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Abstract: Climate conditions can significantly alter the vegetation net primary productivity (NPP) in
many of Earth’s ecosystems, although specifics of NPP–climate condition interactions, especially time-
lag responses on seasonal scales, remain unclear in ecologically sensitive forest–grassland ecotones.
Based on the Moderate-Resolution Imaging Spectroradiometer (MODIS) and meteorological datasets,
we analyzed the relationship between NPP and precipitation, temperature, and drought during
the growing season (April–August), considering the time-lag effect (0–5 months) at the seasonal
scale in Hulunbuir, Inner Mongolia, China from 2000 to 2018. The results revealed a delayed NPP
response to precipitation and drought throughout the growing season. In April, the precipitation in
the 4 months before (i.e., the winter of the previous year) explained the variation in NPP. In August,
the NPP in some areas was influenced by the preceding 1~2 months of drought. The time-lag effect
varied with vegetation type and soil texture at different spatial patterns. Compared to grass and
crop, broadleaf forest and meadow exhibited a longer legacy of precipitation during the growing
season. The length of the time-lag effects of drought on NPP increased with increasing soil clay
content during the growing season. The interaction of vegetation types and soil textures can explain
37% of the change in the time-lag effect of the NPP response to PPT on spatial pattern. Our findings
suggested that preceding precipitation influences vegetation growth at the early stages of growth,
while preceding drought influences vegetation growth in the later stages of growth. The spatial
pattern of the time lag was significantly influenced by interaction between vegetation type and soil
texture factors. This study highlights the importance of considering the time-lag effects of climate
conditions and underlying drivers in further improving the prediction accuracy of NPP and carbon
sinks in temperate semiarid forest–grassland ecotones.

Keywords: time-lag effect; vegetation type; soil texture; spatial and temporal heterogeneity

1. Introduction

Climate change increases the severity and frequency of extreme events, which are
expected to further affect ecosystem structure and functioning profoundly [1–3] and alter
hydrothermal conditions in many regions worldwide, consequently influencing vegetation
productivity [4,5]. Net primary productivity (NPP) has become an indispensable index
used for ecosystem response measurement and quantitative analysis carbon budgets under
climate change [5–8].

Many researchers have analyzed the relationship between NPP and climate conditions
and have found that NPP responses to climate conditions exhibit a certain time lag [2,9–11].
Other researchers have found that, regarding time-lag effects, climatic factors can explain
64% of the variation in global plant growth and vegetation dynamics, which is 11% higher
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than model results ignoring time-lag effects [12]. However, most current studies consider
only the time-lag effect on an annual scale or throughout the entire growing season [13],
but the occurrence and length of the time-lag effect at different vegetation growth stages
remain unclear. Compared to the entire growing season, the vegetation growth response
to climate conditions can vary between different growth stages, as the various vegeta-
tion growth stages differ in water, energy, and nutrient requirements [14]. For example,
the previous year’s autumn and winter precipitation has a negative effect on the spring
leaf unfolding, and early spring precipitation has a positive effect. The main factor limiting
vegetation development in August is precipitation, and, during this month, precipitation
has a positive impact on defoliation [15]. These phenomena further indicate that plant
demands for hydrothermal conditions vary in different vegetation growth periods. An in-
depth understanding of the NPP response to preceding climate conditions on seasonal
scales is, therefore, critical for the realistic representation of climate–vegetation interactions
and modeling and prediction of vegetation growth and ecosystem carbon sinks under
climate change.

In addition to temporal dynamics, the time lag length of the NPP response to climate
conditions varies in different vegetation types and soil textures at the spatial scale [12,16,17].
Compared to forest and desert biomes, grassland and agricultural biomes exhibit time-lag
correlations with precipitation and temperature, respectively [7]. These differences may
be attributable to the microenvironment and climate sensitivity of different vegetation
types [18,19]. Furthermore, the soil water content and soil organic matter, influenced by
the soil texture, affect the timeliness of vegetation responses to climate change [20–22].
However, most of the above studies generally focused on the time-lag effect at the global
scale or within a certain ecosystem, but few studies considered the ecotone scale. To our
knowledge, the vegetation types and microenvironments in ecotones are complicated and
varied. Previous studies of ecotones focused more on the landscape and plant species
distribution responses to climate change, whereas the temporal relationship between
climate conditions and vegetation growth on seasonal scales remains unclear [23,24]. Thus,
it is necessary to consider the time-lag effect at the seasonal scale in the investigation of
climate–vegetation interactions in ecotones.

The Hulunbuir grassland is located in a forest–grassland ecotone with sparse vege-
tation in the semiarid region of Inner Mongolia [25,26]. The forest–grassland ecotone is
one of the most vulnerable ecosystems, and vegetation responses to climate change are
likely the most rapid and complicated in ecotones, with semiarid ecotones among the most
sensitive ecosystems [24,27,28]. Researchers have found that NPP is sensitive to climate
change based on the instantaneous effects of precipitation, temperature, and drought in the
Hulunbuir grassland [29,30], but time-lag effects have been considered less [31]. To further
explore the relationship between NPP and specific climate conditions at the seasonal scale
in forest–grassland ecotones, time-lag effects must be considered, and two hypotheses
are assessed in this study: (1) the response of vegetation growth in a forest–grassland
ecotone to climate conditions is time-lagged, and the length of the time lag varies with
the vegetation growth period; (2) the vegetation type and soil texture are the main factors
influencing the variation in the length of the time-lag effect at the spatial scale.

2. Materials and Methods
2.1. Study Area

Our study was conducted in southwestern Hulunbuir, Inner Mongolia, China (115◦31′–121◦12′ E,
47◦20′–50◦51′ N), which includes two cities (Hailar and Manzhouli) and four banners
(Old Barag, New Barag Left, New Barag Right, and Evenk) (Figure 1), and the total area
reached 83.6 × 103 km2. The study area exhibits a humid continental climate with long
and severe dry winters and short and wet summers [32,33]. The mean annual air temper-
ature is −1 ◦C. The mean annual precipitation reaches 339 mm, approximately 68% of
which is distributed in summer [34–36]. In contrast, the annual potential evaporation is
approximately 1210 mm [36]. The spatial distribution of the mean temperature is relatively
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correlated with that of the cumulative precipitation during the growing season (April
to August). The western part of the study area exhibits the highest mean temperature
and lowest cumulative rainfall during the growing season (Figure 2c,d). Gale winds of
a grade higher than eight occur on more than 30 days annually. The elevation in this area
ranges from 407 to 1687 m above mean sea level. The main soil types are kastanozems,
meadow soil, aeolian soil, chernozems, and gray forest soil [32]. The spatial distribution
of soil texture is shown in Figure 2b (including clay, loamy clay, silty clay loam, clay loam,
sandy clay loam, sandy loam); the standard for soil texture classification is shown in
Table A1. Our research area is dominated by perennial grasslands, with a fraction of
grassland–forest transition zones, and most of the broadleaf forest and needleleaf for-
est is located in the east of the study area (Figure 2a). The most common species in
this region include Leymus chinensis, Stipa baicalensis, Stipa grandis, Cleistogenes squarrosa,
Serratula centauroides, Caragana microphylla, and Pinus sylvestris var. mongolica Litv. [37].
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Figure 2. Vegetation type (a) (BLF: broadleaf forest, NLF: needleleaf forest), soil texture (b) (LC: loamy
clay, SiCL: silty clay loam, CL: clay loam, SaCL: sandy clay loam, SL: sandy loam), mean temperature
(2000–2018) (c), and cumulative precipitation (2000–2018) (d) in the study area.

2.2. Data Acquisition

We quantified the NPP from 2000 to 2018 in our study area based on normalized differ-
ence vegetation index (NDVI) data extracted from the NASA Moderate-Resolution Imaging
Spectroradiometer (MODIS) dataset (MOD13Q1 V006). This remote sensing dataset ex-
hibits a spatial resolution of 250 m and a temporal resolution of 16 days. The variation in
vegetation growth during any particular month primarily depends on different climate
factors. Thus, we used the maximum value composite (MVC) method to calculate the
maximum NDVI value in each month from 2000 to 2018. Vegetation types were identi-
fied based on the Chinese vegetation map (1:1,000,000) downloaded from the Chinese
Resource and Environment Science and Data Center (http://www.resdc.cn/ (accessed
on 4 March 2019)). Soil texture data were collected based on the spatial distribution in
the soil texture map of China (1:1,000,000) retrieved from the Chinese National Earth
System Science Data Center (http://soil.geodata.cn (accessed on 1 May 2019)). Climate
data, including precipitation (PPT), air temperature (Ta), sunshine duration, wind speed,
and relative humidity data over 2000–2018, were obtained from meteorological data mea-
sured at 9 meteorological stations provided by the National Meteorological Information
Center (http://data.cma.cn/ (accessed on 4 March 2019)) (Figure 1). We calculated the
daily solar radiation following Food and Agriculture Organization (FAO) guidelines for
the computation of crop water requirements, and the formula is shown in Appendix B [38].
The above environmental factors were interpolated via kriging interpolation in ArcMap
v.10.5 (ESRI, Redlands, CA, USA, https://www.esri.com/en-us/arcgis/products/index

http://www.resdc.cn/
http://soil.geodata.cn
http://data.cma.cn/
https://www.esri.com/en-us/arcgis/products/index


Forests 2022, 13, 1024 5 of 20

(accessed on 4 March 2019)), which is widely used for the regionalization of various vari-
ables at different scales, and subsequent NPP estimation [7,39,40]. We applied the ‘SPEI’
R package to calculate the monthly standardized precipitation evapotranspiration index
(SPEI) in order to reflect the drought level [41]. The SPEI calculation process is described in
Appendix C. The time spans of all of the data ranged from 2000 to 2018, except that of the
vegetation type and soil texture maps. All maps were rescaled to the same spatial resolution
(grid size: 0.025◦) with the resampling technique in ArcMap v.10.5 (ESRI, Redlands, CA,
USA, https://www.esri.com/en-us/arcgis/products/index (accessed on 4 March 2019)).

2.3. Data Analysis
2.3.1. NPP Estimation

NPP is defined as the total amount of photosynthetic gain after the subtraction of
vegetation respiratory losses per unit ground area [42]. It is an important component of
the terrestrial carbon cycle [7]. Compared to NPP, NDVI is only a qualitative measure
of vegetation conditions [43]. Therefore, we calculated NPP(x, t) based on a light-use
efficiency model, namely, the Carnegie Ames Stanford Application (CASA) model [44],
with the following equation:

NPP(x, t) = APAR(x, t)× ε(x, t) (1)

where x is the spatial position, t is time, and APAR(x, t) and ε(x, t) are the absorbed photo-
synthetically active radiation (MJ·m−2) and light-use efficiency (g·C·mJ−1), respectively.

APAR(x, t) can be determined with the following equation:

APAR(x, t) = SOL(x, t)× FPAR(x, t)× 0.5 (2)

where SOL(x, t) is the total solar radiation (calculation method in Appendix B), 0.5 denotes
the fraction of the active incoming solar radiation used by vegetation [45], and FPAR(x, t)
is the fraction of photosynthetically active radiation, which can be determined from MODIS
NDVI data with the following equations:

FPAR(x, t) = min
{

SR(x, t)− SRmin
SRmax − SRmin

, 0.95
}

(3)

SR(x, t) =
1 + NDVI(x, t)
1− NDVI(x, t)

(4)

where SR(x, t) is the ratio vegetation index, and SRmax and SRmin are the 95% and 5%
lower quantiles, respectively, of the NDVI [43].

The light-use efficiency ε(x, t) can be calculated with the following equation [46]:

ε(x, t) = Tε1(x, t)× Tε2(x, t)×Wε(x, t)× ε∗ (5)

Tε1(x, t) = 0.8 + 0.02Topt − 0.0005(Topt)
2 (6)

Tε2 = 1.1814/{
{

1 + exp(0.2×
(
Topt − 10− Ta(t)

)
)
}

×
{

1 + exp(0.3×
(
−Topt − 10 + Ta(t)

)
)
}
} (7)

Wε = 0.5 + 0.5× AET
PET

(8)

where Tε1(x, t) denotes the limitation of extremely low and high temperatures imposed on
the light-use efficiency, and Tε2(x, t) denotes the light-use efficiency when the temperature
reaches above or below Topt [47]. Topt is the average air temperature in months when
the maximum NDVI value is reached throughout the year, and Ta(t) is the average air
temperature in month t. Wε is a coefficient of the water stress, and AET denotes the actual
evapotranspiration (mm), which can be calculated with the method of Zhou and Zhang [48].
PET is the potential evapotranspiration, which can be calculated with the FAO Penman–

https://www.esri.com/en-us/arcgis/products/index
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Monteith (P–M) method [38]. In addition, ε* is the maximum light-use efficiency value and
depends on the vegetation type [49].

AET =
PPT × Rn

(
PPT2 + Rn

2 + PPT × Rn
)

(PPT + Rn)× (PPT2 + Rn2)
(9)

PET =
0.408∆(Rn − G) + γ 900

Ta+273 U2(es − ea)

∆ + γ(1 + 0.34U2)
(10)

where PPT denotes precipitation (mm); Rn is the net radiation (MJm−2·day−1), which is
calculated by Formula (A10) in Appendix B; ∆ is the slope of the vapor pressure curve
(kPa·◦C−1); G is the soil heat flux density (MJ·m−2·day−1), which is small and can be
neglected; γ is a psychrometric constant (kPa·◦C−1); Ta is the mean daily temperature (◦C);
U2 is the wind speed at 2 m above ground level (m·s−1); es is the mean saturation vapor
pressure (kPa); and ea is the actual vapor pressure (kPa). The calculations of ∆, γ, U2, es,
and ea are shown in Appendix D.

2.3.2. Time Lag Estimation

1. Partial correlation coefficient (PCC) method

The PCC was used to determine the relationship between NPP and three climate con-
ditions (i.e., PPT, Ta, and SPEI). For example, the PCC for PPT is calculated according to:

RNPP,PPT =
∑n

i=1
[(

PPTi − PPT
)
×
(

NPPi − NPP
)]√

∑n
i=1
(

PPTi − PPT
)2 −∑n

i=1
(

NPPi − NPP
)2

(11)

RNPP PPT,Ta =
RNPP PPT − RNPP Ta × RPPT Ta√

1− RNPP Ta2
√

1− RPPT Ta2
(12)

PCCNPP PPT,Ta SPEI =
RNPP PPT,Ta − RNPP SPEI, Ta × RPPT SPEI, Ta√

1− RNPP SPEI, Ta
2
√

1− RPPT SPEI, Ta
2

(13)

where RNPP,PPT is the correlation coefficient between the NPP and PPT variables; PPTi
and NPPi denote the values of the PPT and NPP variables, respectively, in year i; and
n represents the year range (n = 19, in this study). PPT and NPP represent the average PPTi
and NPPi values, respectively. RNPP PPT,Ta is the PCC between NPP and PPT controlled
for the Ta value. PCCNPP PPT,Ta SPEI is the PCC between NPP and PPT when we controlled
Ta and SPEI. The significance of the results was examined via the t-test.

Previous studies suggested that the effect of climate conditions could persist into the
next season, and the time lag was assumed to be limited to shorter than 6 months [50,51].
Thus, in this study, we considered a time lag ranging from 0 to 5 months. We calculated the
PCC between NPP and PPT, Ta, and SPEI in each lagged month (PCCi, for i = 0, 1, . . . , 5).
The maximum absolute PCC value was selected as the final correlation coefficient (PCCbest)
between NPP and each climate condition:

PCCbest = PCCi, when PCCi = maximum{R0−5} (14)

BTL = i, when PCCi = maximum{R0−5} (15)

where BTL denotes the best time lag of NPP response to the specific climate conditions.

2. Multiple linear regression model method

This method first assumes that the analyzed climatic conditions limit NPP accumula-
tion and that the impact of climatic conditions at different times on vegetation productivity
exhibits a certain continuity and accumulation effect over time [52]. In this study, we con-
sidered a time lag ranging from 0 to 5 months. First, NPP, PPT, Ta, and SPEI were
standardized at the monthly scale over the growing season. Since the data were standard-
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ized before fitting, the coefficient of the independent variables in the fitting regression
Equations (16)–(18) reflects the magnitude of the influence of climate conditions on NPP.

NPPt,PPT = ∑ amPPTm + D(m = t, t− 1, t− 2, . . . , t− 5) (16)

NPPt,Ta = ∑ bmTam + E(m = t, t− 1, t− 2, . . . , t− 5) (17)

NPPt,SPEI = ∑ cmSPEIm + F(m = t, t− 1, t− 2, . . . , t− 5) (18)

where NPPt,PPT , NPPt,Ta, and NPPt,SPEI are NPP in month t determined via PPT, Ta,
and SPEI fitting, respectively. PPTm, Tam, and SPEIm denote the monthly PPT, Ta,
and SPEI, respectively, in month m. Furthermore, am, bm, and cm denote the coefficients of
PPT, Ta, and SPEI, respectively, in month m. D, E, and F denote the intercepts of the PPT,
Ta, and SPEI fitting equations, respectively.

BTLPPT = m, when am = maximum(am, m = t, t− 1, t− 2, . . . , t− 5) (19)

BTLTa = m, when bm = maximum(bm, m = t, t− 1, t− 2, . . . , t− 5) (20)

BTLSPEI = m, when cm = maximum(cm, m = t, t− 1, t− 2, . . . , t− 5) (21)

where BTLPPT , BTLTa, and BTLSPEI denote the BTL values of the NPP response to PPT,
Ta, and SPEI, respectively.

The same result from the PPC method and the regression method was then extracted
for further statistical analysis in Section 3.2.

2.3.3. The Geodetector Model

The Geodetector model is a new spatial statistical tool for exploring spatial hetero-
geneity and quantitatively evaluating the contribution of driving factors [53]. This tool
comprises four modules, namely, factor detector, ecological detector, risk detector, and in-
teraction detector. To examine the impact of various vegetation types (including broadleaf
forest, needleleaf forest, grass, meadow, and crop) and soil textures (including sandy loam,
sandy clay loam, clay loam, silty clay loam, loamy clay, and clay) on the spatial pattern of
the best time lag of the NPP response to PPT, Ta, and SPEI, we used the factor detector and
interaction detector.

Using the factor detector model to detect vegetation type or soil texture can explain
the spatial differentiation of the best time lag through the q value. The larger the q value
is, the higher the explanatory power of vegetation type and soil texture for the best time
lag. The interaction detector can identify the interaction effect on the best time lag between
vegetation type and soil texture. The definition of the various interaction types in the
interaction detector is provided in Table 1.

Table 1. Definition of the interaction types in the interaction detector.

Interaction Relationship Interaction Types

q(X1∩X2) < Min [q(X1), q(X2)] Nonlinear weakened
Min [q(X1), q(X2)] < q(X1∩X2) < Max [q(X1), q(X2)] Univariable weakened

q(X1∩X2) = q(X1) + q(X2) Independent
Max(q(X1), q(X2)) < q(X1∩X2) < q(X1) + q(X2) Bivariable enhanced

q(X1∩X2) > q(X1) + q(X2) Nonlinear enhanced

PCC analysis was performed in ArcMap v.10.5 software based on pixels (0.025◦).
The ‘GD’ R package was used to calculate the q value for the factor detector and interaction
detector [54].
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3. Results
3.1. NPP Response to Climate Conditions with Varied Time Lags

Spatial distributions of the best time lag of the NPP response to PPT, Ta, and SPEI
are shown in Figures 3–8. We found that the time-lagged response significantly varied
among the different months and climate conditions. Regarding PPT, Figures 3 and 4 show
the best time lag estimated with the above two methods. Both methods also revealed that
NPP in April was significantly affected by PPT in the preceding 4 months (precipitation
in December of the previous year). With regard to time-lag effects of the NPP response to
Ta (Figures 5 and 6), NPP in April was slightly affected by Ta. In July, NPP indicated no
apparent lagged effects. The effects of Ta on NPP in the remaining analysis months were
significantly delayed, but there occurred no obvious regularity.
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Regarding time-lag effects in NPP with respect to the SPEI, the SPEI imposed a sig-
nificant instantaneous effect (0 month) on NPP from May to July (Figures 7b–d and 8b–d).
With the use of the PCC method, in August, NPP in most areas (i.e., 78.16% of all grids)
was influenced by the SPEI in the preceding month (Figure 7e). Based on the regression
method, in August, NPP in some grids within the study area also indicated that the best
time lag reached 1 month (Figure 8e).
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3.2. Time-Lag Effects of Climate Conditions on NPP with Vegetation Type and Soil Texture

The best time lags of the NPP response to PPT, Ta, and SPEI among the various
vegetation types are shown in Figure 9. Regarding PPT, the 0- and 4-month lags attained
the highest frequency among all vegetation types (Figure 9a). The largest proportion
of the best time lag in grass (60.74%) and crop (44.00%) was 0 months, and the largest
proportion of best time lag in meadow (47.64%) and broadleaf forest (89.42%) was 4 months.
In needleleaf forest, 0- and 4-month lags accounted for 38.55% and 32.53%, respectively.
With regard to Ta, the area of 0-month lag was larger among all vegetation types except
the broadleaf forest type (Figure 9b). Grass and meadow were also influenced by Ta in the
preceding 3 months. Furthermore, 0-month lag was the most frequently observed in the
NPP response to SPEI among all vegetation types (Figure 9c). Certain areas of grass and
meadow also indicated a 1-month lag.
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charts. The numbers in brackets indicate the frequency of BTL in different vegetation types. The table
shows the frequencies of BTL in different vegetation types which are not labeled in the sunburst
charts. BLF: broadleaf forest, NLF: needleleaf forest.

The variation in the best time lag of the NPP response to PPT, Ta, and SPEI across
different soil textures is shown in Figure 10. Regarding PPT, most sandy loam, sandy clay
loam, and clay loam areas exhibited a 0-month lag, while loamy clay and clay areas
exhibited 4-month lag (Figure 10a). In terms of Ta among all best time lag values, the
0-month lag accounted for more than 45.74% across all soil textures (Figure 10b). The
0~1-month best time lag of NPP response to SPEI occupied a larger area among all soil
textures (Figure 10c).
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Figure 10. The frequency of best time lags (BTL, 0–5) of NPP responding to precipitation (a), tempera-
ture (b), and drought (SPEI) (c) across different soil textures during growing season in sunburst charts.
The numbers in brackets indicate the frequency of BTL (0–5) in different soil textures. The table shows
the frequencies of BTL (0–5) in different soil textures which are not labeled in the sunburst charts. SL:
sandy loam, SaCL: sandy clay loam, CL: clay loam, SiCL: silty clay loam, LC: loamy clay.

The spatial variation in the legacy effects of PPT, Ta, and SPEI may contribute to the
different vegetation types and soil textures. The factor detector module was employed
to evaluate the effect of vegetation type and soil texture on the best time lag, and the
results are listed in Table 2. Regarding the best time lag of the NPP response to PPT, the
q values for the vegetation type and soil texture factors were 0.15 and 0.31, respectively.
The results indicated that the various vegetation types and soil textures could explain
15% and 31%, respectively, of the change in the best time lag of the NPP response to PPT.
With regard to the best time lag of the NPP response to Ta and SPEI, the q values for
the vegetation type and soil texture factors were all less than 0.1, which suggested that
vegetation type and soil texture slightly influenced the spatial variation in the best time
lag. The interactive effects between the vegetation type and soil texture factors on the
best time lag were identified with the interaction detector module. The q values for the
interaction effect between the vegetation type and soil texture factors on the best time lag
of the NPP response to PPT and Ta were all greater than those for a single factor (Table 2),
which indicated that the interaction effect between the vegetation type and soil texture
factors was bivariable enhanced.

Table 2. Q values for factor detector and interaction detector modules.

Vegetation Types Soil Textures Vegetation Types ∩ Soil Textures

PPT 0.15 ** 0.31 ** 0.37
Ta 0.10 ** 0.04 ** 0.13

SPEI 0.00 0.00 0.00
Note: ** denotes 0.01 significance level.
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4. Discussion
4.1. Time Lags of the NPP Response to Precipitation, Temperature, and Drought

In line with the findings of other researchers [16,55,56], there occurred a notable
legacy effect of climate conditions, where vegetation growth was significantly affected
by PPT, Ta, and SPEI in preceding months. Previous studies of ecotones determined
that the ecotone migration response to climate warming was gradual, exhibiting a lag
effect due to the resistance of retreating forest biomes [28]. This result is similar to ours
in the considered forest–grassland ecotone, and details and a comparison are provided
in Table 3 [16,55,57–60]. In previous studies of the time-lag effect, the time lag ranged
from 6.2 days to 9 months at the daily, monthly, and annual scales. Compared to other
studies, there existed a longer time-lag effect in the NPP response to precipitation in this
study. We found that NPP in April was influenced by PPT in the preceding 4 months,
and a similar result was obtained in previous studies [1]. There are two reasons that could
explain this result. First, a PPT deficit commonly occurs in spring, but vegetation growth
may not be affected [32,33]. PPT in winter constitutes a major water source in April for
vegetation growth in our study region [61]. Second, PPT in winter in the form of snow
further generates suitable snowpack, which can increase the temperature of soil surface
layers and protect vegetation from injury due to chilling and freezing [62]. Additionally,
in other ecotones, researchers also found that the time lag in vegetation response to rainfall
was 1–2 months [63].

Table 3. Comparison of present findings to those of other studies.

Climate
Conditions Time Lag Timescale Study Area Time Span Reference

precipitation

4-month lag monthly scale Hulunbuir 2000–2018 in this study
0.55 ± 0.95-month lag monthly scale Global 1982–2015 [57]

7.9~17.7-day lag daily The Chinese Loess Plateau 1982–2015 [58]

40-day lag daily
Grasslands National Park,
southern Saskatchewan,

Canada
1985–2007 [59]

temperature

0~4-month lag monthly scale Hulunbuir 2000–2018 in this study
0.56 ± 1.04-month lag monthly scale Global 1982–2015 [57]

3-month lag seasonal scale China 1982–1999 [55]
6.2~25.3-day lag daily The Chinese Loess Plateau 1982–2015 [58]

10-day lag daily
Grasslands National Park,
southern Saskatchewan,

Canada
1985–2007 [59]

drought

0~2-month lag monthly scale Hulunbuir 2000–2018 in this study
2~3-month lag seasonal scale The Chinese Loess Plateau 2000–2010 [56]

2-month lag seasonal scale Southern Africa 2015–2016 [16]
8-month lag seasonal scale Southern Africa 2015–2016 [16]

solar radiation 0.50 ± 0.94-month lag monthly scale Global 1982–2015 [57]

soil water
availability 2–9-month lag

Kessler Farm Field
Laboratory, Central Redbed

Plains of Oklahoma

From 20 February
2003 to 20

February 2004
[60]

Our results revealed that the SPEI imposed a significant instantaneous effect on most
NPP values from May to July, and a 1-month legacy was found in July and August. Other re-
searchers also determined that a late growing season drought could cause more notable
drought legacy effects [64]. This phenomenon can be attributed to vegetation exhibiting
a particular vulnerability to drought at the early stages of growth. Vegetation can obtain
a well-developed functional structure and drought-resistance strategies, and vegetation can
adjust water-use efficiency under dry conditions at later stages of growth [65]. The present
SPEI slightly affected NPP, but a legacy effect still occurred. Similar findings were obtained
in previous studies [56]. In our research, we did not determine an obvious trend in the
spatiotemporal heterogeneity of Ta legacy effects. This result may be explained by the fact
that Ta, compared to PPT and SPEI, is not the dominant climate factor during the growing
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season in our study area [66]. Moreover, a similar result was found in other research in
which correlations between temperature and NPP mostly depended on precipitation in
the semiarid grassland ecosystem of northern China [40]. Therefore, the effect of Ta was
probably offset by the effects of PPT and SPEI.

4.2. Time-Lag Effects of the NPP Response to Precipitation, Temperature, and Drought with
Different Vegetation Types and Soil Textures

Diverse vegetation types and soil textures occur in the Hulunbuir grassland, which is
a forest–grassland ecotone. Our results indicated that the time lag lengths of PPT, Ta,
and SPEI on NPP varied in the different grids (Figures 3–8). This phenomenon could be
explained by the different vegetation types and soil textures.

Compared to grass and crop, broadleaf forest and meadow exhibited longer time-
lag effects of PPT during the growing season. There are certain potential reasons for
this phenomenon. First, this finding may be explained by the different hydrothermal
conditions. In this study, broadleaf forest was located in a region with high PPT and low
Ta levels (Figure 2a), which could lead to reduced evapotranspiration. Thus, preceding
PPT was stored for subsequent vegetation growth. Similarly, meadows also exhibit better
hydrothermal conditions than those of grass and crop. Second, the remaining PPT can
enter the deeper soil through infiltration and can be stored in soil. Compared to grass and
crop, broadleaf forests with strong root systems can take up water from relatively deep
sites [10,67]. Third, broadleaf forests and meadows achieve a higher capacity to regulate
the microclimate, and the preceding PPT can be reallocated. Researchers found that both
near-ground solar radiation and soil temperature decreased with increasing canopy cover,
and these interactive effects are relevant for key ecohydrological processes, such as soil
evaporation [68].

The lag effect length of Ta was shorter in needleleaf forest than in other vegeta-
tion types during the growing season. This finding does not agree with the results of
Sui et al. [69]. They found that grass generated a more sensitive response to Ta than did
forest across temperate grasslands in China at the annual scale. In our research, forests were
mostly located in regions containing abundant water resources and low temperatures [31].
These conditions resulted in greater restriction of forest by Ta and a higher sensitivity to
Ta variation during the early growing season than that of grass. A similar result was also
reported in a previous study [70].

Our study found that broadleaf forests and needleleaf forests exhibited shorter time-
lag effects of the SPEI than did grass and meadow during the growing season. Researchers
also found that forest had a high demand for water and heat. Forests efficiently use water
originating from PPT and heat obtained from air at a high temperature within a short time,
resulting in shorter time-lag effects [57].

In addition to vegetation type, our results indicated that the lags in the NPP response
to PPT increased with increasing soil clay content during the growing season. This result
may be related to the different water-holding capacities of soils with different textures.
Compared to sandy soil, clay soil can preserve a considerably higher level of soil mois-
ture [21]. Therefore, the stress effect of water on vegetation NPP in clay soil is less than that
in sand soil.

Best time lag changes are not influenced by a single factor but by the overall interaction
effect between the vegetation type and soil texture factors. Previous studies indicated that
the interaction effect of two factors was always greater than that of a single factor [53].
In this study, the interaction effect between the vegetation type and soil texture factors
indicated enhancement. Although the maximum interpretation of single factors reached
only 31%, these factors could be enhanced upon interaction with other factors.
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5. Conclusions

Analysis of the time-lag effect of precipitation, temperature, and drought on NPP at
the seasonal scale suggests the following patterns. First, there occurred time-lag effects
of precipitation and drought on NPP. This result further revealed that moisture was the
major factor limiting vegetation in the considered temperate forest–grassland ecotone.
Second, a legacy effect of drought on NPP occurred at the later stages of vegetation growth,
resulting from the well-developed functional structure and drought-resistance strategies
of vegetation in semiarid areas. Due to water retention and water use strategies, a legacy
effect of precipitation also occurred at the early stages of vegetation growth. Third, the time-
lag effect of precipitation on NPP varied with vegetation type and soil texture between
the different spatial patterns during the growing season. The spatial pattern of the time
lag was influenced by the interaction effect between the vegetation type and soil texture
factors. Our time-lag effects findings help to clarify the vegetation–climate relationship
in temperate semiarid forest–grassland ecotones. However, the time-lag effect of climate
conditions on vegetation growth in forest–grassland ecotones is inadequately considered
at the global scale. Thus, it remains challenging but crucial to capture these processes
in dynamic vegetation models in order to obtain a better understanding of vegetation
responses to climate change.
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Appendix A

Table A1. International system of soil texture classification.

Abbreviation
Particle Size Composition/%

Clay Silt Sand

sandy soil and sandy loam SSSL 0–15 0–15 85–100
sandy loam SL 0–15 0–45 55–85

loam Loam 0–15 30–45 40–55
silty loam SiL 0–15 45–100 0–55

sandy clay loam SaCL 15–25 0–30 55–85
clay loam CL 15–25 20–45 30–55

silty clay loam SiCL 15–25 45–85 0–40
sandy clay SaC 25–45 0–20 55–75
loamy clay LC 25–45 0–45 10–55
silty clay SiC 25–45 45–75 0–30

clay Clay 45–65 0–35 0–55
heavy clay HC 65–100 0–35 0–35
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Appendix B

The calculation of daily solar radiation

SOL = (as + bs
n
N
)Ra (A1)

where SOL is solar radiation (MJ·m−2·day−1) and as is the regression constant. Depend-
ing on atmospheric conditions (humidity, dust) and solar declination (latitude, month),
the Angstrom values as and bs will vary. Where no actual solar radiation data are available
and no calibration has been carried out for improved as and bs parameters, the values
as = 0.25 and bs = 0.50 are recommended. Moreover, n is actual duration of sunshine
(hours); N is maximum possible duration of sunshine or daylight hours (hours); Ra is
extraterrestrial radiation (MJ·m−2·day−1).

Ra =
24(60)

π
Gscdr[ωs sin(ϕ) sin(δ) + cos(ϕ)cos(δ)sin(ωs)] (A2)

where Gsc is the solar constant, which is 0.0820 MJ·m−2·min−1; dr is inverse relative distance
Earth–Sun; ωs is sunset hour angle (rad); ϕ is latitude (rad); and δ is solar decimation (rad).

dr = 1 + 0.033 cos(
2π

365
J) (A3)

ωs = arccos[− tan(ϕ) tan(δ)] (A4)

δ = 0.409 sin(
2π

365
J − 1.39) (A5)

where J is the number of the day in the year between 1 and 365 or 366.

N =
24
π

ωS (A6)

Rns = (1− α)SOL (A7)

Rso = (as + bs)Ra (A8)

where Rns is net solar or shortwave radiation (MJ·m−2·day−1); α is the albedo or canopy
reflection coefficient, which is 0.23; and Rso is clear-sky solar radiation (MJ·m−2·day−1).

Rnl = σ[273 + Ta]4(0.34− 0.14
√

ea)(1.35
SOL
Rso

) (A9)

where Rnl is net outgoing longwave radiation (MJ·m−2·day−1), σ is the Stefan–Boltzmann
constant (4.903 × 10−9 MJ·K−4·m−2·day−1), Ta is temperature, and ea is actual vapor
pressure (kPa).

Rn = Rns − Rnl (A10)

where Rn is net radiation (MJ·m−2·day−1).

Appendix C

The calculation of SPEI
The SPEI is based on a climatic water balance which is determined by the difference

between precipitation and potential evapotranspiration for the month i:

Di = PPTi − PETi (A11)

where PPTi is precipitation in i month and PETi is the potential evapotranspiration calcu-
lated by Formula (10).

The calculated Di values are aggregated at different timescales following the same
procedure as that for the standardized precipitation index (SPI). The Xk

i,j in a given month j
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and year i depends on the chosen timescale k. For example, the accumulated difference for
one month in a particular year i with a 12-month timescale is calculated according to:

Xk
i,j =

12

∑
l=13−k+j

Di−1,l +
j

∑
l=1

Di,l i, i f j < k (A12)

Xk
i,j =

j

∑
l=j−k+1

Di,l , i f j ≥ k (A13)

Then, the log-logistic distribution is selected for standardizing the D series to ob-
tain the SPEI. The probability density function of the log-logistic distributed variable is
expressed as:

f (x) =
β

α
(

x− γ

α
)

β−1
[1 + (

x− γ

α
)

β

]
−2

(A14)

where α, β, and γ are scale, shape, and origin parameters, respectively, for D values in the
range (D > γ > ∞). Thus, the probability distribution function of the D series is given by:

F(x) = [1 + (
x− γ

α
)

β

]
−2

(A15)

With F(x), the SPEI can easily be obtained as the standardized values of F(x).

SPEI = W − C0 + C1W + C2W2

1 + d1W + d2W2 + d3W3 (A16)

W =
√
−2 ln(P) for P ≤ 0.5 (A17)

P is the probability of exceeding a determined D value; P = 1 – F(x). If P > 0.5, then
P is replaced by 1 − P, and the sign of the resultant SPEI is reversed. The constants are
C0 = 2.515517, C1 = 0.802853, C3 = 0.010328, d1= 1.432788, d2 = 0.189269, and d3 = 0.001308.

Appendix D

The Calculation of ∆, γ, U2, es, and ea

∆ =
4098[0.6108 exp( 17.27Ta

Ta+237.3 )]

(Ta + 237.3)2 (A18)

where ∆ is the slope of the saturation vapor pressure curve at air temperature Ta (kPa·◦C−1).

γ =
cpP
ελ

= 0.665× 10−3P (A19)

where ∆ is the psychrometric constant (kPa·◦C−1); P is atmospheric pressure (kPa); λ is
latent heat of vaporization (MJ·kg−1); cp is specific heat at constant pressure, 1.013 × 10−3

(MJ·kg−1·◦C−1); and ε is ratio molecular weight of water vapor/dry air = 0.622.

P = 101.3(
293− 0.0065Z

293
)

5.26
(A20)

es = 0.6108 exp(
17.27Ta

Ta + 237.3
) (A21)

ea = es × H (A22)

U2 = UZ
4.87

ln(67.8Z− 5.42)
(A23)
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where Z is elevation above sea level (m), H is relative humidity, es is mean saturation vapor
pressure (kPa), ea is actual vapor pressure (kPa), and U2 is wind speed at 2 m above ground
level (m·s−1).
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