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Abstract: This research aimed to develop statistical models to predict basal area increment (BAI)
for Araucaria angustifolia using Artificial Neural Networks (ANNs). Tree species were measured
for their biometric variables and identified at the species level. The data were subdivided into
three groups: (1) intraspecific competition with A. angustifolia; (2) the first group of species that
causes interspecific competition with A. angustifolia; and (3) the second group of species that causes
interspecific competition with A. angustifolia. We calculated both the dependent and independent
distance and the described competition indices, considering the impact of group stratification. Multi-
layer Perceptron (MLP) ANN was structured for modeling. The main results were that: (i) the input
variables size and competition were the most significant, allowing us to explain up to 77% of the
A. angustifolia BAI variations; (ii) the spatialization of the competing trees contributed significantly
to the representation of the competitive status; (iii) the separate variables for each competition
group improved the performance of the models; and (iv) besides the intraspecific competition, the
interspecific competition also proved to be important to consider. The ANN developed showed
precision and generalization, suggesting it could describe the increment of a species common in
native forests in Southern Brazil and with potential for upcoming forest management initiatives.

Keywords: increment; individual tree modeling; dendrometric and morphometric variables;
competition indices; mixed forest

1. Introduction

Ecologists and foresters have sought to understand what factors influence the growth
variation of plants and trees, which is essential to explaining forest productivity and
dynamics [1]. Among these factors, the most important internal factors are physiology,
species, age, and genetic characteristics [2,3], and the most important external factors are
climatic conditions, soil-slope, type of competition, and nearby trees [4], besides natural
disturbances and silvicultural cutting practices [5].

The basal area increment (BAI) has been modeled based on individual tree size, stand
development, and other variables of site and competition to analyze the influence of
competition and aridity on tree productivity [6]. Individual-based modeling is one of the
most comprehensive and detailed approaches to predicting individual trees’ growth. It has
been applied to simulate future forest management scenarios [7], predict/explain wood
quality [8], predict habitat quality [9], and plan forest management activities [10].
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Competition is a key process in regulating tree and stands dynamics. In mixed forests,
the effect of species interactions can be assessed by quantifying the influence of intra- and
inter-specific competition on tree growth. Over the years, studies [11–13] have reported
on the competition between angiosperms and conifers primarily because angiosperms
reportedly change conifers in most forest types in the tropics [13]. In mixed conifer-
angiosperm forests in the Southern hemisphere, the long-term dominance relationship
between conifers and angiosperms is also known as “temporal stand replacement” or
Lozenge model, being reported in several studies [13–15].

Mixed Ombrophilous Forests (MOF) consist of a mixture of tropical and temperate
floras formed by hundreds of tree species. The Brazilian Pine (Araucaria angustifolia (Bertol.)
Kuntze, Araucariaceae) is characteristic and an exclusive native to MOF, being considered
the most important coniferous tree of Brazil due to its high wood quality of medium density
and its valued edible seeds [16–18]. Intensive and often indiscriminate harvesting have
significantly reduced the area of the forest. A. angustifolia is protected by the law (Law RS
9519-92) and included in the red list of endangered species by the Brazilian government
and the International Union for Conservation of Nature [19]. Logging of this species is
therefore prohibited [17].

Several studies have been applying better statistical techniques and mathematical
methods to model forest incrementation and determine the relationship between growth
rates and various independent internal and external variables. These methods and tech-
niques include both linear and non-linear regressions, fuzzy logic, Mixed Models (MM),
and, more recently, Artificial Neural Networks (ANNs) [20–23]. The ANNs’ synthesis of
information in a single network helps work with a large amount of data from different
locations, genotypes, climatic conditions, sites, and silvicultural interventions, among other
site characteristics that influence tree growth. Continuous and categorical variables can
thus be used simultaneously in a single trained network to reach accurate estimates [4,24].

ANNs form a subset of artificial intelligence (AI) which are efficient alternatives to
estimate tree growth [25–27], the prognosis of tree diameter, height, and volume [28–30],
survival and mortality [31], biomass and carbon [32,33]—applied with remote sensing
data [34,35]—as well as species richness and composition mapping [36]. ANNs are used
to improve estimates in mixed forests since modeling in this type of forest is complex
and must consider species interactions, long dynamics of spatial or temporal gradients
in resource availability, and climatic conditions. To estimate the volume increment in the
mixed-age Hyrcanian forest of irregular age in Iran, ANN and the support vector machine
were better and more accurate than other machine learning methods and traditional least
squares regression [28]. In Brazil, ANNs were used to estimate the biomass and volume of
different species of Cerrado (Brazilian savanna), obtaining better results than the non-linear
mixed effects (NLME) and Random Forest (RF) models [37]. ANN was also applied in
MOF to estimate the bark thickness of Araucaria angustifolia [38], but the application of AI
techniques to improve estimates of species growth in this type of forest must be further
investigated. This study, therefore, aims to model BAI for Araucaria angustifolia (Bertol.)
Kuntze in a mixed ombrophilous forest in Southern Brazil. Our specific objectives are to:
i. separate trees in groups according to their Importance Value Index (IVI) of the trees;
ii. characterize the effect of competition between groups; iii. develop models using artificial
neural networks (ANNs).

2. Materials and Methods
2.1. Study Area

This research was developed at the Sustainable Use Conservation Unit in the São
Francisco de Paula National Forest (FLONA-SFP) [29◦25′ S and 50◦23′ W]. The MOF study
area occupies 902 ha (≈56%) of a total area of 1606.7 ha.

The FLONA-SFP is located about 930 m above sea level in the northeastern region of
the state of Rio Grande do Sul in the municipality São Francisco de Paula. The characteristic
climate is medium mesothermal (Cfb), a temperate climate with rainfall above 2000 mm
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evenly distributed throughout the year, and a mean annual temperature below 15 ◦C [39].
Table 1 gathers the definitions used in this long study.

Table 1. Definitions of symbols and units used along this study.

Variables Symbology Unit

Diameter at breast height (measured at 1.3 m
from the height of the ground) d cm

Total height h m
Ratio height/diameter hd %
Assmann’s dominant height h100 m
Basal area G m2/ha
Number of trees N trees/ha
Average diameter of plot daverage cm
Competition Index CI -
Lorimer’s Index (Group 1—Intraspecific) Lorimer1 -
Lorimer Index (Group 2—Interspecific) Lorimer2 -
Lorimer Index (Group 3—Interspecific) Lorimer3 -
Lorimer Index (All) Lorimer -
Hegyi Index (Group 1—Intraspecific) Hegyi1 -
Hegyi Index (Group 2—Interspecific) Hegyi2 -
Hegyi Index (Group 3—Interspecific) Hegyi3 -
Hegyi Index (All) Hegyi -
Average tree diameter of the species dm cm
Maximum tree diameter of the species dx cm
Average total tree height of the species hm m
Maximum total tree height of the species hx m
Absolute density AD
Relative density RD %
Absolute dominance ADo
Relative dominance RDo %
Absolute frequency AF
Relative frequency RF %
Importance Value Index IVI %

2.2. Characteristics of the Forest

The Mixed Ombrophilous Forest (MOF) are subtropical conifer-hardwood mixed
forests part of the Atlantic forest’s floristic dominion in South America. They are char-
acterized by the presence of Araucaria angustifolia (Bertol.) Kuntze (Figure 1) [14], which
are in the upper canopy of the forest and dominant in the vegetation [40]. The MOF is
considered one of the most threatened phytophysiognomies in Brazil [41] since intensive
and often indiscriminate harvesting in past decades have significantly reduced the origi-
nal area occupied by this forest. The current legislation thus restricts forest management
by prohibiting the harvest of the most important timber tree species found in this forest,
including Araucaria angustifolia [42].

The study site has low floristic diversity with a Shannon diversity index of 1.58 and
ecological dominance of a few species with a Pielou equability index of 0.93 [43]. The A.
angustifolia had an Importance Value Index (IVI) of 41.60% and 79.29% of the total basal
area of the study site. The most frequent species found were Araucaria angustifolia, Casearia
decandra Jacq., Blepharocalyx salicifolius (Kunth) O.Berg., Ilex brevicuspis Reissek, and Ilex
paraguariensis A.St.-Hil (Table 2).
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Figure 1. Growth conditions of A. angustifolia in Mixed Ombrophilous Forest in Southern Brazil. (A) 
trees inside the forest; (B) trees at the edge of the forest; (C) intraspecific competition; (D) interspe-
cific competition; (E) predominance of Brazilian pine trees within the plot; (F) predominance of 
other species of native trees within the plot; (G) vertical forest structure with predominant intraspe-
cific competition; (H) vertical forest structure with predominant interspecific competition. Photos 
were taken by C.A.G.F. 
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Figure 1. Growth conditions of A. angustifolia in Mixed Ombrophilous Forest in Southern Brazil.
(A) trees inside the forest; (B) trees at the edge of the forest; (C) intraspecific competition; (D) interspe-
cific competition; (E) predominance of Brazilian pine trees within the plot; (F) predominance of other
species of native trees within the plot; (G) vertical forest structure with predominant intraspecific
competition; (H) vertical forest structure with predominant interspecific competition. Photos were
taken by C.A.G.F.

Table 2. Dendrometric and phytosociological characterization of the species trees in plots of mixed
ombrophilous forest in Southern Brazil.

Id. Scientific Name Groups dm dx hm hx AD RD ADo RDo AF RF IVI

(1)
Araucaria

angustifolia
(Bertol.) Kuntze.

(1)—Intraspecific 35.3 75.3 18.3 25.3 333 37.50 41.04 79.29 100 8.01 41.60

(2) Casearia decandra
Jacq.

(2)—Interspecific

13.1 24.5 12.7 17.3 82 9.23 1.16 2.25 80 6.41 5.96

(3)
Blepharocalyx

salicifolius
(Kunth) O.Berg

14.3 25.9 14.0 18.4 51 5.74 0.88 1.70 80 6.41 4.62

(4) Ilex brevicuspis
Reissek 21.0 38.7 17.0 21.4 34 3.83 1.32 2.56 64 5.13 3.84
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Table 2. Cont.

Id. Scientific Name Groups dm dx hm hx AD RD ADo RDo AF RF IVI

(5) Luehea divaricata
Mart.

(2)—Interspecific

17.9 34.2 14.3 19.3 43 4.84 1.22 2.36 52 4.17 3.79

(6)
Sebastiania
brasiliensis

Spreng.
11.4 17.3 11.1 14.7 45 5.07 0.47 0.91 56 4.49 3.49

(7) Ilex paraguariensis
A.St.-Hil. 17.0 31.8 13.9 19.2 23 2.59 0.59 1.13 64 5.13 2.95

(8)
Campomanesia

xanthocarpa
(Mart.) O.Berg

15.5 29.6 13.2 17.4 28 3.15 0.58 1.12 52 4.17 2.81

(9) Myrsine sp.

(3)—Interspecific

14.1 19.5 13.5 16.3 14 1.58 0.23 0.44 40 3.21 1.74

(10)
Citronella

gongonha (Mart.)
R.A.Howard

17.3 27.3 14.4 17.7 14 1.58 0.35 0.68 36 2.88 1.71

(11)
Myrceugenia

cucullata
D.Legrand

12.6 17.5 10.4 12.2 14 1.58 0.18 0.35 40 3.21 1.71

(12)
Xylosma

pseudosalzmannii
Sleumer

13.2 17.2 13.0 16.2 15 1.69 0.21 0.41 32 2.56 1.56

(13) Scutia buxifolia
(Burm.f.) Kurz 15.4 24.6 13.5 17.4 16 1.80 0.32 0.61 28 2.24 1.55

(14)
Maytenus

evonymoides
Reissek

12.2 17.5 10.4 14.5 13 1.46 0.16 0.30 36 2.88 1.55

(15) Ilex dumosa
Reissek 15.1 27.7 13.5 16.8 14 1.58 0.28 0.54 24 1.92 1.35

(16) Eugenia
involucrata D.C. 14.2 21.5 11.6 15.1 10 1.13 0.17 0.33 32 2.56 1.34

(17))
Matayba

elaeagnoides
Radlk.

12.4 20.4 12.7 16.1 9 1.01 0.11 0.22 32 2.56 1.27

(18)
Ocotea pulchella
(Nees & Mart.)

Mez
20.2 31.9 16.6 19.8 10 1.13 0.36 0.70 24 1.92 1.25

(19) Campomanesia
rhombea O.Berg 12.2 17.3 11.6 15.3 9 1.01 0.11 0.21 28 2.24 1.16

(20)
Podocarpus

lambertii Klotzsch
ex Endl.

17.2 23.8 13.9 16.5 8 0.90 0.20 0.39 24 1.92 1.07

(21)
Zanthoxylum

petiolare
A.St.-Hill. & Tul.

15.3 21.1 14.5 16.7 8 0.90 0.15 0.30 20 1.60 0.93

(22)
Nectandra

megapotamica
(Spreng.) Mez

14.4 21.5 13.4 16.5 6 0.68 0.10 0.20 24 1.92 0.93

(23)
Machaerium

paraguariense
Hassl.

16.0 23.5 14.4 17.8 10 1.13 0.22 0.42 12 0.96 0.84

(24) Lamanonia ternata
Vell. 14.7 19.7 13.0 16.1 6 0.68 0.10 0.20 20 1.60 0.83

(25) Prunus myrtifolia
(L.) Urb. 15.0 18.0 14.5 16.8 5 0.56 0.09 0.18 20 1.60 0.78

(26) Casearia obliqua
Spreng. 13.3 17.1 13.9 17.1 5 0.56 0.07 0.14 20 1.60 0.77
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Table 2. Cont.

Id. Scientific Name Groups dm dx hm hx AD RD ADo RDo AF RF IVI

(27)
Sapium

glandulatum
(Vell.) Pax

(3)—Interspecific

12.8 14.8 13.4 17.2 5 0.56 0.07 0.13 20 1.60 0.76

(28)
Solanum

sanctae-catharinae
Dunal

11.2 13.0 11.5 12.8 5 0.56 0.05 0.10 20 1.60 0.75

(29) Inga sp. 16.5 23.4 14.5 16.5 4 0.45 0.09 0.18 16 1.28 0.64

(30) Acca sellowiana
(O.Berg) Burret 11.9 15.6 7.1 10.9 7 0.79 0.08 0.15 12 0.96 0.63

(31) Cupania vernalis
Cambess. 11.8 14.5 12.2 13.6 4 0.45 0.04 0.09 12 0.96 0.50

(32) Cryptocarya
aschersoniana Mez 14.7 17.9 13.6 15.2 3 0.34 0.05 0.10 12 0.96 0.47

(33)

Myrcianthes
gigantea

(D.Legrand)
D.Legrand

14.5 17.7 12.8 14.2 3 0.34 0.05 0.10 12 0.96 0.47

(34)

Sebastiania
commersoniana

(Baill.) L.B.Sm. &
Downs

13.8 16.3 14.1 16.6 3 0.34 0.05 0.09 12 0.96 0.46

(35)

Allophylus edulis
A.St.-Hill., A.Juss

& Cambess.)
Radlk.

12.1 15.0 10.9 12.7 3 0.34 0.04 0.07 12 0.96 0.46

(36)
Annona rugulosa

(Schltfl.)
H.Reiner

11.7 12.5 13.0 14.2 3 0.34 0.03 0.06 12 0.96 0.45

(37)) Ocotea puberula
(Rich) Nees 22.8 33.3 16.8 17.9 3 0.34 0.14 0.26 8 0.64 0.41

(38)
Dasyphyllum

spinescens (Less.)
Cabrera

16.3 20.1 13.8 14.3 3 0.34 0.06 0.13 8 0.64 0.37

(39) Cedrela fissilis
Vell. 20.9 22.7 15.5 16.6 2 0.23 0.07 0.13 8 0.64 0.33

(40) Lonchocarpus sp. 18.7 22.8 16.5 17.4 4 0.45 0.11 0.22 4 0.32 0.33

(41)
Myrrhinium

atropurpureum
Schott

12.0 13.6 14.5 14.6 2 0.23 0.02 0.04 8 0.64 0.30

(42) Picramnia
parvifolia Engl. 10.8 11.8 12.6 14.4 2 0.23 0.02 0.04 8 0.64 0.30

(43) Myrcia oligantha
O.Berg 11.0 11.8 9.8 10.4 2 0.23 0.02 0.04 4 0.32 0.19

(44)
Roupala

brasiliensis
Klotzsch

18.6 18.6 14.8 14.8 1 0.11 0.03 0.05 4 0.32 0.16

(45) Oreopanax fulvus
Marchal 12.3 12.3 11.1 11.1 1 0.11 0.01 0.02 4 0.32 0.15

(46) Banara tomentosa
Clos 12.1 12.1 13.4 13.4 1 0.11 0.01 0.02 4 0.32 0.15

(47) Zanthoxylum
rhoifolium Lam. 11.8 11.8 10.3 10.3 1 0.11 0.01 0.02 4 0.32 0.15

(48) Eugenia
subterminalis DC. 10.6 10.6 9.9 9.9 1 0.11 0.01 0.02 4 0.32 0.15
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2.3. Data Collection

The data were collected from the Long-Term Ecological Research (LTER), installed in
2002 and re-measured annually over eight years. This plot was selected considering the
largest number of trees, the largest number of A. angustifolia, and a proper conservation
stage. The development of models was considered only for the species A. angustifolia.
Variables of size, site, and competition were considered for 331 A. angustifolia trees. The
measurement was conducted in 25 square sample plots, with 20 m totaling one hectare (ha).
Twenty plots (80%) were used for training (fitting) of the BAI models and five plots (20%)
were used for validation purposes. This dataset partition was spatially idealized so that the
selected trees covered the entire variability of the study area.

Firstly, we took the measured circumference at the breast height (therefore, c) and
converted it to diameter at the breast height (d = c/π). The total height (h) of single trees
was measured using Vertex IV’s hypsometer (Haglof, Sweden). With these measurements,
the Assmann dominant height (h100), the basal area per hectare (G), the number of trees
per hectare (N), and the average diameter (daverage) were obtained.

The competition effect of A. angustifolia trees was assessed using competition indices
proposed by Lorimer [44] (Equations (1)–(4)). In addition, the dependent distance described
by Hegyi [45] was also considered (Equations (5)–(8)). Finally, the total competition of the
target tree was classified according to the groups described in Table 2.

Lorimer1 =
∑n

j=1 dj

di
(1)

Lorimer2 =
∑n

j=1 dj

di
(2)

Lorimer3 =
∑n

j=1 dj

di
(3)

Lorimer = Lorimer1 + Lorimer2 + Lorimer3 (4)

where Lorimer: competition index of Lorimer—the numerical values of the sub-indices are
(1) intraspecific competition with A. angustifolia, (2) first group of species that cause inter-
specific competition with A. angustifolia, (3) second group of species that cause interspecific
competition with A. angustifolia (see Table 2); di and dj: diameter at 1.30 m above ground
level (d) of target tree i and competitor j (cm).

Hegyi1 =
n

∑
j=1

dj

di × dist0.5
ij

(5)

Hegyi2 =
n

∑
j=1

dj

di × dist0.5
ij

(6)

Hegyi3 =
n

∑
j=1

dj

di × dist0.5
ij

(7)

Hegyi = Hegyi1 + Hegyi2 + Hegyi3 (8)

where Hegyi: competition index of Hegyi—the numerical values of the sub-indices are
(1) intraspecific competition with A. angustifolia, (2) first group of species that cause inter-
specific competition with A. angustifolia, (3) second group of species that cause interspecific
competition with A. angustifolia (see Table 2); di and dj: diameter at 1.30 m above ground
level (d) of target tree i and competitor j (cm); distij: distance between target tree i and
competitor j, in (m).
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Growth rates were assessed using periodic annual basal area increments (BAI) and
calculated in subsequent continuous measurements of the diameter of A. angustifolia.

BAI =

(
π
4

(
d2

t − d2
t−2

))
2∗ (9)

where BAI: periodic annual increment in basal area (cm2.year−1); dt: diameter at breast
height at the end of the period (cm); dt−2: diameter at breast height at the beginning of the
period (cm); and t: period in years. * Measured in intervals of two years.

2.4. Correlation Analysis

Correlation analysis determines the degree of relationship between two variables,
where the values vary between 0 and 1. Values close to 1 indicate a great correlation
between the variables. Pearson’s correlation analysis Equation (10) was used to describe the
level of association between BAI and variables of size, site and competitions, considering a
5% level of significance:

ρ =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(10)

where ρ: Pearson’s correlation coefficient; xi: observed value of x; x: mean of the ob-
served values x; yi: observed value of y; y: mean of the observed values y; n: number of
observations.

2.5. Modeling Using Artificial Neural Networks (ANNs)

Multi-layer Perceptron (MLP) ANNs with only one hidden layer were used for data
training (Haykin [46]) starting from Data Normalization (DN) according to two types of
intervals [0; 1] and [−1; 1], given by Equation (11):

Xequal =
(Xi − Xminimum). (UL− IL)
(Xmaximum − Xminimum)

+ IL (11)

where Xi: value to be equalized; Xminimum: lowest value of the data set; Xmaximum: highest
value of the data set; UL: upper limit; and IL: inferior limit.

This equalization was used to prevent variables of greater magnitude from influencing
the result more [46]. Table 3 shows the number of neurons and activation functions.

Table 3. Configuration of artificial neural networks to describe the BAI of the A. angustifolia in mixed
ombrophilous forest in Southern Brazil.

Id.* Output
Inputs Number of

Neurons
Activation
Function

X1 X2 X3 X4 X5 Hidden Output Hidden Output

1

BAI

[d] 3

1 Logistic Identity

2 [Lorimer1] 3
3 [Lorimer2] 3
4 [Lorimer3] 3
5 [Lorimer1] [Lorimer2] 6
6 [Lorimer1] [Lorimer3] 6
7 [Lorimer2] [Lorimer3] 6
8 [Lorimer1] [Lorimer2] [Lorimer3] 9
9 [Lorimer] 3
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Table 3. Cont.

Id.* Output
Inputs Number of

Neurons
Activation
Function

X1 X2 X3 X4 X5 Hidden Output Hidden Output

10

BAI

[Hegyi1] 3

1 Logistic Identity

11 [Hegyi2] 3
12 [Hegyi3] 3
13 [Hegyi1] [Hegyi2] 6
14 [Hegyi1] [Hegyi3] 6
15 [Hegyi2] [Hegyi3] 6
16 [Hegyi1] [Hegyi2] [Hegyi3] 9
17 [Hegyi] 3
18 [d] [h] 6
19 [d] [h] [Lorimer1] 9
20 [d] [h] [Lorimer2] 9
21 [d] [h] [Lorimer3] 9
22 [d] [h] [Lorimer1] [Lorimer2] 12
23 [d] [h] [Lorimer1] [Lorimer3] 12
24 [d] [h] [Lorimer2] [Lorimer3] 12
25 [d] [h] [Lorimer1] [Lorimer2] [Lorimer3] 15
26 [d] [h] [Lorimer] 9
27 [d] [h] [Hegyi1] 9
28 [d] [h] [Hegyi2] 9
29 [d] [h] [Hegyi3] 9
30 [d] [h] [Hegyi1] [Hegyi2] 12
31 [d] [h] [Hegyi1] [Hegyi3] 12
32 [d] [h] [Hegyi2] [Hegyi3] 12
33 [d] [h] [Hegyi1] [Hegyi2] [Hegyi3] 15
34 [d] [h] [Hegyi] 9

* 1000 networks trained for each Id.

We used the activation functions (hyperbolic tangent and logistic sigmoid) of the
intermediate layer and activation functions (identity) of the output. In training, the ideal
number of neurons was found by the Fletcher-Gloss method [47], given by Equation (12):(

2.
√

n + n2
)
≤ n1 ≤ (2 . n + 1) (12)

where n: number of network inputs; n1: number of neurons in the hidden layer; and n2:
number of neurons in the output layer.

The ANN prediction uses the mathematical Equation described for MLP [3], as follows:

Y = g

(
θ+

m

∑
j=1

vj

[
n

∑
i=1

f
(

wijXi + βj

)])
(13)

where Y: estimation of the value of the dependent variable; Xi: input value of the i-th
independent variable; wij: connection weight between the i-th input neuron and the
j-th neuron of the hidden layer; βj: bias value of the j-th neuron of the hidden layer;
vj: connection weight between the j-th neuron of the hidden layer and the output neuron;
θ: bias value of the output neuron; f (.): hidden layer activation function; g(.): output
activation function.

ANNs were trained according to the DN evaluated, activation functions (AF) types,
and neurons in the hidden layer (NHL) variations. The maximum amount of NHL defined
by the method in Equation (2) sought to avoid memorizing the input data (over-fitting) or
extracting insufficient information in training (under-fitting).
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2.6. Data Analyses and Statistical Criteria

All the statistical analyses were processed using the package neuralnet available inR
version 3.4.4. The goodness of fit criteria used to assess model performance was based
on the coefficient of determination Equation (14), root mean square error Equation (15),
mean absolute error Equation (16), and mean absolute percentage error Equation (17). In
addition, the graphical analysis of residue was adopted as complementary.

i. Coefficient of determination (R2)

R2 = 1− ∑n
i=1
(
Yi − Ŷi

)2

∑n
i=1
(
Yi − Y

)2 (14)

ii. Root mean square error (RMSE)

RMSE =

√
∑n

i=1
(
Yi − Ŷi

)2

n
(15)

iii. Mean absolute error (MAE)

MAE =
1
n

n

∑
i=1

∣∣Yi − Ŷi
∣∣ (16)

iv. Mean absolute percentage error (MAPE)

MAPE =
1
n

(
n

∑
i=1

[∣∣∣∣Yi − Ŷi

Yi

∣∣∣∣]
)
× 100 (17)

v. and graphical analysis of residues.
Figure 2 shows the workflow used in this study to develop the BAI model using

species groups and ANN.
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3. Results
3.1. Characteristics of the Trees in the Forest

The results of the horizontal structure analysis (Table 2) emphasize, among the 48 species
cataloged in the area, the ecological importance of A. angustifolia in terms of IVI in the
structure of forest remnants, including the influence of intraspecific competition on the species.
Together with seven other species classified as group 2 (interspecific 2; Table 2), this species
represents more than 70% of the total IVI of the forest. All other species categorized as group
3 (interspecific 3; Table 2), which contains more species, had IVI values lower than 2.00.

3.2. Characteristics of the Brazilian Pine Trees in the Plots

The sampled A. angustifolia trees (n = 260 training and n = 71 validation) covered a wide
range of diameter (10.0–75.3 cm) and presented a higher variability, characteristic of uneven-
aged natural forests. Trees ranged from facing high levels of competition to being less
influenced by their surroundings, represented by the Lorimer and Hegyi indices (Table 4).
The intraspecific competition, characterized by Lorimer1 and Hegyi1, was overall higher
than the interspecific competition which affects A. angustifolia trees (Lorimer2, Lorimer3;
Hegyi2, Hegyi3). Tree increment averaged 9.5 cm2.year−1 and trees with growth very close
to zero were also recorded. The site-specific variables (h100, G, N, and daverage) usually
showed less marked variability.

Table 4. Descriptive statistics for measured variables of A. angustifolia in a Mixed Ombrophilous
Forest in Southern Brazil.

Variables Minimum Mean Maximum Std. Dev.

d (cm) 10.0 35.4 75.3 18.1
h (m) 5.0 18.3 25.3 4.0

hd (m/cm) 22.6 62.5 132.8 24.1
BAI

(cm2/year−1) 0.1 9.5 49.8 9.4

h100 (m) 18.8 21.7 23.6 1.3
G (m2/ha) 22.5 55.5 81.8 14.1

N (trees/ha) 550.0 942.2 1275.0 208.2
daverage (cm/ha) 17.7 22.8 26.6 2.2

Lorimer1- 2.70 19.40 87.80 14.85
Lorimer2- 0.92 7.37 33.47 5.18
Lorimer3- 0.21 5.37 24.28 4.30
Lorimer- 6.81 32.14 115.96 21.59
Hegyi1- 0.97 6.95 32.21 5.60
Hegyi2- 0.29 2.60 12.35 1.90
Hegyi3- 0.07 1.89 8.36 1.56
Hegyi- 2.13 11.43 42.60 7.97

3.3. Pearson’s Correlation of BAI with Variables Describing Size, Site, and Competitions

All size and competition-tested variables were significantly correlated (p < 0.01) with
BAI (Table 5). The size variables ‘diameter’ and ‘height’ stand out, representing intrinsic
characteristics of the tree itself (internal factors) and its ability to withstand external factors
and keep growing. Regarding the competition variables, characterized by the Lorimer and
Hegyi indices, negative correlation values were verified, representing the inverse nature of
the relationship.
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Table 5. Pearson’s correlation between BAI vs. variables of size, site, and competition of the A.
angustifolia in a Mixed Ombrophilous Forest in Southern Brazil.

Variables ρ p-Value

d 0.66 <0.0001
h 0.58 <0.0001

hd −0.57 <0.0001
h100 0.04 0.4225

G −0.06 0.2732
N −0.08 0.1205

daverage 0.04 0.5017
Lorimer1 −0.51 <0.0001
Lorimer2 −0.48 <0.0001
Lorimer3 −0.42 <0.0001
Lorimer −0.55 <0.0001
Hegyi1 −0.51 <0.0001
Hegyi2 −0.48 <0.0001
Hegyi3 −0.41 <0.0001
Hegyi −0.55 <0.0001

Site-representative variables, in turn, had low associations with BAI, possibly because
of the lower heterogeneity identified for these variables between the studied plots—likely
influenced by the contiguous design of the area.

3.4. Modeling Using Artificial Neural Networks (ANNs)

Based on the correlations obtained in the previous item, only the size and competi-
tion variables were considered for inclusion in the increment models via artificial neural
networks (Table 3; Table 6). Accuracy gains in relation to the most basic model, which
considered only the diameter, can be observed according to the inclusion of other variables
in the networks, represented by the variations of R2, RMSEMAE, and MAPE. The analysis
of variance followed by the Tukey test at 1% and 5% applied to the MAE statistic helps
observe the significance of these variations (Table 6).

Based on the structured networks, up to 77% of the A. angustifolia BAI variations could
be explained. In comparison with model Id1, positive R2 variations of up to 0.36 were
recovered while RMSE decreased to −2.77 and MAE decreased to −1.83. On the other
hand, the Id33 model differed significantly from the model represented only in diameter
only (p < 0.05; Table 6).

Regardless of the combination of variables assessed, models that combined competi-
tion indices based on Hegyi’s formulation performed better than those that included the
Lorimer index. For the Hegyi models, the spatialization of the competing trees helped rep-
resent the effective influence on the central tree and understand how competition pressure
affects growth.

Furthermore, using separate variables for the sums of each group helped explain the
BAI more than using one variable for the index including all sums, thus covering variations
much better (Table 6; Figure 3). Considering the characteristics of the studied forest and the
forests with A. angustifolia overall, we expected that the competition represented by Group 1
(intraspecific competition) would be more associated with growth than the competition of
Groups 2 and 3 (interspecific competition), especially because of the dominance pattern of the
species. This was true when only these CI variables were included separately in the model
(Id2, Id3, and Id4; Id10, Id11, and Id12), with better performance of Lorimer1 and Hegyi1
(Table 6). However, when these competition indices were combined with variables d and h,
the three groups (Id19, Id20, and Id21; Id27, Id28, and Id29) had very similar performance.
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Table 6. Artificial neural networks and statistics of precision and accuracy of BAI models for A. angustifolia in a Mixed Ombrophilous Forest in Southern Brazil.

id. X1 X2 X3 X4 X5 R2 RMSE MAE 1% 5% MAPE ∆R2 ↑↓ ∆RMSE ↑↓ ∆MAE ↑↓
1 * [d] 0.41 7.27 4.98 ABCD abcdf 98.02 - - -
2 [Lorimer1] 0.33 7.78 5.67 ABC abcd 126.06 −0.09 0.51 0.69
3 [Lorimer2] 0.25 8.23 5.94 AB ab 145.35 −0.17 0.96 0.96
4 [Lorimer3] 0.18 8.59 6.36 A a 193.50 −0.23 1.32 1.38
5 [Lorimer1] [Lorimer2] 0.33 7.76 5.62 ABC abcd 122.28 −0.08 0.48 0.64
6 [Lorimer1] [Lorimer3] 0.35 7.66 5.53 ABC abcdef 122.06 −0.07 0.39 0.55
7 [Lorimer2] [Lorimer3] 0.29 8.01 5.74 ABC abcd 136.32 −0.12 0.73 0.76
8 [Lorimer1] [Lorimer2] [Lorimer3] 0.35 7.64 5.49 ABC abcdef 117.45 −0.06 0.37 0.51
9 [Lorimer] 0.35 7.67 5.52 ABC abcdef 121.12 −0.07 0.40 0.55
10 [Hegyi1] 0.34 7.71 5.61 ABC abcd 120.67 −0.07 0.44 0.63
11 [Hegyi2] 0.27 8.13 5.87 AB abc 145.54 −0.15 0.86 0.90
12 [Hegyi3] 0.18 8.60 6.39 A a 197.05 −0.23 1.33 1.41
13 [Hegyi1] [Hegyi2] 0.34 7.70 5.55 ABC abcde 119.26 −0.07 0.42 0.58
14 [Hegyi1] [Hegyi3] 0.36 7.58 5.45 ABC abcdef 116.66 −0.05 0.30 0.47
15 [Hegyi2] [Hegyi3] 0.31 7.90 5.62 ABC abcd 134.49 −0.11 0.63 0.64
16 [Hegyi1] [Hegyi2] [Hegyi3] 0.37 7.55 5.40 ABC abcdef 113.75 −0.05 0.28 0.42
17 [Hegyi] 0.36 7.59 5.43 ABC abcdef 116.18 −0.05 0.31 0.45
18 [d] [h] 0.43 7.19 4.93 ABCD abcdef 95.19 0.01 −0.08 −0.05
19 [d] [h] [Lorimer1] 0.43 7.18 4.96 ABCD abcdef 94.83 0.02 −0.09 −0.01
20 [d] [h] [Lorimer2] 0.43 7.14 4.89 ABCD abcdefg 96.08 0.02 −0.13 −0.09
21 [d] [h] [Lorimer3] 0.43 7.16 4.93 ABCD abcdef 97.21 0.02 −0.11 −0.05
22 [d] [h] [Lorimer1] [Lorimer2] 0.44 7.11 4.92 ABCD abcdef 93.54 0.03 −0.16 −0.05
23 [d] [h] [Lorimer1] [Lorimer3] 0.59 6.09 4.17 BCD cdefg 81.18 0.18 −1.19 −0.81
24 [d] [h] [Lorimer2] [Lorimer3] 0.52 6.57 4.50 ABCD bcdefg 84.72 0.11 −0.70 −0.48
25 [d] [h] [Lorimer1] [Lorimer2] [Lorimer3] 0.68 5.38 3.82 CD efg 77.66 0.27 −1.89 −1.16
26 [d] [h] [Lorimer] 0.42 7.20 4.95 ABCD abcdef 93.10 0.01 −0.07 −0.03
27 [d] [h] [Hegyi1] 0.43 7.18 4.95 ABCD abcdef 93.38 0.02 −0.10 −0.03
28 [d] [h] [Hegyi2] 0.44 7.11 4.86 ABCD abcdefg 93.53 0.03 −0.16 −0.12
29 [d] [h] [Hegyi3] 0.48 6.86 4.73 ABCD abcdefg 87.57 0.07 −0.41 −0.25
30 [d] [h] [Hegyi1] [Hegyi2] 0.46 7.00 4.81 ABCD abcdefg 91.54 0.04 −0.28 −0.17
31 [d] [h] [Hegyi1] [Hegyi3] 0.66 5.55 3.81 CD fg 79.08 0.25 −1.72 −1.17
32 [d] [h] [Hegyi2] [Hegyi3] 0.63 5.79 4.09 BCD defg 84.74 0.22 −1.48 −0.89
33 [d] [h] [Hegyi1] [Hegyi2] [Hegyi3] 0.77 4.50 3.15 D g 64.03 0.36 −2.77 −1.83
34 [d] [h] [Hegyi] 0.43 7.18 4.97 ABCD abcdef 94.71 0.02 −0.09 −0.01

* Model 1 was considered the reference to compare the evolution of other models according to the statistical criteria assessed. Therefore, arrows up and down represents the given paired
variability represented by the positive and negative values, respectively.
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Moreover, when two distinct competition groups were included in the model, the
combined competition of Group 1 and Group 3 covered the growth variations of the
species more than that of Group 1 and Group 2. Figure 3 shows these characteristics of the
generated models, explaining the high capacity of the networks to represent the variability
found within the data set for the relationship. The Id25 and Id33 models thus stand out,
reaching even the extreme points of BAI variability since their competitive contribution
was observed within the three IVI groups (intra and interspecific).

The smallest interquartile difference identified in the residual analysis for the Id33
model (Figure 4), which also considers the influence of the distance factor between objective
and competitor trees, reinforces the good performance of this model in BAI modeling for
Araucaria angustifolia.
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3.5. Validation of the Developed Models

All generated models performed satisfactorily in the Wilcoxon nonparametric test
for validation (Table 7), considering that, at 5% probability, none of the models showed
significant differences between observed and estimated values. Furthermore, the highest
probability values retrieved coincided with the models that excelled in training, with no
evidence of overfitting networks, thus showing the stability and potential for generalization
of these models.

Table 7. Validation of the ANNs for A. angustifolia BAI in a mixed ombrophilous forest in Southern
Brazil.

Id. X1 X2 X3 X4 X5 p-Value |Wilcoxon|

1 [d] 0.0389
2 [Lorimer1] 0.2116
3 [Lorimer2] 0.0240
4 [Lorimer3] 0.1355
5 [Lorimer1] [Lorimer2] 0.1612
6 [Lorimer1] [Lorimer3] 0.2333
7 [Lorimer2] [Lorimer3] 0.0949
8 [Lorimer1] [Lorimer2] [Lorimer3] 0.2075
9 [Lorimer] 0.1184

10 [Hegyi1] 0.4494
11 [Hegyi2] 0.0268
12 [Hegyi3] 0.2383
13 [Hegyi1] [Hegyi2] 0.2878
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Table 7. Cont.

Id. X1 X2 X3 X4 X5 p-Value |Wilcoxon|

14 [Hegyi1] [Hegyi3] 0.5725
15 [Hegyi2] [Hegyi3] 0.1268
16 [Hegyi1] [Hegyi2] [Hegyi3] 0.3980
17 [Hegyi] 0.2530
18 [d] [h] 0.0531
19 [d] [h] [Lorimer1] 0.0851
20 [d] [h] [Lorimer2] 0.0734
21 [d] [h] [Lorimer3] 0.0680
22 [d] [h] [Lorimer1] [Lorimer2] 0.1093
23 [d] [h] [Lorimer1] [Lorimer3] 0.1131
24 [d] [h] [Lorimer2] [Lorimer3] 0.1093
25 [d] [h] [Lorimer1] [Lorimer2] [Lorimer3] 0.4546
26 [d] [h] [Lorimer] 0.0734
27 [d] [h] [Hegyi1] 0.1099
28 [d] [h] [Hegyi2] 0.0417
29 [d] [h] [Hegyi3] 0.1326
30 [d] [h] [Hegyi1] [Hegyi2] 0.0972
31 [d] [h] [Hegyi1] [Hegyi3] 0.1480
32 [d] [h] [Hegyi2] [Hegyi3] 0.5803
33 [d] [h] [Hegyi1] [Hegyi2] [Hegyi3] 0.5961
34 [d] [h] [Hegyi] 0.1125

4. Discussion

This study presents different models of BAI for A. angustifolia with and without the
CI independent variable estimated in groups of species classified according to IVI and by
intra and interspecific competition. The importance value index (IVI) characterizes the
most important species and species in a high number [48], that is, those most successful
in exploiting the resources of their habitat (from a horizontal perspective), gathering the
sum of the analysis criteria ‘relative density’, ‘frequency’, and ‘dominance of each species
in plant association’. Mixed Ombrophilous Forests (MOFs) in Southern Brazil are thus
marked by the high values of IVI of A. angustifolia; that is, A. angustifolia and a few other
more expressive species are dominant in these forests (Figure 1) [16,49].

Though intraspecific competition is expected to be more associated with the growth
of A. angustifolia [50,51], in this study, the inclusion of interspecific competition based on
Group 3 considerably improved the BAI model (Table 6-Id 23 and Id31). Furthermore,
despite having the lowest mean value of CI (Hegyi and Lorimer—Table 4), Group 3 has
greater species diversity. We therefore hypothesize that interspecific competition is more
associated with growth when considering several species. We encourage future studies
to follow this hypothesis to understand the relationship between the number and size of
species and CI value and tree growth.

Moreover, increment modeling must assess both intraspecific and interspecific compe-
tition as separate variables to obtain better estimates, as verified with the Id25 and Id33
models. This effect is likely due to the weight assumed by each variable in the model, help-
ing reach all the variation in the data. Therefore, one strategy to assess species increment is
including the size variables (d and h) with the variables of vigor, competition, and location
(site, climate) [52].

In the literature, some researchers have described species competition in mixed forests
using different methodologies for growth modeling [42,51,53]. In the research by Orellana
et al. [13], for example, the competition between angiosperms and conifers in MOF was
assessed based on the characterization of ecological groups according to shade-tolerant
and light-demanding species classification. Their results on diameter increment indicated
high intraspecific competition among A. angustifolia trees and moderate competition among
light-demanding species, both intraspecific and with A. angustifolia. The methodology and
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objective used to group the species can indicate different results and interpretations of
growth and dynamics within the forest.

Selecting neighboring competing trees is also a complex part of assessing competition
which can influence the choice of the competition index [54]. Since our study considered
the same competition area for all objective trees, the superiority of the Hegyi index over
the Lorimer index shows that considering the spatialization of trees to assess competition
is important when grouping species by IVI.

The studied MOF is stagnant and overstocked since Brazilian legislation prohibited the
exploitation of the forest’s native species to preserve its remnants [55,56]. Indications show
that the trees in these forests are in high competition, and the permanence of unmanaged old
trees will likely depreciate the forest’s diametric structure since species such as A. angustifolia
depend on light to grow and establish themselves in the forest [55].

Artificial Neural Networks (ANNs) thus proved themselves to be a feasible technique
in the BAI modeling strategies of A. angustifolia for the possibility of including different
variables in the model and increasing the complexity of the relationship. This is possible
because the ANN technique allows new variables to be included [57] based on biological
theory and dynamic processes according to the ecological reality, and not on accidental
or random correlations [58]. Furthermore, the good performance of the generated models
in both training and validation, based on an appropriate structure (number of neurons,
type of activation function, and input variables) indicates the stability of these models and
their ability to present generalization. In this sense, future studies for the species based on
the ANN approach will serve to reinforce these findings and expand their applicability
based on additional investigations from different datasets and in larger areas of its natural
distribution, improving the understanding of its dynamics.

This possibility of improving the description of forest inventory parameters from
machine learning techniques, namely ANN, is relevant for sustainable forest manage-
ment based on the planning of species-specific actions and aligned with the reality of
the forests [28,31,59] - especially mixed uneven-aged forests, in which accurate increment
predictions are essential to maintaining species composition and the structures that char-
acterize the forest [60,61]. For MOFs, this possibility helps ensure the maintenance of this
typology by favoring its regeneration and development. Furthermore, correct strategies for
interventions based on reliable data can guarantee the possibility of economic returns to
landowners while avoiding conversion to other uses [55,62].

5. Conclusions

Tree size and intra- and interspecific competition variables considering the groups
classified according to IVI allowed performance gains of the BAI models. Furthermore,
including distance in the CI formulation (Hegyi index) was significant to represent the
competitive pressure on A. angustifolia in MOF.

The artificial neural networks developed showed precision and evidence of stability
and potential for generalization. This tool can thus be used to control and assist forest
management initiatives by describing the increment of this species common in native
forests in Southern Brazil.
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