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Abstract: The National Agricultural Statistics Service, the statistical arm of the US Department of
Agriculture, and the Multi-Resolution Land Characteristics Consortium, a group of the US federal
agencies, collect and publish several land-use and land-cover data sets. The aim of this study is
to analyze the consistency of forestland estimates based on two widely used, publicly available
products: the National Land-Cover Database (NLCD) and Cropland Data Layer (CDL). Both remote-
sensing-based products provide raster-formatted land-cover categorization at a spatial resolution of
30 m. Although the processing of the yearly published CDL non-agricultural land-cover data is based
on less frequently updated NLCD, the consistency of large-area forestland mapping between these
two datasets has not been assessed. To assess the similarities and the differences between CDL- and
NLCD-based forestland mappings for the state of North Carolina, we overlay the two data products
for the years 2011 and 2016 in ArcMap 10.5.1 and analyze the location and attributes of the matched
and mismatched forestland. We find that the mismatch is relatively smaller for the areas of the state
where forests occupy larger shares of the total land, and that the relative mismatch is smaller in 2011
when compared to 2016. We also find that a large portion of the forestland mismatch is attributable to
the dynamics of re-growth of periodically harvested and otherwise disturbed forests. Our results
underscore the need for a holistic approach to data preparation, data attribution, and data accuracy
when performing high-scale map-based analyses using each of these products.

Keywords: Geographic Information Systems (GISs); mapping; raster data; forestland; remote sensing;
national land-cover database; cropland data layer; forest dynamics

1. Introduction

Large-area mapping of forest inventories is imperative for understanding forest
ecosystems [1–6] and the economics of forest-based industries [7–11]. The majority of
the analyses of North Carolina forestland use the data derived from the US Department
of Agriculture Forest Service Forest Inventory and Analysis (FIA) surveys [7,12–16]. The
program uses a stratified sample and defines forests from a use perspective, which, in
general, refers to the human activities that alter land surface processes [17]. The use-based
definition of forests relies on the interpretation of the conditions on the ground, such as a
presence of a number of trees, at a point in time, with respect to intended use over a broader
time [2]. Here, the intended use might be harvesting the trees for timber, or making sure
that the trees remain undisturbed to ensure that the environmental amenities provided by
the forest are intact.

An alternative definition of forest is from a land-cover perspective, which refers to
the physical and biological cover over the surface of the land, such as water, vegetation,
and bare soil [18]. The two major US programs providing periodic national assessments of
land cover are the US Department of Agriculture (USDA) Cropland Data Layer (CDL) [19],
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which are available yearly from 2008 for all US states, and National Land Cover Database
(NLCD), which is produced by the Multi-Resolution Land Characteristics Consortium,
a group of the US federal agencies, and is updated in approximately two-to-three-year
intervals since 2001 [20–22]. In contrast with the use perspective, forest land-cover refers to
the physical and biological cover over the surface of the land and, in addition to both grazed
and ungrazed forests capable of being used for timber harvests, includes the forestland
in parks, wildlife areas, and other special uses, where commercial timber harvests are
rare [21,22].

In addition to defining forests from land-cover vs. land-use perspectives, CDL and
NLCD differ from FIA, in that they both provide an opportunity to inventory forestland
extent and location by assessing the entire population vs. only a sample of forests.

Recognizing the forest population representation, the NLCD is used as a basis for
FIA stratification [17], and has been combined with auxiliary data providing, for example,
tree height information, for the estimation of forest extent and stock [5,23–26]. However,
actively managed forests undergoing periodic harvesting and replanting have been found
to be interpreted as some other forms of land cover, such as shrub land and pasture/hay
in the NLCD [6,26,27]. For that reason, more frequently produced data, such as the yearly
CDL, may be helpful in improving the NLCD-derived understanding of forestland location
and extent of harvesting and re-growth. However, only few studies juxtaposed the NLCD
and CDL.

The use of CDL to specifically map forestland has been limited, and mostly focused
on over-time conversions between forest and other land covers [28–32]. Early comparisons
between CDL and NLCD data were focused on the cultivated cropland and were limited
by mismatched timing of the collections [33–35]. The comparison of the 2008–2011 CDL
with the 2006 NLCD revealed that, when the entire US is considered, 5.6% of the maps
are in disagreement as to whether land is annually tilled for crops of not, with the latter
category including forests [34]. In application to forests, ref. [36] found a 26% difference
between 2005 CDL and 1992 NLCD forestland for Wisconsin, and [37] reported 8% and 1%
differences between the 2001 NLCD and CDL (year(s) not specified) for North Dakota and
South Dakota, respectively. A recent comparison of the maps derived from the 2011 NLCD
and 2011 CDL for a 2.3 km2 area in North Carolina revealed a 13% forest area difference
between the two data sources [38].

The purpose of this article is to assess the usefulness of combining the NLCD and
CDL for forestland mapping in an application to North Carolina. Specifically, we juxtapose
the two databases for partially overlapping years to: (1) document the extent of mismatch
between the same year CDL and NLCD in forestland mapping; and (2) evaluate the
portion of the mismatch that can be attributed to the dynamics of re-growth of periodically
harvested and/or otherwise disturbed forests. In the remainder of this article, we first
introduce the study area and the NLCD and CDL data. Then, we describe our methods.
Third, we present the results of the forestland assessment and mapping based on the NLCD
and CDL for different regions of the state. Forth, we discuss the implications of our findings
and conclude with potential future extensions of research.

2. Materials and Methods

The comparison of the CDL and NLCD datasets is a natural choice because both
offer the complete coverage of the state, and share the same map projection, cell size, and
reference grid origin.

2.1. Data

NLCD is an open-source land-cover database that provides spatially explicit national
land-cover description at a spatial resolution of 30 m. Prior to 2019, four NLCD products
were released in 1992, 2001, 2006, and 2011 [22]. The 2016 NLCD product, which was re-
leased in 2019, contained additional products, so that the revised NLCD collection provided
land-cover maps at two-to-three-year intervals thorough the years 2001–2016 [21,39,40].
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The data are a product of the Multi-Resolution Land Characteristics Consortium (MRLC),
originally formed in 1993 to meet the needs of several federal agencies (US Geological
Survey (USGS), Environmental Protection Agency, National Oceanic and Atmospheric
Administration, and US Forest Service) [41], and are freely available through the MRLC
website (https://www.mrlc.gov/, accessed on 9 June 2020). The details on the production
and verification of NLCD data products are provided in [21,22,27,41].

North Carolina NLCD data are currently represented by a 16-class land-cover classi-
fication scheme rooted in [42] classification system. Of specific interest for this study are
the four forestland cover categories (deciduous, evergreen, and mixed forests, and woody
wetlands), and the categories that could represent or misrepresent re-growing forests, such
as shrubs, grassland/herbaceous, pasture/hay, and cultivated crops (Table 1).

CDL is a 30 m resolution, raster-formatted, geo-referenced, crop-specific, land-cover
map that utilizes ortho-rectified imagery to geospatially identify field crop types developed
by the USDA NASS [19]. Field-level-resolution land cover data covering the conterminous
48 states is collected annually and publicly available [22]. The production and verification
of the CDL data are detailed in [19,23].

CDL is a valuable tool for detecting change in land used for agriculture [22]. The CDL
program covers the land used for certain crops, such as corn, soybeans, cotton, and wheat,
and non-agricultural land with vegetation [19]. In comparison to other sources of land-use
data, the spatially explicit identification of land use and land cover makes it a commonly
used source for understanding agricultural land at a fine scale [23], as well as for detecting
and analyzing the changes to and from agricultural and forestland uses [29,43].

North Carolina CDL has been produced every year (2008–2020). The data are available
through an interactive data visualization portal CropScape, which provides open accessi-
bility, visualization, and geospatial analytics to the user community (https://nassgeodata.
gmu.edu/CropScape/, accessed on 5 September 2021). CDL is obtained through a super-
vised land-cover classification approach, which combines satellite imagery from sensors
such as Landsat, Resourcesat, and the Disaster Monitoring Constellation [44].

CDL categories for water, developed land, barren, dryland forest, shrubland, and
wetlands are in one-to-one agreement with the corresponding NLCD categories (Table 1). In
general, the NLCD product is the source for non-cropland CDL processing [19], specifically
ref. [22] point: “CDL does not simply revert to nor default to the NLCD in areas of non-
cropland, but rather incorporates NLCD information for non-cropland as training data
into the CDL’s own, unique classification decision tree”. In contrast with NLCD, CDL has
a more detailed classification scheme for the herbaceous and planted/cultivated groups,
bringing the total number of CDL categories to 116.

For the purposes of this analysis, we defined two new grouped land-cover categories,
Forest and Grassland, which are, respectively, shown in darker and lighter shades of green
in Table 1. Forest is the union of the four categories (deciduous, evergreen, and mixed
forests, and woody wetlands). The Grassland definition differs between the data sets:
it is the union of two NLCD categories (grassland/herbaceous and pastureland/hay),
which is also the union of four CDL categories (alfalfa, other hay, sod/grass seed, and
grassland/pasture).

The accuracy of NLCD forestland cover categories for the Eastern US has historically
been high, with the 2011 user’s accuracies for deciduous, evergreen, and mixed forests
at a 92%, 85%, and 60% area, respectively. The user’s accuracy was a 74% and 56% area
for the woody wetlands and emergent herbaceous wetlands, respectively. The producer’s
accuracy for the same region and data release ranged between a 62% and 82% area for
the dryland forest categories, and achieved an 87% and 76% area for the two wetland
categories, respectively [45]. In general, the 2016 NLCD was evaluated to be as accurate as
the 2011 NLCD [46]. Based on the recent assessments, the accuracy performance of CDL
at the national scale for the categories of interest was similar to that of NLCD, and has
improved during 2008–2016 [47].

https://www.mrlc.gov/
https://nassgeodata.gmu.edu/CropScape/
https://nassgeodata.gmu.edu/CropScape/
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Table 1. Selected land-cover categories in CDL and NLCD.

Group * NLCD Code and
Category ** NLCD Definition *** CDL Code and Category ****

Dryland
forest

41 Deciduous Forest

Areas dominated by trees generally greater than
5 m tall, and greater than 20% of total vegetation

cover. More than 75% of the tree species shed
foliage simultaneously in response to

seasonal change.

141 Deciduous Forest

42 Evergreen Forest

Areas dominated by trees generally greater than
5 m tall, and greater than 20% of total vegetation
cover. More than 75% of the tree species maintain

their leaves all year. Canopy is never without
green foliage.

142 Evergreen Forest

43 Mixed Forest

Areas dominated by trees generally greater than
5 m tall, and greater than 20% of total vegetation

cover. Neither deciduous nor evergreen species are
greater than 75% of total tree cover.

143 Mixed Forest

Shrubland 52 Shrubland

Areas dominated by shrubs less than 5 m tall with
shrub canopy typically greater than 20% of total

vegetation. This class includes true shrubs, young
trees in an early successional stage, or trees

stunted from environmental conditions.

152 Shrubland

Herbaceous 71 Grassland/
Herbaceous

Areas dominated by graminoid or herbaceous
vegetation, generally greater than 80% of total

vegetation. These areas are not subject to intensive
management, such as tilling, but can be utilized

for grazing.
36 Alfalfa; 37 Other Hay;

59 Sod/Grass Seed;
176 Grassland/

Pasture

Planted/
Cultivated

81 Pasture/Hay

Areas of grasses, legumes, or grass/legume
mixtures planted for livestock grazing or the

production of seed or hay crops, typically on a
perennial cycle. Pasture/hay vegetation accounts

for greater than 20% of total vegetation.

82 Cultivated Crops

Areas used for the production of annual crops,
such as corn, soybeans, vegetables, tobacco, and
cotton, and also perennial woody crops, such as

orchards and vineyards. Crop vegetation accounts
for greater than 20% of total vegetation. This class

also includes all land being actively tilled.

Multiple cultivated
crop categories

Wetlands

90 Woody Wetlands

Areas where forest or shrubland vegetation
accounts for greater than 20% of vegetative cover,
and the soil or substrate is periodically saturated

or covered with water.

190 Woody
Wetlands

95 Emergent Herbaceous
Wetlands

Areas where perennial herbaceous vegetation
accounts for greater than 80% of vegetative cover,
and the soil or substrate is periodically saturated

or covered with water.

195 Herbaceous Wetlands

Notes: * Classes not shown: water, developed land, and barren. ** Categories that do not apply to North
Carolina, e.g., perennial ice/snow, are not shown. *** Source: https://www.mrlc.gov/data/legends/national-
land-cover-database-2016-nlcd2016-legend, accessed on 11 May 2021. **** Source: https://nassgeodata.gmu.edu/
CropScape/, accessed on 11 May 2021. In this study, the darker shaded categories are referred to collectively as
Forest, and the lighter shaded categories are referred to collectively as Grassland.

2.2. Study Area

The current study addressed the state of North Carolina. North Carolina was chosen
for this study because of the complexity of the state’s land use/land cover. North Carolina
is one of the most physio-geographically diverse states in the southern United States
comprising of the Coastal Plain in the eastern part of the state, the Piedmont in the central

https://www.mrlc.gov/data/legends/national-land-cover-database-2016-nlcd2016-legend
https://www.mrlc.gov/data/legends/national-land-cover-database-2016-nlcd2016-legend
https://nassgeodata.gmu.edu/CropScape/
https://nassgeodata.gmu.edu/CropScape/
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part of the state, and the mountains in the west [15]. For statistical reporting purposes,
USDA NASS divides North Carolina into eight Agricultural Statistical Districts (ASDs), as
shown in Figure 1. ASDs are groups of counties, distinguished by climate (temperature and
annual precipitation), geography (soil type, terrain, and elevation), and crop production
practices [37]. According to the latest available North Carolina Forest Inventory Analysis
(FIA) inventory cycle completed in 2013, forests occupied approximately 60% of the state’s
land between 2007 and 2013, approximately 18.6 million acres. Both CDL and the NLCD
estimate smaller forestland areas, when compared to the 2007-13 FIA: 16.8 million acres or
55% of the state total according to 2011 NLCD and 18.1 million acres or 59% of the state
total according to the 2011 CDL. FIA surveys divide the state into four regions (units), with
the percent of forested area varying between 51% in the Central Piedmont unit, and 76% in
the Western Mountains unit. The CDL and NLCD reveal a similar general geographical
pattern of forestland, with the highest proportion of forestland in total appearing in the
two Mountain ASDs (Figure 1).
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Figure 1. Map of Agricultural Statistical Districts (ASDs) in North Carolina based on the share of
forestland in CDL (a) and share of forestland in the NLCD (b).

2.3. Methods

We juxtaposed the 2011 NLCD and CDL and the 2016 NLCD and CDL in ArcMap 10.5.1
to identify the matched and mismatched forestland pixels for each ASD in the state. GIS data
in raster format were downloaded from CDL (https://nassgeodata.gmu.edu/CropScape/,
accessed on 12 November 2019) and NLCD (https://www.mrlc.gov/data, accessed on
12 November 2019) data repositories. The processes involved are summarized in Figure 2.
The data were projected to the NC State Plane (US Feet) projection. The North Carolina
data layer was extracted by mask using an NC county layer map available through NC One
Map (http://www.nconemap.gov, accessed on 12 November 2019). The CDL and NLCD
layers were reclassified to a general forest category. The forest classes in CDL (deciduous
forest = 41, evergreen forest = 42, mixed forest = 43, and woody wetlands = 90) and the
forest classes in NLCD (deciduous forest = 141, evergreen forest = 142, mixed forest = 143,
and woody wetlands = 190) were classified as 1, while other classes (for example, agri-
cultural land, water, and developed land) were classified as 0, and NoData (where no
data existed) was left as NoData. The new forest layer was overlaid on an NC OneMap
Ortho-imagery layer to provide aesthetics. This was conducted to illustrate the spatial
distribution of forest land-cover in the study area.

Map Algebra was used to calculate the quantitative inconsistencies between the
datasets. In this case, the newly created general forest data layer (1 = forest, 0 = non-forest)
for CDL was subtracted from the general forest layer for the NLCD, and the result of this
Map Algebra operation could be −1, 0, or 1. Here, −1 represents forest in the NLCD
but a different category in CDL, 0 represents where they both match, and 1 represents
forest in CDL but a different category in the NLCD. All values of −1 (forestland in the
NLCD) and 1 (forestland in CDL) were extracted to their own layer using the Reclassify
function. These new layers, whose values contained 1 or NoData, were multiplied by the
original CDL or NLCD layers to render a layer of the summary of their pixels and locations
of inconsistencies.

https://nassgeodata.gmu.edu/CropScape/
https://www.mrlc.gov/data
http://www.nconemap.gov
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Figure 2. Flow diagram of data development and analysis.

The two snapshots of the differences in 2011 and 2016 were each quantified in a total
of four metrics, separately for each ASD. Two metrics reflected the absolute forestland
mismatch: Metric 1 was the total area identified as forestland in CDL and something else in
the NLCD, i.e., coded 1, and Metric 2 was the total area identified as forestland in the NLCD
and something else in CDL, i.e., coded −1. Since the total and forestland areas varied
significantly across the state, to facilitate between-region comparisons, we also considered
two relative measures of mismatch. The mismatch relative to match was calculated as the
absolute forestland mismatch divided by the area identified as forest in both data sets, for
the two metrics of the absolute mismatch separately. Specifically, we calculated Metric 3
as the percentage of the total area identified as forestland in CDL and something else in
NLCD, i.e., coded 1, in the total area coded 0, i.e., identified as forestland in both datasets.
We calculated Metric 4 as the percentage of the total area identified as forestland in the
NLCD and something else in CDL, i.e., coded −1, in the total area coded 0, i.e., identified
as forestland in both datasets.

To analyze the mismatch over time, we traced how the land that was mismatched was
recorded in CDL in the years subsequent to 2011 (2012–2015) and in the years subsequent
to 2016 (2017–2019). For the years for which only CDL was available, i.e., for the years
2012–2015 and 2017–2019, we first Reclassified the forest classes (deciduous forest = 41,
evergreen forest = 42, mixed forest = 43, and woody wetlands = 90) as 1, while other classes
(such as agricultural land, water, and developed land) were reclassified as 0, and left the
NoData (where no data existed) as NoData. Subsequently, only for the land identified as
forestland in the NLCD and something else in CDL, i.e., coded −1 in 2011 and 2016, we
used Map Algebra to multiply the reclassified CDL data by −1. We then analyzed what
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portion of the total mismatch in 2011 and 2016 fell in the categories that identified forestland
as described in the patterns presented in Tables 2 and 3, separately for each ASD.

Table 2. Tracing the land identified as forest in the 2011 NLCD, but identified as non-forest in the
2011 CDL using the subsequent year’s CDL data.

Reclassified CDL Coding:
−1—Forest, 0—Non-Forest Identification of Forestland

2012 2013 2014 2015

0 0 0 −1 Land identified as non-forest in 2012, 2013, and 2014, but is identified as forest in 2015
0 0 −1 −1 Land identified as non-forest in 2012 and 2013, but is identified as forest from 2014
0 −1 −1 −1 Land identified as non-forest in 2012, but is identified as forest from 2013
−1 −1 −1 −1 Land identified as forest in 2012–2015

Table 3. Tracing the land identified as forest in 2016 NLCD, but identified as non-forest in 2016 CDL
using the subsequent years CDL data.

Reclassified CDL Coding:
−1—Forest, 0—Non-Forest Identification of Forestland

2017 2018 2019

0 0 −1 Land identified as non-forest in 2017 and 2018, but is identified as forest in 2019
0 −1 −1 Land identified as non-forest in 2017, but is identified as forest from 2018
−1 −1 −1 Land identified as forest in subsequent years of CDL

The re-coded CDL and NLCD data were used to answer two research questions and
to test two hypotheses for each question.

Research question 1: how large is the NLCD–CDL mismatch in forest representation
in NC for the same years 2011 and 2016?

Hypotheses 1.1. Forestland mismatch is relatively minor and varies across the ASDs, with the
mismatch negatively correlated with the share of forestland in total.

Hypotheses 1.2. Forestland mismatch is smaller in 2016 when compared to 2011.

Research question 2: could the mismatch be attributed to the dynamics of re-growth
of periodically harvested and/or otherwise disturbed forests?

Hypotheses 2.1. A large portion of the mismatch is attributable to the dynamics of re-growth and
re-planting, i.e., it is a part of the cycle of forest to grass to shrubland back to forest then grass.

Hypotheses 2.2. The mismatch is qualitatively of the same dynamics for 2011–2015 and 2016–2019.

3. Results

Research question 1: how large is the NLCD–CDL mismatch in forest representation in
NC for the same years 2011 and 2016? The absolute mismatch in forestland areas by ASD is
detailed in Table 4, and the relative mismatch—in both Table 4 and Figure 3.

Both Table 4 and Figure 3 reveal support for Hypothesis 1.1 that suggests that the
forestland mismatch as a percent of match varies between 3% and 27% for the eight
ASDs assessed in 2011 and 2016, and the relative mismatch is consistently smaller in the
Mountain ADSs.
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Table 4. Agricultural Statistics Districts, the total area for each (ha), total forestland that match
between CDL and NLCD in 2011, and the percent relative to match.

Southern
Coastal

Central
Coastal

Northern
Coastal

Southern
Piedmont

Central
Piedmont

Northern
Piedmont

Western
Mountain

Northern
Mountain

Total Area (Ha) 2,390,868 1,721,521 1,684,806 1,377,242 1,358,993 1,504,857 1,881,924 862,955

2011 Comparison

Total Forest Match
2011 (Ha) 1,039,990 635,858 733,571 1,133,985 628,472 764,397 1,433,947 553,434

Metric 1: Total Forest
in CDL, something
else in NLCD (Ha)

228,941 166,548 156,356 86,300 74,578 90,563 54,528 33,634

Metric 3: Relative to
Match (%) 22% 26% 21% 8% 12% 12% 4% 6%

Metric 2: Total Forest
in NLCD, something

else in CDL (Ha)
102,099 69,104 61,181 53,389 24,597 33,935 37,199 14,989

Metric 4: Relative to
Match (%) 10% 11% 8% 5% 4% 4% 3% 3%

2016 Comparison

Total Forest Match
2016 (Ha) 1,111,215 655,016 735,967 596,482 635,510 773,195 1,420,935 551,529

Metric 1: Total Forest
in CDL, something
else in NLCD (Ha)

135,043 101,413 97,527 141,547 88,822 107,900 100,895 58,252

Metric 3: Relative to
Match (%) 12% 15% 13% 24% 14% 14% 7% 11%

Metric 2: Total Forest
in NLCD, something

else in CDL (Ha)
236,042 175,180 161,984 115,354 62,371 89,170 60,015 29,603

Metric 4: Relative to
Match (%) 21% 27% 22% 19% 10% 12% 4% 5%
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Unlike for Hypothesis 1.1, we do not find consistent support for Hypothesis 1.2. As
Table 4 and Figure 3 detail, both the absolute and the relative forestland mismatch are less
in 2016 than in 2011 only in Metric 1 (forestland in CDL, other land in NLCD) and only for
one region: the Coastal ASDs.

To formally test Hypothesis 1.1, we calculated the correlation coefficients between
the share of forests and Metrics 3 and 4, using the ASDs as the units of analysis (eight
ASDs, two years, a total of eight units of analysis) (Table 5), and formally tested the
following hypotheses:

Table 5. Correlation table showing the relationship between the share of forests and
forestland mismatch.

Mismatch
Share of Forest in

Total Area Based on
2011 NLCD

Mismatch

Metric 3: Forest CDL,
Other NLCD 2011

Metric 4: Forest
NLCD, Other

CDL 2011

Metric 3: Forest CDL,
Other NLCD 2016

Metric 4: Forest
NLCD, Other

CDL 2016

Metric 3: Forest CDL,
other NLCD 2011 −0.79 1

Metric 4: Forest
NLCD, other CDL

2011
−0.71 0.95 1

Metric 3: Forest CDL,
other NLCD 2016 −0.60 0.08 0.14 1

Metric 4: Forest
NLCD, other CDL

2016
−0.85 0.88 0.91 0.49 1

H0. ρ = 0

Ha: ρ < 0

Here, ρ is the correlation between the share of forests and a metric of forestland
mismatch. Under conventional assumptions, at a 5% level of significance, we could not
reject the null hypothesis for one measure: Metric 3 (forest CDL, other NLCD 2016).
However, we rejected the null hypothesis in favor of the alternative for the other three
correlation coefficients considered, at a 5% level of significance; that is, we found support
for Hypothesis 1.1 about the mismatch being less for the ASDs with the higher share of
forestland in total.

Research question 2: could the mismatch be attributed to the dynamics of re-growth
of periodically harvested and/or otherwise disturbed forests? To test Hypothesis 2.1, we
analyzed the composition of the absolute mismatch, with a specific focus on the land cover
that could be attributed to the transitions within a forest cuts and re-growth cycle. It has
been shown that the vegetation in place of cut trees could show as grasses or shrubland
when the remote sensing techniques are used to gather data [6,45,48]. Thus, for the purposes
of testing Hypothesis 2.1, we postulated that the forest mismatch could be attributed to
the dynamics of re-growth if shrubland and grasses combined constitute more than half
of the mismatch. As Figure 4 reveals, under such a rule, the hypothesis is supported in
the Piedmont for both metrics and both years, but is not supported in the other regions
of the state with at least one metric. The pie charts show the composition of the absolute
mismatch, and shaded areas show the ASDs for which we do not find support for the
Hypothesis 2.1.
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Figure 4. (a–d) Mismatched forestland in 2011 and 2016. Pie charts show the composition of the
absolute mismatch, and shaded areas show the ASDs that do not support Hypothesis 2.1.

To test Hypothesis 2.2, we analyzed the over-time composition of the absolute mismatch
in Metric 2, forestland in the NLCD, and something else in CDL. Specifically, we analyzed
what share of such land was recorded as forest in subsequent years of CDL. As Figure 5a
shows, for all the ASDs considered, over 30% of the 2011 mismatched land is identified
as forest in 2012, with the 2013–2015 period showing a steady increase in the share of the
mismatched land being identified as forest. The highest rate of 2013–2015 increase, 11%, is
in the Central Piedmont (Figure 5a), and the percentage of the mismatch recorded as forest
exceeds 50% by the year 2015 for all ASDs.
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Figure 5. Land identified as forest in the NLCD, but identified as non-forest in in CDL that becomes
forest in CDL in subsequent years of data availability; (a) percent of mismatched land in 2011 that
becomes forest; (b) percent of mismatched land in 2016 that becomes forest.
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The dynamics of the forest identification in the 2016 mismatch are qualitatively the
same as those for the 2011 mismatch, in that a large portion of the mismatch is recorded as
forest three years later. However, in Figure 5b, there is a “jump” in the percent of land that
is identified as forest between 2018 and 2019, most notably a 76% increase in the Western
Mountain ASD and a 47% increase in the Southern Coastal ASD.

4. Discussion

The NLCD and CDL are both rich sources for high-quality land-cover data. Data
are provided at regular intervals, with CDL updates released yearly, and the NLCD—in
five-year intervals since 2001. Both data sets experience rigorous accuracy checks [18,19].
This study is the first to compare and contrast the forestland maps derived from the two
sources for the state of North Carolina, where forest occupy approximately 60% of the
land’s surface.

Overall, we found that the disagreement between the maps for which both sets of data
were available, 2011 and 2016, was relatively small, and was the smallest in the Mountains
where the share of forestland in total was the highest when compared to the Piedmont or
Coastal regions. The only known previous direct comparison of the 2011 CDL and NLCD
that was for a random 2.3 km2 area in the Southern Coastal Agricultural Statistical District
region of North Carolina, yielded estimates that were similar to ours: 12% and 10% in
Metrics 3 and 4, respectively [38].

More generally, when the eight ASDs were considered, we found the relative mismatch
decreasing with forest predominance on the landscape. For example, the coefficient of
correlation between the ASD share of forest in total area (based on 2011 NLCD) and any
of the metrics of mismatch considered in the study was −0.60 or lower, all statistically
significant at a 5% level of significance. We posit that this finding is likely to hold for other
geographic regions, though additional research may be needed to evaluate, for example,
how high the share of forestland in total needs to be to confidently assume that the relative
forestland mismatch between the two datasets is less than a desired threshold.

The global-scale model comparison conducted by Prestele and collaborators [49]
showed that the differences in input data applied to simulation models constitute an
importance source of uncertainty in forest areas. In such a context, our analysis contributes
to the understanding of the uncertainty of the data that are commonly used as input
to the evaluation of the land-cover change in the US and the associated environmental
impacts [45]. Another area of research where such an evaluation of the consistency of the
alternative input data are of importance, concerns the assessment of forest biomass and the
production of renewable energy [38].

Our analysis also found that the support of the hypothesis that a large share of the
mismatch between the two data sources was attributable to the dynamics of forest cuts or
other disturbances and regrowth. Again, we found that the rate at which the mismatched
land was identified as forest in subsequent CDL releases varied across space. An intriguing
area of future research would be to identify other land-cover attributes, such as the degree
of forest fragmentation, land-cover clustering, or proximity to population centers, which
would help explain and predict the changes in the mismatch overtime. Supplementing the
land-cover maps with the airborne or satellite high-resolution data for the identification of
individual trees on the mismatched land could likewise be helpful for understanding the
reasons behind the mismatch [50].

This paper quantified the level of disagreement between the widely used data prod-
ucts, CDL and NLCD. GIS techniques utilizing change detection analysis were used to
quantitatively measure this level of agreement. This is not to say that the data are wrong, but
only that assuming that NLCD forest matches with CDL forest with 100 percent accuracy is
incorrect. Our findings point to the need to be apprehensive about potential land-cover iden-
tification errors when using these remote-sensing-based data for forestland assessments.

The results shed light on the opportunities and potential pitfalls associated with using
NLCD and CDL for large-area forestland assessment and mapping. Unlike the sample-



Forests 2022, 13, 1023 12 of 15

based FIA, CDL and NLCD provide an opportunity to inventory forestland by assessing
the entire population vs. only a sample of forests. The development of the analytical
approaches that combine the sample-based and population-based data for forestland
mapping is likely to improve future assessments of the environmental and economic
assessments of forest inventories.

5. Conclusions

By utilizing rich data sets representing land cover with varying granularities and
created from different sources, the use and application of GIS techniques can be used to
perform change detection analysis to measure the level of agreement between NLCD and
CDL. As highlighted by Figure 2, raster GIS techniques of reclassify-and-map algebra
provide measurements of change detection to make comparisons between forest and non-
forest in these datasets.

Forestland misclassification could impact policy-making as related to forests and
related industries. For example, a better understanding of the presence of forests will
help the regional offices that handle and allocate funds from certain programs, such as the
North Carolina Forest Stewardship Program (NCFSP) (https://www.ncforestservice.gov/,
accessed on 24 March 2022). The NCFSP is a voluntary cooperative effort where private
landowners receive technical assistance in developing a management plan to help them
achieve their objectives. They are also recognized for their achievements in promoting
forest resource management and are connected with the information and tools they need
to manage their forests and woodlands. Better understanding the spatial distribution of
the forestland that is eligible for the NCFSP would be helpful for the program funding
planning. Similarly, the comparisons of forestland in CDL and NLCD could benefit the
planning of other federal forest-related policies, such as the Forest Land Enhancement
Program (FLEP), Forest Legacy Program (FLP), and the Forestry Incentives Program (FIP)
(https://www.fs.usda.gov/managing-land, accessed on 24 March 2022).

Our analysis of North Carolina forestland-based mapping contributes to the literature
in two important ways. First, we documented the comparison of forestland mapping
for NC. Second, we explored the utility of juxtaposing the multiple years of CDL and
NLCD for enhancing the dynamic information about the forests. Our findings do not
suggest that one product is more accurate or should be preferred for forest mapping.
We found that the relative mismatch was small and varied across the state, and that a
large portion of the forestland mismatch was attributable to the dynamics of re-growth of
periodically harvested and otherwise disturbed forests. These findings imply that the best
practices would be to report the estimates based on both CDL and NLCD forestland maps,
when practical and possible. While this study focused on identifying and quantifying
the differences in the two data products, future research could focus on developing the
methods for merging the two maps for forest assessments.

Future forest area mapping and assessment could combine the CDL and NLCD
with other developing land-cover and land-use monitoring products ranging from those
started by non-government organizations, such as the Global Forest Watch (https://www.
globalforestwatch.org, accessed on 24 March 2022), to rigorous scientific efforts by the
government agencies. For example, the ongoing US Geological Survey Land Change
Monitoring, Assessment, and Projection (LCMAP) project (https://www.usgs.gov/special-
topics/lcmap, accessed on 24 March 2022) generates an integrated collection of annual land-
cover products for the conterminous United States with the specific focus on documenting
the change in land surface [25]. We did not include the LCMAP data in our analysis because
they are not independent from NLCD, in that the 2011 NLCD are used as training data for
LCMAP classification and for post-classification gap-filling (USGS, 2021). Similar to the
LCMAP, the Landscape Change Monitoring System (LCMS) produced by the US Forest
Service of USDA centers on modeling and mapping change, but with a focus that is closer
to the topic of our analysis: the change in the vegetation cover. As with the LCMAP, various
data products, including NLCD, are used as inputs to modeling [49]. Future research that

https://www.ncforestservice.gov/
https://www.fs.usda.gov/managing-land
https://www.globalforestwatch.org
https://www.globalforestwatch.org
https://www.usgs.gov/special-topics/lcmap
https://www.usgs.gov/special-topics/lcmap
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juxtaposes the NLCD–CDL forest mismatch maps with the LCMAP and LCMS output
products, such as the maps that represent alternative stages of after-disturbance forest
recovery, could provide additional insights into forest dynamics.

Finally, our study focused on two continuous US land-cover mapping programs.
However, the accurate representation of forestland worldwide is likewise important for
multiple reasons, such as greenhouse gas reduction efforts through reducing deforestation
and reforestation [30,51–56]. Our findings point to the need to be mindful about the
potential mismatch in the identification of forest land from alternative land-cover products,
especially when identifying periodically harvested and otherwise disturbed forests.
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