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Abstract: An investigation of the effects of two important post-transcriptional regulatory mechanisms,
gene transcription and alternative splicing (AS), on the wood formation of Eucalyptus urophylla
× tereticornis, an economic tree species widely planted in southern China, was carried out. We
performed RNA-seq on E. urophylla × tereticornis hybrids with highly contrasting wood basic density
(BD), cellulose content (CC), hemicellulose content (HC), and lignin content (LC). Signals of strong
differentially expressed genes (DEGs) and differentially spliced genes (DSGs) were detected in all
four groups of wood properties, suggesting that gene transcription and selective splicing may have
important regulatory roles in wood properties. We found that there was little overlap between DEGs
and DSGs in groups of the same trait. Furthermore, the key DEGs and DSGs that were detected
simultaneously in the four groups tended to be enriched in different Gene Ontology terms, Kyoto
Encyclopedia of Genes and Genomes pathways, and transcription factors. These results implied that
regulation of gene transcription and AS is controlled by independent regulatory systems in wood
formation. Lastly, we detected transcript levels of known wood biosynthetic genes and found that
79 genes encoding mainly enzymes or proteins such as UGT, LAC, CAD, and CESA may be involved
in the positive or negative regulation of wood properties. This study reveals potential molecular
mechanisms that may regulate wood formation and will contribute to the genetic improvement
of Eucalyptus.

Keywords: Eucalyptus; RNA splicing; transcription factors; wood formation; differentially
expressed gene

1. Introduction

Widely planted in tropical and subtropical regions, Eucalyptus species are grown for
timber, kraft pulp, and paper production due to their superior growth and adaptability
to a wide range of sites [1]. Although there are over 700 species, just nine species are
estimated to contribute over 90% of the planted area, either as pure species or as hybrid
combinations. Eucalyptus urophylla (Timor white gum) and E. tereticornis (forest red gum)
are both among the nine widely planted species, the latter being a close relative of E. camal-
dulensis (river red gum), and they are widely cultivated, both as pure species and as hybrid
combinations, in several tropical areas of the world [2], providing strong, hard, and durable
heartwood for construction and heavy engineering [3,4]. The E. urophylla × tereticornis
hybrid has been widely cultivated in coastal areas of southern China due to its fast growth,
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favorable wood properties, cold hardiness, and typhoon resistance [5–7]. Like other im-
portant industrial Eucalyptus species, E. urophylla × tereticornis is also targeted by genetic
improvement programs focused on improving wood quality [8,9]. Significant genetic and
genotype-by-environment variation in growth and wood properties have been detected
in E. urophylla × tereticornis hybrids [6]. These effects generate substantial differentiation
in the phenotypes of several wood properties. Wood physical properties including wood
basic density (BD) and chemical properties such as cellulose content (CC), hemicellulose
content (HC), and lignin content (LC) are fundamental traits for kraft pulp and paper
production [10,11]. Wood properties in trees are shaped by a large number of genomic
variants, many of which may regulate gene transcription or alternative splicing (AS) [12].

Wood formation including cell division and expansion, secondary wall formation,
and programmed cell death are intricate developmental processes controlled by numerous
gene families [13,14]. The regulation of wood properties by transcription of lignocellulose-
related genes has been highlighted in Eucalyptus. For example, Shinya et al. [15] compared
the transcript levels of genes involved in wood formation in two hybrid genotypes of
E. urophylla × grandis with different lignin contents and found that a number of genes
associated with monolignol biosynthesis may regulate Eucalyptus wood composition. Naka-
hama et al. [16] compared E. urophylla × grandis hybrids of different BD and found that
most lignocellulosic biosynthesis-related genes showed a trend toward higher levels of
transcription in high-BD trees. The genetic dissection of these important wood properties
allows us to identify major genomic regions containing candidate genes associated with
wood development.

AS produces multiple messenger RNA (mRNA) isoforms from the immature mRNA
of a single gene via regulated usage of RNA splice sites by retaining or removing different
exons and introns to increase the diversity of the transcriptome and proteome [17]. In
plants such as Arabidopsis thaliana [18] and Oryza sativa [19], AS has been shown to have an
influence on growth and development and environmental adaptation. Among forest trees,
the few AS studies that have been carried out focused on Populus, e.g., P. trichocarpa [20]
and P. deltoides [21]. Meanwhile, we still know very little about the AS variation pattern in
Eucalyptus, particularly in relation to wood-forming processes. Recently, high-throughput
RNA sequencing (RNA-seq) technologies have greatly enhanced our ability to obtain gene
transcription profiles and identify AS events [17,22,23]. Xu et al. [12] used RNA-seq to
compare the features and types of AS sites in E. grandis with those of Populus. Their study
identified a large number of xylem genes exhibiting AS; these affected one-quarter of the
highly expressed transcripts in these two species [12]. However, further research is required
to explore the contribution and interaction of AS and gene transcription in wood formation.

In the present study, we performed RNA-seq on the developing xylem of E. urophylla
× tereticornis hybrids with the aim of exploring (1) the features and profiles of gene tran-
scription and AS in individuals with contrasting wood properties, (2) the differentially
expressed genes (DEGs) and differentially spliced genes (DSGs) that play key roles in wood
formation and their functions, and (3) the regulation by known wood biosynthetic pathway
genes of wood properties in Eucalyptus. This study reveals the potential molecular mecha-
nisms controlling the wood formation, which will contribute to the genetic improvement
of Eucalyptus.

2. Results
2.1. Transcriptome Sequencing Quality

Seventeen libraries based on samples taken from individual E. urophylla × tereticornis
hybrid trees with contrasting phenotypes were sequenced using RNA-seq. After processing
the raw sequence data, between 19 and 47 million clean reads were obtained from each
library (Table S1). The average sequence data above 7G was qualified, and the GC content
was between 48% and 53%. Due to differences in sequencing quality, reads from individual
libraries mapping to the E. grandis reference genome [24] ranged from 79.4% to 92.4%, with
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an average of 85.5% (Figure 1e). A total of 490,520 transcripts (between 23,948 and 34,875
per library) were obtained by reference-guided transcriptome mapping.
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Figure 1. Variation of wood properties and selection of highly contrasting phenotypes of E. urophylla
× tereticornis hybrids in an experimental population in southern China. Panels (a–d) show the
distribution of phenotypic variation of BD (a), CC (b), HC (c), and LC (d) from 777 trees. The upper
portion of panels a-d illustrate the approximately normal distribution of phenotypes in each trait
(x-axis boxes indicate the interquartile range), while the lower proportion of panels are jittered
scatterplots with the blue and red dots indicating three high (H) and three low (L) phenotypes
selected for each trait. Panel (e) shows the sequence quality of RNA-seq performed on 17 samples,
including transcript count and percentage of reads that mapped to the E. grandis reference genome.
Note that the suffixes H and L indicate “high” and “low” phenotypes, with five trees representing
two or three traits. For example, BD_L2/HC_H3/LC_H3 is a sampled tree that represents three traits
(low BD, high HC, and high LC).

2.2. Analysis of Differentially Expressed Genes

Significant DEGs from four groups of contrasting wood properties were observed and
visualized using volcano plots (Figure 2a). A total of 1258, 813, 4355, and 2521 genes were
differentially expressed between the individuals with high and low phenotypes for BD, CC,
HC, and LC, respectively, and the distribution of log2 fold change (Log2FC) ranged from
−29.2 to 27.7 (Figure 2a and Table S2). The HC group showed a markedly stronger DEG
signal than the BD, CC, and LC groups. In the BD group, the proportion of upregulated
DEGs was higher than that of downregulated DEGs, while the converse was true for the
CC, HC, and LC groups.

2.3. Alternative Splicing Identification and Differentially Spliced Gene Analysis

By analyzing the transcripts of individuals, 15,440, 10,853, 17,053, and 11,327 AS events
in the BD, CC, HC, and LC groups were detected, respectively. After FDR correction, 771,
666, 1849, and 669 intron clusters were identified with significant differential splicing,
of which the number of intron clusters with three introns was the largest in all groups
(Figure 2b, Tables S2 and S3). An intron cluster was detected with 89 introns in the BD
group, which was the splicing pattern involving the largest number of introns in all splicing
events (“Df = 88, Cluster = chrChr02: clu_28141_NA”; Table S2). Furthermore, 649, 554,
1183, and 648 DSGs were found to be associated with the foregoing intron clusters in the
BD, CC, HC, and LC groups, respectively, accounting for 1.8%, 1.5%, 3.3%, and 1.8% of
E. grandis annotated genes (36,376). For each group, the number of genes that were both
differentially expressed and differentially spliced ranged from 22 to 195 (Figure 3a and S1).
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2.4. Functional Comparison of Key DEGs and DSGs

Intersections of the DEGs and DSGs among the four traits were summarized using
Wayne diagrams (Figure 3), from which we identified 123 key DEGs and 62 key DSGs
(Figure 3b,c and Table S4), i.e., they appeared to be acting on all four traits. We found
that 123 key DEGs were significantly enriched in 62 Gene Ontology (GO) terms, including
46 biological processes, 13 molecular functions, and three cellular components (Figure 4a
and Table S5). The functions of key DEGs were related to a number of GO terms, the most
significant of which included basic cell functions, such as cell proliferation (GO:0008283),
small molecule metabolic process (GO:0044281), and purine ribonucleotide biosynthetic
process (GO:0009152), biological processes, including growth factor activity (GO:0008083),
receptor binding (GO:0005102), phosphotransferase activity, and phosphate group as ac-
ceptor (GO:0016776), and molecular functions including integral component of mem-
brane (GO:0016021), intrinsic component of membrane (GO:0031224), and membrane part
(GO:0044425). Comparatively, we found that the 62 key DSGs were significantly enriched
in a somewhat greater number (88) of GO terms (Figure 4b and Table S5). In the biological
processes and molecular functions, the functions of key DSGs mainly related to Rab GDP-
dissociation inhibitor activity (GO:0005093), ubiquitin protein ligase binding (GO:0031625),
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ubiquitin-like protein ligase binding (GO:0044389), ubiquitin-dependent protein catabolic
process (GO:0006511), modification-dependent protein catabolic process (GO:0019941),
and modification-dependent macromolecule catabolic process (GO:0043632). In the cel-
lular components, key DSGs were most significantly associated with cell (GO:0005623),
intracellular (GO:0005622), and cell part (GO:0044464).
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Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed
to explore the biosynthetic pathway in which the genes were involved. A total of 25
and 12 KEGG pathways were assigned from the key DEGs and DSGs, respectively, of
which five and six pathways were significantly enriched (Table S6). The pathways signifi-
cantly enriched by key DEGs were mainly related to metabolism, e.g., purine metabolism
(ath00230), nitrogen metabolism (ath00910), and galactose metabolism (ath00052). The
key DSGs, on the other hand, were mainly associated with ubiquitin-mediated proteolysis
(ath04120), glyoxylate and dicarboxylate metabolism (ath00630), and protein processing in
endoplasmic reticulum (ath04141). Additionally, other pathways not significantly enriched
from key DSGs included phenylpropanoid biosynthesis (ath00940) and biosynthesis of
secondary metabolites (ath01110), which may be related to various biological activities of
wood cambium cells.

Furthermore, the key DEGs and DSGs were BLASTed against the transcription factors
(TFs) of E. grandis. Among the key DEGs, a total of 21 TFs belonging to 14 families
were identified, including HSF (three), MYB (two), NAC (two), and TCP (two) (Figure S2
and Table S7). Among the key DSGs, a total of 53 TFs were classified into 18 families
that showed differentially spliced characteristics, of which the ERF family had the most
abundant members (12), followed by bHLH (eight), HSF (four), Dof (four), etc. (Figure S2
and Table S7). The frequency of TFs identified in key DSGs was significantly higher than
that of key DEGs. In several families, the number of TFs varied greatly between the key
DEGs and DSGs, especially in ERF and bHLH. Both the key DEGs and the key DSGs
contained some private TF families, e.g., DOG, BBR-BPC, and LBD; however, in several
families they were consistent in number, e.g., MYB, NAC, and TCP. In general, the key
DEGs and DSGs tended to perform different functions.

2.5. Wood Biosynthetic Pathway Genes

A total of 79 known wood biosynthetic pathway genes encoding 32 proteins or en-
zymes from 11 families were detected that may be involved in the regulation of contrasting
phenotypes in E. urophylla × tereticornis hybrids (Figure 5 and Table S8). More than half (43)
of the genes were associated with UDP-glucosyl transferase (UGT). Of these, Eucgr.D02610
was upregulated in the BD group (Log2FC = 7.9) and downregulated in the CC (−7.6),
HC (−8.4), and LC (−8.3) groups; this gene may be involved in the regulation of all four
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wood properties simultaneously. Differential expression of most genes was associated
with HC, e.g., laccase (LAC) and cinnamyl-alcohol dehydrogenase (CAD). Increased CC
may have been associated with upregulated expression of two cellulose synthase (CESA)
genes. Similarly, downregulated expression of three and two CESA genes may have led to
increases in HC and LC, respectively. Overall, these results suggest that the differential ex-
pression of these wood biosynthesis pathway-related genes may have led to corresponding
phenotypic variation.
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3. Discussion
3.1. DEGs and DSGs in Individuals with Contrasting Wood Properties

Signals of substantial gene transcriptional differences can often be detected in geno-
types with highly divergent wood phenotypes, such as E. urophylla × grandis [15,16],
E. globulus [25], E. nitens [26], and Pinus radiata [27]. These studies suggest that DEGs are
important regulators of wood properties. Our study on E. urophylla × tereticornis wood
traits contributes further evidence confirming the regulatory role of DEGs. The differences
in gene transcription between high and low phenotypes were quantified using Log2FC,
and the results showed a range of −21.6–27.7 for the BD group samples, −21.6–12.9 for
CC, −29.2–12.5 for HC, and −27.9–13.1 for LC (Figure 1a), indicating that considerable
differences in gene transcription were detected in these groups. Compared to earlier stud-
ies in Eucalyptus [15,16,26,28], we found a greater number of xylem-related genes. This
is probably due to the highly contrasting phenotypes we selected from within a larger
breeding population with a large number of continuously variable phenotypes.

A better understanding of the AS patterns of genes associated with wood formation
will provide a novel perspective on gene regulation of wood properties. Our results show
that AS events in genes occur frequently in four groups of contrasting phenotypes of
E. urophylla × tereticornis (Figure 1b). Splice junctions from two to 89 introns in our study
and two to 61 exons in P. deltoides [21] indicate a remarkable diversity in AS types in
forest tree species. Such abundance of AS sites and diversity of types suggest that AS
is a universal regulation mechanism of wood formation. In principle, it is possible to
summarize intron retention, skipped exons, 5′ and 3′ AS site usage, and additional complex
events to identify AS events using Leafcutter [29]. The occurrence of AS detected in forest
trees P. trichocarpa [20], P. deltoides [21], P. × euramericana, and E. grandis [12] were clearly
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lower than those in the herbaceous plant A. thaliana [18] and in rice O. sativa [30]. The
observed incidence of AS in genes in this E. urophylla × tereticornis study (666 to 1489 AS
events; Eucalyptus genome size 653.98 Mb) was consistent with a study by Xu et al. [12]
which considered E. grandis (2987 AS events). However, Xu et al. [12] also examined P. ×
euramericana (6031 AS events; Populus genome size 434.29 Mb) indicating that AS events
appear to be more frequent in Populus than Eucalyptus, especially when taking into account
the relatively small Eucalyptus genome.

Between 554 and 1293 DSGs in the four sets of phenotypes studied from significant
AS events were identified, which only accounted for 1.5%–3.3% of the annotated genes
in the E. grandis reference genome [24]. However, it is important to recognize that AS
frequencies in plants are partially dependent on the annotation of genomes; as genome
annotation improves, so too will the identification of AS sites. For instance, in A. thaliana,
the observed AS frequency rose from 11.6% in a 2004 study [31] to 60% in 2012 as genome
annotation improved [18]. With the ongoing development of next-generation sequencing,
understanding the complexity and regulation of AS relating to wood formation will be
made possible by employing larger and more comprehensively annotated samples for
transcriptome sequencing. In the current study, the HC and CC groups exhibited the
lowest (1.5%) and highest (3.3%) DSG frequencies, respectively, revealing differences in AS
regulation of different wood property phenotypes in Eucalyptus.

3.2. The Relationship between DEGs and DSGs

In accordance with this study, little overlap between the DEGs and DSGs was found in
previous studies of model and crop plants [19,32], suggesting that regulation of transcrip-
tion and mRNA splicing is controlled by independent regulatory systems. This mechanism
may be conserved in plants; for example, Xu et al. [12] found similar patterns in forest
trees and observed even less overlap than model and crop plants [19,32]. This may be due
to the influence of cis and trans regulation on the expression of specific genes. Evidence
from a study of P. deltoides suggested that the expression of AS isomers was predominately
cis-regulated, whereas splice junction usage was generally trans-regulated [21]. Likewise,
we found few overlaps (22 to 195 genes) between the DEGs and DSGs in groups of the
same trait, suggesting that independent regulatory mechanisms between transcription and
mRNA splicing may be quite pronounced in forest trees. Moreover, functional analysis
of the key DEGs and DSGs showed that their functions differed substantially. We found
that the key DEGs mainly controlled the growth, metabolic, and biosynthesis processes,
which are related to the metabolism and nutrient transport required for wood forma-
tion [33,34]. In contrast, the functions of the key DSGs were more usually associated with
post-translational protein processing and modification modalities [35], such as ubiquitin
protein ligase and proteolysis. The number of TFs identified within the ERF family was
significantly higher than in other families, and these were mainly concentrated in the key
DSGs. The ERF family reportedly regulates numerous biological and physiological plant
processes, such as morphogenesis, physiological metabolism, and response mechanisms
to various stresses [36–38]. Recently, Seyfferth et al. [39] identified 11 ERFs as putative
regulatory hubs related to Populus wood formation, of which ERF118 and ERF119 were
connected to xylem cell expansion and secondary cell wall formation. This suggests that
key DSGs may be involved in the regulation of wood formation by encoding ERFs. In
addition, even though the number of key DSGs was lower, they were enriched for GO
terms, KEGG pathways, and TFs in higher numbers than key DEGs. This implies that DSGs
may have additional regulatory functions. Indeed, a single gene can generate multiple
mRNA variants through different AS patterns, which increases the diversity of genes or
proteins [40]. We also found that DSGs may be more likely to be independent regulators
of specific wood properties, as the number of private DSGs in each group of traits was
higher than the other intersections (Figure 3c). Conversely, the intersection of the different
groups observed in the Wayne diagram (Figure 3b) involved a higher number of DEGs,
suggesting that the regulation of wood properties by DEGs exhibits pleiotropy. Collectively,
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our results suggest that DEGs and DSGs tend to perform different regulatory functions
during wood formation.

3.3. Transcriptional Levels of Wood Biosynthetic Pathway Genes

The important regulatory role of wood biosynthetic pathway genes on wood traits was
previously demonstrated in forest tree species from the Pinus and Eucalyptus genera [16,27].
We, therefore, focused on the regulatory role of these genes for four important wood prop-
erties in E. urophylla × tereticornis. LAC is a class of glycoprotein polyphenol oxidases. LAC
is involved in lignin biosynthesis by catalyzing the polymerization of two monolignols
(sinapyl and coniferyl alcohol) [41]. In poplar, downregulated expression of two LAC
encoding genes (PtLAC2 and PtLAC3) was found to significantly affect xylem fiber cell
morphology and lead to a reduction in LC [42]. Nakahama et al. [16] showed that one LAC
gene was highly expressed, while two LAC genes were weakly expressed in genotypes of
E. urophylla × grandis with high BD. Similarly, we found that, among the high BD phe-
notypes, one LAC gene was highly expressed, while the other LAC gene was weakly
expressed. In addition, two LAC genes were highly expressed in the high LC group, and
four were weakly or not expressed. This adds weight to the previous finding that the LAC
gene has a significant effect on both the LC and the BD of eucalypts including E. urophylla
× tereticornis. However, while Li et al. [27] found weak expression of the LAC gene but
strong expression of the CESA gene in P. radiata with high BD, we found no difference in
CESA gene expression between the high-BD and low-BD groups. This may be because BD
is a complex physical trait integrating both chemical and structural determinants, which
is, therefore, likely to involve numerous pathways of molecular regulation [43]. Shinya
et al. [15] found that high LC may be associated with stronger expression of the CESA
gene. The two CESA genes we found in the high CC phenotypes both appeared to be
highly expressed, supporting the conclusions of Shinya et al. [15]. Interestingly, all three
CESA genes found in the low HC phenotypes were highly expressed, implying that high
expression of CESA may have contributed to the decrease in HC. Both cellulose and 1,4-
β-D-xylan are in fact dependent on UDP-glucose for their synthesis, and high expression
of CESA may promote greater conversion of UDP-glucose to cellulose, thereby reducing
HC. Interestingly, UGT is a key class of enzymes for the synthesis of 1,4-β-D-xylan, whose
glycosyl donor is UDP-glucose [44]. The variation between transcript levels of xylan biosyn-
thetic pathway genes and HC content has not been documented in two previous studies
of Eucalyptus [15,16]. However, we found that 32 of the 43 UGT genes were differentially
expressed in the HC group and, therefore, may have contributed to the observed variation
in HC.

3.4. Further Research Arising from This Study

Although we identified several DEGs and DSGs in xylem samples taken from pheno-
types contrasting in key wood property traits, we acknowledge some difficulties in inter-
preting the results from this and other studies using similar methods (e.g., [12,15,16,20,21]).
Forest trees are long-lived organisms, and wood-forming processes are known to vary
seasonally and throughout the life of the tree [45]; a small proportion of xylem genes may
even exhibit circadian variation [46]. Sampling tissue and assaying the transcriptome at
a single timepoint is, therefore, effectively only giving a “snapshot” that is less likely to
account for trait-forming processes than would a single sample in a shorter-lived species
such as an annual crop. Wood traits, on the other hand, are typically sampled from one or
multiple tree rings, effectively integrating the temporal variance in the process of wood
formation. Associating a point sample representing transcriptome activity with a wood
chemical sample that has formed over a much longer time period may, therefore, be prob-
lematic. To address this issue, it may be necessary to carry out a sequence of samples at
different timepoints, both within years and throughout the life, or in plantation species, the
crop rotation, of the trees. While this would be expensive and time-consuming to carry out
in a single experiment, it may prove to be possible to build up a picture of whether some
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key genes are actively associated with wood trait phenotypic status at different timepoints
by combining data from different studies. Studies that have attempted to include temporal
variance include Zhang et al. [33], who compared the transcriptomes of Cunninghamia
lanceolata xylem sampled at three cultivation ages (7, 15, and 21 years), and Chao et al. [47],
who compared the transcriptomes of Populus stemwood sampled from six developmental
zones. Significantly, they both found that some DEGs were involved in the regulation
of wood formation or secondary growth at multiple timepoints. It is also promising that
certain DEGs and DSGs identified in this study appear to have also been identified in other
studies of eucalypts and other species. This is despite the fact that the RNA involved in
these separate studies was sampled at single timepoints, most usually in the season of
active tree growth, but at different ages and probably different developmental stages in
the plantation life cycles. Identification of point-sampled transcriptomic processes that can
reliably be associated with wood property traits will be an important practical research
application in the future.

4. Materials and Methods
4.1. Plant Materials

The experimental plantation located in Gonghe town, Heshan city, Guangdong
province, China (22◦32′ N, 113◦02′ E) comprised 320 clonal genotypes of E. urophylla
× tereticornis hybrid established as rooted cuttings. Each clone comprised four ramets or
fewer, with a total of 777 trees (Figure 1a–d). Wood properties of each clonal ramet were
assessed at age 8 years. Traits measured included BD (g·cm−3), CC (%), HC (%), and LC
(%) using near-infrared (NIR) analysis (Figure 1a–d) using the method as detailed by Yang
et al. [6]. Three individual tree replicates were selected to represent the two contrasting
high and low phenotype groups for each of the four traits (BD, CC, HC, and LC) implying
a total of 24 samples. In fact, five selected individuals were representative of more than
one trait (Figure 1a–e), resulting in samples being taken from 17 trees which covered all
24 combinations (three high and three low phenotypes each, from each of four traits). The
xylem/cambium tissues of the 17 individuals were collected in mid-July, which is in the
active period for tree growth in Guangdong, China. Tissue samples were harvested at
breast height (approximately 1.30 m) from the stem’s south-facing aspect. Samples were
harvested by removal of a bark window (a square of about 10 cm × 10 cm), scraping
developing xylem tissues, and removing the phloem. All samples were collected between
9:00 and 11:00 a.m. on the same day and immediately frozen in dry ice. The samples were
then transferred to a −80 ◦C refrigerator for storage.

4.2. RNA Extraction, Library Construction and RNA Sequencing

Total RNA was extracted using the EASYspin Plus Plant RNA Kit (Aidlab, Beijing,
China). RNA quality score (RQS) was evaluated using Labchip GXII Touch (Perkin Elmer,
Waltham, MA, USA). By using VAHTSTM Stranded mRNA-seq Library Prep Kit (Vazyme
Biotech, Nanjing, China), the extracted RNA was prepared for the mRNA-seq library. The
mRNA-seq library size and concentration were assessed using the Labchip GXII Touch
and the QUBIT fluorometer 3.0 (ThermoFisher, Waltham, MA, USA). The constructed
mRNA-seq library was sequenced using the Nextseq-500 platform (Illumina, San Diego,
CA, USA).

4.3. Quality Control of Sequences and Reference-Guided Transcriptome Mapping

Raw data were converted to FASTQ format using the bcl2fastq2 tool (https://support.
illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html, ac-
cessed on 1 March 2018). The raw data were then filtered by removing adaptors using
Trimmomatic-0.36 [48]. To obtain high-quality, clean reads for mapping, raw sequencing
reads were filtered by FastQC, including removing reads with homopolymer counts >20%
and Poly A counts >20%. In addition, reads with sequence quality (>20) and <5 miss-
ing values were retained. Following this quality control step, the clean reads from each

https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html
https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html
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sample were mapped to the E. grandis reference genome (https://phytozome.jgi.doe.gov/
pz/portal.html, accessed on 1 June 2022; Eucalyptus grandis v2.0) with HISAT2 [49]. The
resulting alignments were processed using StringTie [50] for transcript assembly, estimation
of the expression levels of each gene, and obtaining the gene transcription matrices.

4.4. Differentially Expressed Gene and Differentially Spliced Gene Detection

Differential gene expression analysis was carried out using the R package DESeq2 [51].
Differentially expressed genes (DEGs) were defined as those with Log2FC ≥ 1 and a false
discovery rate (FDR)-corrected p ≤ 0.05. Volcano, Venn, and heat maps were drawn using
TBtools v1.0683 [52]. AS events were quantified in both BD, CC, HC, and LC samples using
Leafcutter [29], which is an annotation-free method based on exon–exon junction reads to
identify the excised introns. Leafcutter defines introns that overlap and share the acceptor
or donor splice site as intron clusters, and it summarizes AS events on the basis of intron
excision differences. We identified differentially spliced genes (DSGs) from significant
alternatively spliced intron clusters with a threshold of FDR-corrected p ≤ 0.05.

4.5. Analysis of Gene Ontology and Biological Pathways and Transcription Factor Prediction

We focused on key DEGs and DSGs that were identified simultaneously in four trait
groups and analyzed their function. Firstly, DEGs and DSGs were aligned to A. thaliana with
an E-value ≤ 10−5. Orthologous genes from A. thaliana identified in E. grandis were then
used to perform the downstream analysis [53]. Then, GO enrichment analysis classified the
DEGs and DSGs of each group according to cellular component, molecular function, and
biological process using the PlantRegMap [54] with a threshold of FDR-corrected p ≤ 0.05,
and KEGG pathway analysis using Kobas v3.0 with the same p-value [55]. In addition,
the 2163 TFs from E. grandis collected in the Plant TF Database (PlantTFDB) were used as
references; then, genes as targets of TFs were predicted using PlantTFDB v4.0 [56] from
DEGs and DSGs of each trait, respectively. In addition, we investigated the transcript levels
of known cellulose, hemicellulose, and lignin biosynthesis pathway-related genes in all
DEGs [15].

5. Conclusions

We investigated DEGs and DSGs in E. urophylla × tereticornis hybrid phenotypes with
highly contrasting BD, CC, HC, and LC. The key DEGs and DSGs detected simultaneously
in the four groups of wood properties tend to play different regulatory functions during
wood formation. Seventy-nine wood biosynthetic genes may be involved in the up- or
downregulation of wood properties in E. urophylla × tereticornis hybrids. Our findings
generally concur with several findings from other studies in model plants, agricultural
crops, and forest tree species and contribute to the growing understanding of the role of
specific genes, gene families, and their regulation in the development of wood traits of
economic importance.
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genes that were both differentially expressed and differentially spliced in groups of the same traits.
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