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Abstract: Drilling is one of the oldest and most important methods of processing wood and wood-
based materials. Knowing the optimum value of factors that affect the drilling process could lead
both to high-quality furniture and low-energy consumption during the manufacturing process. In
this work, the artificial neural network modeling technique and response surface methodology were
employed to reveal the optimum value of selected factors, namely, drill tip angle, tooth bite, and
drill type of the delamination factor at the inlet and outlet, thrust force, and drilling torque. The
data set that was used in this work to develop and validate the ANN models was collected from
the literature. The results showed that the developed ANN models could reasonably predict the
analyzed responses. By using these models and the response surface methodology, the optimum
values of analyzed factors were revealed. Moreover, the influences of selected factors on the drilling
process of wood particleboards were analyzed.

Keywords: drill; wood-based boards; drilling quality; ANN modeling; RSM optimization

1. Introduction

Drilling is one of the oldest and most important methods of processing wood and
wood-based materials. One of the most widespread wood-based materials is particleboards
(PB), widely used nowadays in the production of storage furniture (e.g., kitchen furniture).
For the manufacture of this type of furniture, PB (usually pre-laminated) is joined with
dowels inserted into holes, which are made by drilling, in addition to other holes made for
other purposes (holes for locks, for various accessories, for shelf supports, etc.). This can
lead to a dozen holes (made by drilling), and sometimes over one hundred. For example,
the IKEA BILLY bookcase (which is not a complex piece of furniture) requires 192 holes.

Given the importance of this processing method, research work has been carried out
over time to study it. Hetzel’s research focused on the PB (and plywood) drill [1]. The
investigations aimed to determine the influences of the adhesive on the durability of the
cutting edges, the influences of the type of drill, its diameter, and the geometry of the edge
on the torque and feed speed (the feed force being kept constant), as well as how the chips
are formed in relation to the torque and the feed rate. Radu conducted an extensive study
on the geometry of helical drills used in woodworking, the kinematics, and the dynamics
of the cutting process [2]. The experiments aimed to establish the optimal parameters of
drills for wood and PB, taking into account the torques, axial forces, and chip evacuation
depending on: the type of drill, wood species (oak, beech, spruce, PB), feed rate, and drill
depth. The results showed that the torque and the specific cutting resistance decrease,
and the axial force increases, with increasing tip angle, for all four processed materials,
regardless of the feed direction.
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Valarmathi et al., assuming that the thrust force developed during drilling has a
major role in gaining a good surface quality and minimizing the delamination tendency,
analyzed the cutting conditions, which influence the thrust force in the drilling of PB [3].
The parameters considered were spindle speed, feed rate, and point angle. The drilling
experiments were performed based on Taguchi’s design of experiments and a response
surface methodology (RSM). A mathematical model was developed to predict the influence
of cutting parameters on thrust force. The results showed that high spindle speed with a
low feed rate combination minimizes the thrust force in the drilling of pre-laminated PB.
Lilly Mercy et al. proposed a multi-response optimization of drilling parameters for PB
processing using Gray Relational Analysis [4]. The aim was to minimize the roughness of
the hole’s internal surface and the thrust force. The parameters considered were the drill
rotation speed, the feed rate, and the drill diameter. The authors noted that a smaller feed
speed, smaller drill diameter, and higher drill rotation speed are essential for reducing the
thrust force and surface roughness in the drilling of PB.

Ispas et al. studied the influence of the tip angle of drills and feed rate on coated PB
delamination, but also on the dynamic parameters (thrust force and torque) for two types
of drills: flat and helical [5–7]. The results showed that the thrust force, the torque, and the
surface delamination increased with an increase in the feed rate. An increase in the drill
tip angle caused a decrease in the torque trend, which correlated well with a decrease in
surface quality (delamination). As far as the thrust force was concerned, a decrease in the
drill tip angle caused a decrease in the thrust force, well correlated with the surface quality
around the hole.

Podziewski et al. studied the drilling machinability of several wood-based materials,
including PB [8]. The machinability was expressed by the quality of the hole’s edges and
the magnitude of the cutting forces and torque. Madhan Kumar and Jayakumar studied PB
drilling with helical and spade drills [9]. Experiments have shown that the roughness of
the hole’s internal surface has decreased as the rotational speed of the drills has increased
and the feed speed has decreased.

An extensive review of scientific developments in the drilling of wood-based panels is
presented in the work elaborated by Górski [10].

Stimulated by the successful application of artificial neural networks (ANNs) and
response surface methodology (RSM) in the wood science area and, also, due to the fact
that there is limited information regarding the application of ANN and RSM in the drilling
of wood particleboards, in this paper, we aimed to apply the ANN together with RSM to
reveal the optimum value of input factors (drill tip angle, tooth bite, and drill type) based
on the desired responses during the drilling of PB, such as the delamination factor at the
inlet and outlet, thrust force, and drilling torque.

ANN and RSM have been applied in wood science for various topics such as predicting
the wood moisture content, prediction of noise emission in the machining of wood materials
by means of an artificial neural network, optimum CNC cutting condition, reliability of
phytosanitary treatment of wood [11–15]. More information about the modeling process
with artificial neural networks could be found in the literature [12,16]. Moreover, the RSM
has been applied to optimize the heat-treated wood dowel joints, processing parameters of
medium-density of fiberboards, wood drying conditions, and energy consumption during
the mechanical processing of wood [17–20]. Moreover, more details about the RSM could
be found in the literature [21,22].

2. Materials and Methods
2.1. Data Colectting

The data necessary for the development and validation of the model were taken
from the literature [5–7]. The experiments aimed to identify the influences of the drill
tip angle and the drilling feed rate on the quality of drilling of laminated PB and on the
dynamic parameters of the drilling (thrust force and torque). Two types of drills were
used, flat and helical, respectively, with tip angles of 30◦, 60◦, 90◦, and 120◦. The feed rates
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used were 0.6, 1.8, 3.0, and 4.2 m/min. The rotational speed of drills had a single value,
3000 rpm as a result being four tooth bite: 0.1, 0.3, 0.5, and 0.7 mm. The drilling quality was
expressed by the delamination factor for both the inlet and outlet of the drill, according
to the methodology described in Ispas et al. [5,6]. To sum up, the delamination factor (Fd)
was calculated with Equation (1), where Dmax is the diameter of the circle circumscribed
to the defect, while D is the mean hole diameter given by caliper measurements [6]. The
dynamic parameters, the thrust force, and the drilling torque were determined based
on the methodology described in Ispas et al. and Ispas and Răcăs, an [5,7]. A total of
320 experiments were performed.

Fd =
Dmax

D
(1)

2.2. ANN Model Development

In this work, the selected input factors were drill point angle (X1), tooth bite (X2), and
drill type (X3). The responses were the delamination factor at the outlet (Y1) and inlet (Y2),
thrust force (Y3), and drilling torque (Y4). The analyzed values of the input factors are
presented in Table 1.

Table 1. The values of analyzed input factors.

Factor Values

Drill point angle (X1), ◦ 30 60 90 120
Tooth bite (X2), mm 0.1 0.3 0.5 0.7

Drill type (X3) Flat Helical

During the development phase of the ANN model, 70% of available data were used for
the training and testing phase. The other part (30%) was used to validate the ANN model. The
experimental values were split in each subset of data by means of a randomized approach.

The NeuralWorks Predict Software (NeuralWare Inc., v.3.24.1, Carnegie, PA, USA)
was employed to develop de ANN models. This software uses the cascade correlation
algorithm to create the multilayer structure of ANN. More information about the software
used in this work could be found in the literature [23]. The performance of developed ANN
models was measured by correlation coefficient (R) and coefficient of determination (R2),
according to Equations (2) and (3) [23–25]. A high R or R2 indicated that predicted data
are close to the experimental data that were used for the validation phase. Moreover, the
predicted values were plotted against experimental data to visually check how well the
neural network models performed with the unseen data set.

R =
∑N

i=1(pi − p)(ai − a)√
∑N

i=1(pi − p)2
√

∑N
i=1 (a i − a)2

(2)

R2= 1−∑N
i=1(ai − pi)

2

∑N
i=1(ai − a)2 (3)

where N is the number of data points, ai is the experimental value of the analyzed response,
pi is the predicted value of the analyzed response, a is the mean of the experimental values,
and p is the mean of the predicted values.

To find the optimal values of selected factors the Response Surface Methodology was
used together with the development of ANN models. The optimization criterion aimed to
minimize all the analyzed responses (Y1, Y2, Y3, and Y4). The statistical package Design-
Expert® (version 9, Stat-Ease Inc., Minneapolis, MN, USA) was used to generate a central
composite experimental design that is required by the Response Surface Methodology.
The approach used to construct the applied experimental design is detailed in the work
performed by Georgescu et al. [18]. The corresponding levels of analyzed factors and the
resulted combinations among the level of factors are presented in Tables 2 and 3. In the
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experimental design (Table 3) the value of analyzed responses were revealed by means of
developed ANN models.

Table 2. The values of analyzed input factors.

Numeric Factor
Level

−α * −1 0 +1 +α *

Drill tip angle (X1), ◦ 30 30 75 120 120
Tooth bite (X2), mm 0.1 0.1 0.4 0.7 0.7

Categoric factor Level 1 Level 2
Drill type (X3) Flat Helical

* For the applied design, namely, a face centered design (CCF), α = 1 [21].

Table 3. Combinations among selected factors and the value of analyzed responses.

Run
Factors Responses

Drill Tip
Angle (X1), ◦

Tooth Bite
(X2), mm

Drill Type
(X3) Y1 Y2 Y3 Y4

1 30 0.4 Flat 1.28 182.98 1.03 1.25
2 30 0.1 Helical 1.01 37.13 0.35 1.12
3 75 0.4 Helical 1.04 52.16 0.51 1.26
4 75 0.1 Flat 1.23 97.44 0.34 1.18
5 120 0.4 Helical 1.05 52.16 0.39 1.27
6 120 0.1 Flat 1.35 97.44 0.31 1.27
7 75 0.4 Helical 1.04 52.16 0.51 1.26
8 75 0.4 Flat 1.36 182.98 0.73 1.22
9 30 0.1 Flat 1.23 97.44 0.57 1.16
10 75 0.4 Flat 1.36 182.98 0.73 1.22
11 30 0.7 Flat 1.32 215.99 1.35 1.26
12 75 0.4 Flat 1.36 182.98 0.73 1.22
13 75 0.1 Helical 1.01 37.13 0.23 1.11
14 75 0.7 Flat 1.46 215.99 1.11 1.29
15 30 0.7 Helical 1.08 64.01 1.00 1.25
16 120 0.4 Flat 1.49 182.98 0.65 1.22
17 75 0.4 Helical 1.04 52.16 0.51 1.26
18 120 0.1 Helical 1.04 37.13 0.20 1.11
19 75 0.4 Helical 1.04 52.16 0.51 1.26
20 75 0.7 Helical 1.06 64.01 0.75 1.29
21 120 0.7 Helical 1.08 64.01 0.45 1.32
22 75 0.4 Flat 1.36 182.98 0.73 1.22
23 75 0.4 Flat 1.36 182.98 0.73 1.22
24 75 0.4 Helical 1.04 52.16 0.51 1.26
25 120 0.7 Flat 1.53 215.99 0.90 1.33
26 30 0.4 Helical 1.03 52.16 0.75 1.22

3. Results and Discussion
3.1. ANN Models

The optimum structure of developed ANN models is presented in Figure 1. The num-
ber of neurons in the input, hidden and output layers and the performance indicators are
presented in Table 4. One could observe that the developed ANN models could reasonably
predict the delamination factor at the outlet (0.98–2.14) and the inlet (1–1.51), thrust force
(12–274 N), and drilling torque (0.12–1.55 Nm) based on drill point angle (30–120◦), tooth
bite (0.1–0.7 mm) and drill type (Flat or Helical). The coefficient of correlation (R) during
the validation phase ranged between 0.67 and 0.98, and the coefficient of determination
(R2) was between 0.44 and 0.97. By comparing the obtained value of the coefficient of
determination (R2) with the values that are reported in previous studies, regarding the
application of ANN in the wood science, one may observe that the lower R2 value (0.44) is
close to the lower value (0.43) that was obtained by Mansfield et al. to predict the modulus
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of rupture (MOR) in western hemlock [26]. Moreover, the higher value of R2 (0.97) is close
to 0.99, which was reported by Tiryaki et al. when the ANN was applied to reveal the
power consumption during wood processing [20]. Therefore, it could be concluded that the
developed networks could explain at least 44% of the experimental values in the case of the
model to predict the delamination factor at the inlet and a least 97% of the experimental
values in the case of the model to predict the drilling torque.

Figure 1. The optimum structure of developed cascade ANN models that could predict the: (a) delamina-
tion factor at the outlet; (b) delamination factor at the inlet; (c) thrust force; (d) drilling torque.
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Table 4. The structure of ANN models and the performance criteria during the development and
validation phase.

Model Output
Number of Neurons in the

Layers of ANN Models Coefficient of Correlation (R) Coefficient of Determination (R2)

Input Hidden Outlet Training Testing Validation Training Testing Validation

Delamination factor
at the outlet (Y1) 3 6 1 0.88 0.88 0.90 0.77 0.77 0.82

Delamination factor
at the inlet (Y2) 3 13 1 0.76 0.72 0.67 0.57 0.51 0.44

Thrust force (Y3) 3 4 1 0.94 0.95 0.96 0.88 0.90 0.92
Drilling torque (Y4) 3 9 1 0.97 0.97 0.98 0.94 0.94 0.97

A comparison between the predicted and experimental values of the analyzed re-
sponses is presented in Figure 2. Once the graphics are analyzed, it can be observed that
most of the predicted values are close to the experimental ones.

Figure 2. Comparison between predicted vs. experimental values: (a) delamination factor at the
outlet; (b) delamination factor at the inlet; (c) thrust force; (d) drilling torque.

To increase the accuracy of the developed model to predict delamination factor at the
inlet, other variables should be taken into account in a further study.

3.2. RSM Results
3.2.1. Delamination Factor at the Outlet (Y1)

A linear model was suggested via the Design Expert software, to describe the relation-
ships among the selected factors and the delamination factor at the outlet (Y1). The model
is significant at 1% level and its coded form is presented in Equation (4). Based on the value
of coefficients, one could observe that drill type (flat or helical) has a bigger influence than
the other two input variables, namely, drill tip angle (X1) and tooth bite (X2), which have
almost the same influence, on the delamination factor on outlet.
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In Equations (5) and (6), the models that could be used to predict the data (in the cases
of a flat or a helical drill) are presented.

Ŷ1coded = 1.20 + 0.050X1 + 0.055X2 − 0.16X3 (4)

Ŷ1flat = 1.20541 + 0.00110695X1 + 0.183966X2 (5)

Ŷ1helical = 0.884942 + 0.00110695X1 + 0.183966X2 (6)

According to ANOVA results (Table 5), all main factors are statically significant at the
5% level.

Table 5. Analysis of variance results for the regression equation in the case of the delamination factor
at the outlet.

“Source” “Sum of Squares” “df” “Mean Square” “F-Value” “p-Value Prob > F” Observation

Model 0.73 3 0.24 145 <0.0001

SignificantDrill tip angle (X1) 0.030 1 0.030 17.65 0.0004
Tooth bite (X2) 0.037 1 0.037 21.67 0.0001
Drill type (X3) 0.67 1 0.67 395.68 <0.0001
Predicted R2 0.92

The interaction effects of the drill tip angle (X1) and tooth bite (X2) on the delamination
factor at the outlet are shown in Figure 3.

Figure 3. The 3D plots showing interaction effects of the drill tip angle (X1) and tooth bite (X2) on the
delamination factor at the outlet (Y1) when the holes were ‘performed’ with a flat drill (a) and with a
helical drill (b).

3.2.2. Delamination Factor at the Inlet (Y2)

The same as in the case of the delamination factor at the outlet, the Design Expert
software suggested a linear model to predict the relationships among the analyzed inputs
and the delamination factor at the inlet (Y2). Its coded and actual forms are presented in
Equations (7)–(9). The delamination factor at the inlet is more affected by the tooth bite
(X2), followed by drill tip angle (X1) and drill type (X3). Contrary to the delamination factor
at the outlet, which was mostly affected by the drill type, the delamination factor at the
inlet is mostly affected by the tooth bite.

Ŷ2coded = 1.23 + 0.019X1 + 0.067X2 − 0.004X3 (7)

Ŷ2flat = 1.11509 + 0.000431408X1 + 0.224518X2 (8)

Ŷ2helical = 1.10685 + 0.000431408X1 + 0.224518X2 (9)
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According to ANOVA results (Table 6), the developed model is statically significant at
1% level. Moreover, one could observe that only the tooth bite is a significant model term.

Table 6. Analysis of variance results in the case of a regression equation that was developed for the
delamination factor at the inlet.

“Source” “Sum of Squares” “df” “Mean Square” “F-Value” “p-Value Prob > F” Observation

Model 0.059 3 0.020 17.66 <0.0001 Significant
Drill tip angle (X1) 0.004 1 0.004 4.03 0.05 Not significant

Tooth bite (X2) 0.054 1 0.054 48.57 <0.0001 Significant
Drill type (X3) 0.0004 1 0.0004 0.39 0.5365 Not significant
Predicted R2 0.54

The interaction effects of the drill tip angle (X1) and tooth bite (X2) on the delamination
factor at the inlet are shown in Figure 4.

Figure 4. The 3D plots showing interaction effects of the drill tip angle (X1) and tooth bite (X2) on the
delamination factor at the inlet (Y2) when the holes were ‘performed’ with a flat drill (a) and with a
helical drill (b).

3.2.3. Thrust Force (Y3)

In the case of thrust force, the RSM method suggested a quadratic model, which is
significant at 1%. The coded and actual forms are presented in Equations (10)–(12). In the
case of this model, only the terms X2, X3, X2X3, and X22 were significant (Table 7). Based
on these results, it could be stated that the most important term that affects the thrust force
is the drill type (flat or helical) followed by the tooth bite and drill tip angle. There was
a synergetic effect among the analyzed factors. Since the magnitude of these interactions
was X2X3 > X1X2 > X1X3, the most important interaction is between tooth bite and drill
type. Moreover, there is a non-linear effect on the tooth bite factor on the thrust force.
Therefore, it could be stated that the optimum value of the tooth bite could be found inside
the analyzed range, namely, 0.1–0.7 mm.

Ŷ3coded= 117.57 + 5.583E − 015X1 + 36.36X2 − 59.71X3 + 1.697E − 0.14X1X2 + 4.147E − 015X1X3
−22.92X2X3 + 1.846E − 014X2

1 − 13.93X2
2

(10)

Ŷ3flat = 73.492 − 5.304E − 016X1 + 321.370X2 + 3.050E − 015X1X2 − 1.38E − 018X2
1 − 154.728X2

2 (11)

Ŷ3helical = 15.18 − 1.21E − 015X1 + 168.57X2 + 3.050E − 015X1X2 − 1.38E − 018X2
1 − 154.728X2

2 (12)
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Table 7. Analysis of variance results for the quadratic equation in the case of thrust force.

“Source” “Sum of Squares” “df” “Mean Square” “F-Value” “p-Value Prob > F” Observation

Model 116,130 8 14,516.30 251.06 <0.0001 Significant
Drill tip angle (X1) 1.455 × 10−11 1 1.455 × 10−11 2.51 × 10−13 1 Not Significant

Tooth bite (X2) 15,862.56 1 15,862.56 274.35 <0.0001 Significant
Drill type (X3) 92,711.70 1 92,711.70 1603 <0.0001 Significant

X1X2 0 1 0 0 1 Not Significant
X1X3 0 1 0 0 1 Not Significant
X2X3 6303.16 1 6303.16 109.01 <0.0001 Significant
X1

2 0 1 0 0 1 Not Significant
X2

2 1071.18 1 1071.18 18.53 0.0005 Significant
Predicted R2 0.97

The 3D plots showing the interaction effects of the drill tip angle (X1) and tooth bite
(X2) on the thrust force are presented in Figure 5.

Figure 5. The 3D plots showing interaction effects of the drill tip angle (X1) and tooth bite (X2) on the
thrust force (Y3) when the holes were ‘performed’ with a flat drill (a) and with a helical drill (b).

3.2.4. Drilling Torque (Y4)

A quadratic regression equation was revealed by the Design Expert software to predict
the drilling torque based on the drill tip angle, tooth bite, and drill type. The coded form
of the selected mathematical model is presented in Equation (13). The actual forms of
regression equations are presented in Equations (14) and (15). The most important factor
that affects the drilling torque is tooth bite, followed by the drill tip angle and drill type
(flat or helical). There are synergetic effects of the input variables on the drilling torque.
The relative magnitude of these interactions was X1X2 > X2X3 > X1X3. Based on Table 8, one
may observe that the selected model is significant at 0.01%. Moreover, it could be noticed
that most of the model terms are significant at 0.05%.

Ŷ4coded = 0.62 − 0.18X1 + 0.30X2 − 0.11X3 − 0.072X1X2 + 2.917E − 003X1X3 − 0.061X2X3+
0.060X2

1 − 0.034X2
2 − 0.026X1X2X3 − 0.024X2

1X3 − 5.226E − 003X2
2X3

(13)

Ŷ4flat = 0.63921 − 8.89012E − 003X1 + 1.71135X2 − 3.44759E − 003X1X2+
4.16223E − 005X2

1 − 0.32382X2
2

(14)

Ŷ4helical = 0.30149 − 3.65712E − 003X1 + 1.68759X2 − 7.28861E − 003X1X2+
1.78427E − 005X2

1 − 0.43996X2
2

(15)
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Table 8. Analysis of variance results for the quadratic equation for the drilling torque.

“Source” “Sum of Squares” “df” “Mean Square” “F-Value” “p-Value Prob > F” Observation

Model 1.96 11 0.18 335 <0.0001 Significant
Drill tip angle (X1) 0.38 1 0.38 715 <0.0001 Significant

Tooth bite (X2) 1.06 1 1.06 1992 <0.0001 Significant
Drill type (X3) 0.14 1 0.14 269 <0.0001 Significant

X1X2 0.042 1 0.042 78 <0.0001 Significant
X1X3 0.0001 1 0.0001 0.19 0.6681 Not significant
X2X3 0.044 1 0.044 83.03 <0.0001 Significant
X1

2 0.020 1 0.020 37.59 <0.0001 Significant
X2

2 0.006 1 0.00652 12.25 0.0035 Significant
X1X2X3 0.005 1 0.00537 10.09 0.0067 Significant

X2
1X3 0.003 1 0.0032 6.01 0.0279 Significant

X2
2X3 0.0001 1 0.00015 0.28 0.602 Not significant

Predicted R2 0.96

The 3D plots showing the interaction effects of drill tip angle (X1) and tooth bite (X2)
on the drilling torque are presented in Figure 6.

Figure 6. The 3D plots showing interaction effects of the drill tip angle (X1) and tooth bite (X2) on the
drilling torque (Y4) when the holes were ‘performed’ with a flat drill (a) and with a helical drill (b).

To reveal the optimal value of analyzed factors, the criteria that are presented in Table 9
were specified as input values of the optimization algorithm, which is used by the Design
Expert software. The solutions with the highest desirability coefficient were selected as
the optimum value of the analyzed factors both in the case of a helical or a flat drill. The
optimum solutions are presented in Table 10. To figure out the relative error of the selected
regression equation, Equation (16) was applied. In this equation, the experimental value
(Y) was considered the mean of measured response, and was considered taken from the
employed data set:

ER =

∣∣∣Y − Ŷ
∣∣∣

Y
× 100. (16)

where ER represents the relative error (%), Y is the experimental value and Ŷ is the
predicted value.
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Table 9. Criteria for different factors and responses in optimization of wood particleboard drilling.

Factor/Response Goal Lower Limit Upper Limit Importance

Drill tip angle (X1) In range 30 120 3
Tooth bite (X2) In range 0.1 0.7 3
Drill type (X3) In range Flat Helical 3

Delamination factor at the inlet (Y1) Minimize 1.00 1.52 3
Delamination factor at the outlet (Y2) Minimize 1.10 1.32 3

Thrust force (Y3) Minimize 37.13 215.99 3
Drilling torque (Y4) Minimize 0.19 1.35 3

Table 10. The selected optimum solution of input factors and the corresponding numerical and
experimental value of analyzed responses.

Solution
No.

X1 X2 X3

Delamination Factor
at the Outlet

Delamination Factor
at the Inlet Trust Force (N) Drilling Torque (Nm)

D
Ŷ1 Y1 ER1 Ŷ2 Y2 ER2 Ŷ3 Y3 ER3 Ŷ4 Y4 ER4

1 90.75 0.1 Helical 1.00 1.01 a 0.9 1.16 1.11 a 4.5 30 50 a 40 0.21 0.19 a 11 0.92
2 57.18 0.1 Helical 0.96 1.00 b 4.0 1.15 1.14 b 0.8 30 38 b 21 0.27 0.21 b 29 0.92
3 32.36 0.1 Flat 1.26 1.25 c 0.8 1.15 1.18 c 2.5 104 134 c 23 0.55 0.59 c 7 0.64
4 60.77 0.1 Flat 1.29 1.24 b 4.0 1.16 1.10 b 5.5 104 68 b 35 0.40 0.36 b 11 0.64
5 90.75 0.1 Flat 1.32 1.27 a 3.9 1.17 1.23 a 4.8 104 93 a 12 0.31 0.33 a 6 0.62

a—experimental value in the case of a drill tip angle of 90◦; b—experimental value in the case of a drill tip angle
of 60◦; c—experimental value in the case of a drill tip angle of 30◦.

The relative error was between 0.8 and 5.5% for the delamination factor, between 12
and 40% for the thrust force, and between 6 and 29% in the case of the drilling torque. Based
on the obtained results, it could be stated that the Response Surface Methodology could
represent a suitable approach to figure out the optimum values of input factors during
drilling the particleboards (PB), which are widely used nowadays in the production of
furniture. Moreover, based on the obtained results, it could be stated that the helical drill
leads to a lower delamination factor, a lower thrust force, and a lower drilling torque than
the case of a flat drill.

4. Conclusions

In this work, the artificial neural network modeling technique and response surface
methodology were employed to reveal the optimum values of selected factors, namely, drill
tip angle, tooth bite, and drill type, on the delamination factor at the outlet and inlet, thrust
force, and drilling torque. Both applied modeling techniques (ANN and RSM) could be
used to predict the delamination factor at the outlet, the thrust force, and the drilling torque
with a higher performance indicator (R2) than in the case of the delamination factor at the
inlet. The helical drill leads to a lower delamination factor, a lower thrust force, and a lower
drilling torque than the case of a flat drill. The delamination factor at the outlet is more
affected by drill type than the drill tip angle and tooth bite, which have almost the same
influence. On the other hand, the delamination factor at the inlet is more affected by the
tooth bite, followed by drill tip angle and drill type. The most important analyzed factor
that affects the thrust force is the drill type followed by the tooth bite and drill tip angle.
The drilling torque is most affected by the tooth bite, followed by the drill tip angle and
drill type. Other factors that affect the drilling process of wood and wood-based boards
must be considered in further studies. These kinds of studies are underway by our group.
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