN: 100 kg N ha−1 yr−1; HN:
200 kg N ha−1 yr−1.

3.3. Effects of N addition on Soil Nutrients

For the environmental factors measured, added N had insignificant influence on soil
pH. However, N addition increased soil N under LN treatment (+15.05%). Under LN
treatment, soil AP and TP were the highest. Soil N/P increased slightly with N addition
(Table 3).

Table 3. Soil properties under different nitrogen (N) treatments.

CK LN MN HN F-Value p-Value

pH 4.00 ± 0.08 4.02 ± 0.18 3.83 ± 0.08 3.93 ± 0.08 0.57 0.64
TOC (g/kg) 1.39 ± 0.09 1.24 ± 0.26 1.36 ± 0.14 1.50 ± 0.11 1.35 0.30

NH4
+-N (mg/kg) 28.07 ± 1.04 29.48 ± 1.92 32.48 ± 2.91 33.57 ± 3.05 1.16 0.37

AN (mg/kg) 61.43 ± 0.54 60.90 ± 2.60 64.52 ± 3.84 64.65 ± 2.76 0.54 0.67
AP (mg/kg) 7.82 ± 0.96 8.98 ± 0.52 8.03 ± 0.73 8.05 ± 0.59 0.51 0.69

C (g/kg) 89.78 ± 4.06 98.75 ±0.35 93.10 ± 5.25 91.68 ± 3.20 0.70 0.58
N (g/kg) 5.78 ± 0.25 6.65 ± 0.28 6.00 ± 0.28 5.65 ± 0.13 3.37 0.06

P (mg/kg) 234.64 ± 22.57 239.81 ± 21.02 228.52 ± 15.05 223.15 ± 25.56 0.12 0.95
C/N 15.54 ± 0.05 15.67 ± 0.59 16.55 ± 0.68 16.22 ± 0.33 1.03 0.42
N/P 25.31 ± 2.60 25.62 ± 2.78 26.73 ± 2.50 26.81 ± 1.70 0.10 0.96

TOC, total organic carbon; NH4
+-N, ammonium nitrogen; AN, available nitrogen; AP, available phosphorus;

C, total carbon; N, total nitrogen; P, total phosphorus. CK: no fertilization; LN: 50 kg N ha−1 yr−1; MN:
100 kg N ha−1 yr−1; HN: 200 kg N ha−1 yr−1. One-way ANOVA and LSD were used to analyze the differences.
Error bars indicate ± SE of mean (n = 4).

3.4. Relationship between Soil Properties and AMF

AMF colonization was negatively correlated with soil TOC (p < 0.05) (Table 4), external
HLD was negatively connected with soil P (p < 0.05), spore density was positively related
to soil C (p < 0.05), and species richness was in a positive correlation with soil TOC and C
(p < 0.05). The Shannon indices presented a positive correlation with soil pH (p < 0.05).
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Table 4. Spearman correlation coefficients between soil properties and parameters of arbuscular
mycorrhizal fungi.

pH TOC NH4
+-N AN AP C N P C/N N/P

Colonization 0.012 −0.643 * −0.437 −0.571 −0.245 −0.14 −0.126 0.142 0.025 −0.112
HLD −0.062 0.267 0.245 0.288 −0.531 −0.26 −0.197 −0.701 * −0.154 0.564
SD −0.338 0.214 0.008 0.251 0.161 0.679 * 0.477 0.283 0.489 0.002
SR 0.101 0.604 * 0.488 0.551 0.114 0.63 * 0.478 0.039 0.33 0.117
H 0.623 * 0.478 0.341 0.142 0.081 0.306 0.328 −0.023 −0.098 0.117
D 0.560 0.408 0.264 0.105 0.12 0.193 0.209 0.002 −0.066 0.07

Acaulospora −0.378 −0.575 −0.506 −0.52 0.004 −0.332 −0.418 0.575 0.332 −0.708 *
Archaeospora 0.087 0.428 0.016 0.007 −0.237 −0.532 −0.537 −0.027 0.072 −0.25

Claroideoglomus 0.464 −0.303 0.302 −0.029 −0.047 0.077 0.175 0.071 −0.268 −0.045
Dentiscutata 0.014 0.244 0.434 0.451 0.17 0.453 0.349 0.165 0.203 −0.047
Diversispora 0.057 0.482 −0.205 −0.057 −0.051 −0.173 −0.304 0.384 0.399 −0.447

Entrophospora 0.087 0.428 0.016 0.007 −0.237 −0.532 −0.537 −0.027 0.072 −0.25
Funneliformis 0.05 0.764 ** 0.175 0.266 −0.045 −0.163 −0.201 −0.093 0.113 −0.033

Gigaspora −0.644 * −0.385 −0.672 * −0.466 0.042 −0.24 −0.419 0.636 * 0.581 * −0.711 **
Glomus 0.341 −0.133 0.242 0.033 −0.086 0.199 0.279 −0.363 −0.258 0.393

Rhizophagus 0.275 −0.152 −0.376 −0.438 −0.378 0.023 0.081 −0.056 −0.124 0.208
Septogolomus −0.138 0.252 0.23 0.404 0.21 0.179 0.193 −0.194 −0.104 0.288

Ancestral −0.367 −0.508 −0.508 −0.524 −0.036 −0.425 −0.513 0.575 0.347 −0.757 **
Edaphophilic −0.083 0.381 −0.341 −0.154 −0.04 −0.218 −0.381 0.505 0.509 −0.582 *
Rhizophilic 0.361 0.431 0.53 0.52 0.04 0.435 0.541 −0.617 * −0.4 0.801 **

TOC, total organic carbon; NH4
+-N, ammonium nitrogen; AN, available nitrogen; AP, available phosphorus; C,

total carbon; N, total nitrogen; P, total phosphorus. HLD, external hyphal length density; SD, spore density; SR,
species richness; H, Shannon–Wiener index; D, Simpson index. * p < 0.05. ** p < 0.01.

Archaeospora was in a negative correlation with soil N/P (p < 0.05), Funneliformis was
positively correlated with soil TOC (p < 0.01), and Gigaspora was negatively connected
with soil pH, NH4

+-N (p < 0.05), and soil N/P (p < 0.01), but positively related to soil P
and C/N (p < 0.05). Ancestral AMF was in a negative correlation with soil N/P (p < 0.01),
edaphophilic AMF was negatively correlated with soil N/P (p < 0.05), and rhizophilic AMF
was positively connected with soil N/P (p < 0.01) but negatively related to soil P (p < 0.05).

RDA was conducted to evaluate the relationship between the soil chemical properties and the
AMF community (Figure 4). RDA1 accounted for 66.99% of the variations, while RDA2 accounted
for 21.89%. Of the evaluated attributes, the N/P had significant conditional effects (p < 0.01), while
the soil TOC (p = 0.076) and AN (p = 0.092) caused referential effects to the AMF communities.
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The red arrows represent soil properties, the blue arrows represent arbuscular mycorrhizal fungi communities.
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4. Discussion

N addition can make a difference on AMF diversity and community composition,
because with the increase of soil nutrients plants would have a strategy to acquire nutrients
by fine roots or AMF [26,44]. Our results showed that N/P is a factor that has a significant
effect on AMF communities (Figure 4). AMF community structure might have a connection
with the dynamics of soil conditions and C-to-P trade between AMF and plants. It has been
agreed that AMF exchanges P derived from soil for plant carbon [17,44–47]. In our study,
N addition had insignificant influence on AMF colonization, external HLD, spore density,
or diversity. This finding may be explained as the symbiotic relationship between AMF
and root system being stable [48].

Generally, there is little specificity between AMF and the host plant, and several
AMF species could colonize one AM plant at the same time [49,50]. However, different
patterns of colonization with N addition suggest a preference for specific AMF species [51].
In our study, we observed that Glomeraceae was the most predominant family among
all treatments; Glomus, Septoglomus, and Acaulospora were the predominant genera; and
Septoglomus viscosum and Acaulospora foveata were the predominant species. Our results
slightly disagree with previous studies, which presented that Glomus and Acaulospora as
the predominant species due to their smaller size of spore, which helped them produce
more spores in less time [48,52,53]. This discrepancy can be answered by the diverse
species and age of the host plants. The high isolation frequencies of Septoglomus viscosum
indicated that it has a strong ability to adapt to the environment (N deposition). Septoglomus
viscosum can improve plant growth and production [54], which is mainly related to root
and aboveground biomass [55].

Archaeospora schenckii, Entrophospora infrequens, and Glomus ambisporum disappeared
with N treatments (Figure 3), which was in keeping with Eom [19], who also found that
Entrophospora infrequens decreased with N addition. In P-rich (low N/P) soils, nitrogen
application reduces underground carbon allocation, and rare species decrease as N in-
creases. A previous study showed that the influence of N addition on AMF community
appeared different, with added N promoting Glomeraceae in A. Sieversiana, while lessening
them in L. chinensis [16]. Some Glomus species were sensitive to N application, which
indicated that certain species of AMF play an indispensable role in host plant response to
environmental change.

As identified in most surveys conducted in other fields [56–58], we also discovered
Funneliformis mosseae presenting in our study, which was reported to promote plant nutri-
ents [59]. GmosAAP1, an amino acid permease, has been characterized from the extraradical
structure of Funneliformis mosseae, which indicates a potential for amino acid uptake [60].
Our study showed that with N addition, its importance decreased. This decrease may
be explained by a decrease in the dependency on Funneliformis mosseae for N nutrient
acquisition by the host plant.

Above all, our results showed that AMF, participating in and manage the soil nutrient
cycle, could be sensitive to small changes in edatopes. Therefore, studying mycorrhizal
symbionts increases the knowledge of climatic variation [61–63].

AMF were grouped into three guilds, namely, edaphophilic, rhizophilc, and ancestral.
In our study, the percentage followed the order: rhizophilic > edaphophilic > ancestral
(Figure 5c). N addition altered AMF species but did not change functional groups. Despite
the addition of nitrogen, trees may reduce dependence on AMF. Meanwhile, a large group
of rhizophilic guilds function to reduce root pathogen infection and primarily benefit plants
with fine roots prone to pathogen infections.
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Figure 5. Arbuscular mycorrhizal fungi community composition at the genus (a), species (b), and clas-
sified guilds (c) under different nitrogen (N) treatments. CK: no fertilization; LN: 50 kg N ha−1 yr−1;
MN: 100 kg N ha−1 yr−1; HN: 200 kg N ha−1 yr−1.

Many essential factors can influence the life cycle of AMF, such as the species of
host plants [16], light availability [64], temperature [65], rainfall [66], elevation [61], soil
properties [67–69], and the plant community [70]. However, there is no major factor
affecting AMF. In our study, AMF colonization and SR were in significant correlation with
soil TOC, and AMF SD and SR were significantly correlated with soil C. AMF community
structure showed a significant positive correlation with soil C, in keeping with some AMF
that were motivated as the content of organic matter increased [56,71,72].

Individual abundances of AMF spores also presented interannual differences. AMF
communities, well-known for efficient interannual variability of spores, and our results
suggested a small number of AMF responded to N fertilization. The randomness of this
species response implies that a short-time study on AMF may not be sufficient to catch
variations in the response to N addition [48,73].

Even the spore community could not reflect the active colonizing AMF community
composition [74], but it remains a useful indicator for when we need a reference of ecological
change in replicated treatments. We can observe changes which we can measure to try to
predict unmeasurable sources that are also changing, perhaps they may even predict more
than the spores of AMF subsets.

5. Conclusions

We found that added N caused no significant impact to AMF colonization, hyphal
length density, and classified guilds (rhizophilic, edaphophilic, and ancestral). Septoglomus
viscosum was the predominant species in all different N addition treatments. N addition
altered AMF community, and some rare species (eg. Entrophospora infrequens) disappeared.
Our findings supported that compared with AMF structure, AMF community composition
is more sensitive to short-time N deposition, and more attention should be paid to AMF
community structure in future studies.
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53. Jamiołkowska, A.; Księżniak, A.; Gałązka, A.; Hetman, B.; Kopacki, M.; Skwaryło-Bednarz, B. Impact of abiotic factors on
development of the community of arbuscular mycorrhizal fungi in the soil: A Review. Int. Agrophys. 2018, 32, 133–140. [CrossRef]

http://doi.org/10.1038/s41396-018-0189-7
http://doi.org/10.1007/s10342-020-01333-0
http://doi.org/10.1016/j.foreco.2020.117896
http://doi.org/10.1038/s41598-019-54452-z
http://doi.org/10.1016/j.geoderma.2020.114273
http://doi.org/10.1007/s11356-018-3900-3
http://doi.org/10.1007/s10533-018-0510-6
http://doi.org/10.1016/j.geoderma.2019.03.012
http://doi.org/10.1016/S0007-1536(70)80110-3
http://doi.org/10.1111/j.1469-8137.1990.tb00476.x
http://doi.org/10.1111/j.1469-8137.1992.tb01077.x
http://doi.org/10.1111/j.1469-8137.2011.03962.x
http://doi.org/10.5598/imafungus.2011.02.02.10
http://doi.org/10.3390/f10050424
http://doi.org/10.1038/163688a0
http://doi.org/10.1016/j.soilbio.2021.108418
http://doi.org/10.1111/j.1469-8137.2009.03110.x
http://doi.org/10.1111/1365-2745.12312
http://doi.org/10.1073/pnas.1310880110
http://doi.org/10.1890/06-1772.1
http://doi.org/10.1890/1051-0761(2003)13[1164:STATCS]2.0.CO;2
http://doi.org/10.3389/fpls.2018.00752
http://doi.org/10.1111/mec.14403
http://doi.org/10.1111/j.1469-8137.2004.01235.x
http://www.ncbi.nlm.nih.gov/pubmed/15720639
http://doi.org/10.1515/intag-2016-0090


Forests 2022, 13, 979 14 of 14

54. Tedone, L.; Ruta, C.; De Cillis, F.; De Mastro, G. Effects of Septoglomus viscosum inoculation on biomass yield and steviol
glycoside concentration of some Stevia rebaudiana chemotypes. Sci. Hortic. 2020, 262, 109026. [CrossRef]

55. Todeschini, V.; AitLahmidi, N.; Mazzucco, E.; Marsano, F.; Gosetti, F.; Robotti, E.; Bona, E.; Massa, N.; Bonneau, L.; Marengo, E.;
et al. Impact of Beneficial Microorganisms on Strawberry Growth, Fruit Production, Nutritional Quality, and Volatilome. Front.
Plant Sci. 2018, 9, 1611. [CrossRef] [PubMed]

56. Alguacil, M.D.M.; Torrecillas, E.; García-Orenes, F.; Roldan, A. Changes in the composition and diversity of AMF communities
mediated by management practices in a Mediterranean soil are related with increases in soil biological activity. Soil Biol. Biochem.
2014, 76, 34–44. [CrossRef]

57. Borriello, R.; Lumini, E.; Girlanda, M.; Bonfante, P.; Bianciotto, V. Effects of different management practices on arbuscular
mycorrhizal fungal diversity in maize fields by a molecular approach. Biol. Fertil. Soils 2012, 48, 911–922. [CrossRef]

58. Avio, L.; Castaldini, M.; Fabiani, A.; Bedini, S.; Sbrana, C.; Turrini, A.; Giovannetti, M. Impact of nitrogen fertilization and soil
tillage on arbuscular mycorrhizal fungal communities in a Mediterranean agroecosystem. Soil Biol. Biochem. 2013, 67, 285–294.
[CrossRef]

59. Karasawa, T.; Hodge, A.; Fitter, A.H. Growth, respiration and nutrient acquisition by the arbuscular mycorrhizal fungus Glomus
mosseae and its host plant Plantago lanceolata in cooled soil. Plant Cell Environ. 2012, 35, 819–828. [CrossRef]

60. Cappellazzo, G.; Lanfranco, L.; Fitz, M.; Wipf, D.; Bonfante, P. Characterization of an Amino Acid Permease from the Endomycor-
rhizal Fungus Glomus mosseae. Plant Physiol. 2008, 147, 429–437. [CrossRef]

61. Zhang, M.; Shi, Z.; Yang, M.; Lu, S.; Cao, L.; Wang, X. Molecular Diversity and Distribution of Arbuscular Mycorrhizal Fungi at
Different Elevations in Mt. Taibai of Qinling Mountain. Front. Microbiol. 2021, 12, 609386. [CrossRef]

62. Shi, G.; Yao, B.; Liu, Y.; Jiang, S.; Wang, W.; Pan, J.; Zhao, X.; Feng, H.; Zhou, H. The phylogenetic structure of AMF communities
shifts in response to gradient warming with and without winter grazing on the Qinghai–Tibet Plateau. Appl. Soil Ecol. 2017, 121,
31–40. [CrossRef]

63. Panneerselvam, P.; Kumar, U.; Senapati, A.; Parameswaran, C.; Anandan, A.; Kumar, A.; Jahan, A.; Padhy, S.R.; Nayak, A.K.
Influence of elevated CO2 on arbuscular mycorrhizal fungal community elucidated using Illumina MiSeq platform in sub-humid
tropical paddy soil. Appl. Soil Ecol. 2019, 145, 103344. [CrossRef]

64. Neuenkamp, L.; Zobel, M.; Koorem, K.; Jairus, T.; Davison, J.; Öpik, M.; Vasar, M.; Moora, M. Light availability and light demand
of plants shape the arbuscular mycorrhizal fungal communities in their roots. Ecol. Lett. 2021, 24, 426–437. [CrossRef] [PubMed]

65. Bunn, R.; Lekberg, Y.; Zabinski, C. Arbuscular mycorrhizal fungi ameliorate temperature stress in thermophilic plants. Ecology
2009, 90, 1378–1388. [CrossRef] [PubMed]

66. Wang, J.; Zhang, J.; Wang, C.; Ren, G.; Yang, Y.; Wang, D. Precipitation exerts a strong influence on arbuscular mycorrhizal fungi
community and network complexity in a semiarid steppe ecosystem. Eur. J. Soil Biol. 2021, 102, 103268. [CrossRef]

67. Chen, Y.-L.; Xu, Z.-W.; Xu, T.-L.; Veresoglou, S.D.; Yang, G.; Chen, B. Nitrogen deposition and precipitation induced phylogenetic
clustering of arbuscular mycorrhizal fungal communities. Soil Biol. Biochem. 2017, 115, 233–242. [CrossRef]

68. Li, X.; Qi, Z.; Yu, X.; Xu, M.; Liu, Z.; Du, G.; Yang, Y. Soil pH drives the phylogenetic clustering of the arbuscular mycorrhizal
fungal community across subtropical and tropical pepper fields of China. Appl. Soil Ecol. 2021, 165, 103978. [CrossRef]

69. Antunes, P.M.; Lehmann, A.; Hart, M.M.; Baumecker, M.; Rillig, M.C. Long-term effects of soil nutrient deficiency on arbuscular
mycorrhizal communities. Funct. Ecol. 2012, 26, 532–540. [CrossRef]

70. Zhang, J.; Quan, C.; Ma, L.; Chu, G.; Liu, Z.; Tang, X. Plant community and soil properties drive arbuscular mycorrhizal fungal
diversity: A case study in tropical forests. Soil Ecol. Lett. 2021, 3, 52–62. [CrossRef]
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