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Abstract: Urban vegetation plays a very important role in regulating urban climate and improving
the urban environment. There is an urgent need to construct an effective index to quickly detect urban
vegetation quality changes. In this study, a synthetic vegetation quality index (VQI) was proposed
using a holistic approach based on the quality of vegetation itself and the spatial relationship with its
surroundings, composed of four selected variables: normalized difference vegetation index (NDVI),
patch aggregation index (AI), patch density (PD), and percentage of landscape (PLAND). Principal
component analysis (PCA) was employed to calculate weights for each variable due to its objectivity.
Then, taking Fuzhou City, southeast China as the case study, the scale effects of the VQI under
different moving window sizes (500 m, 1 km, 2 km, . . . , 5 km) and the spatiotemporal changes were
explored. The results showed that a VQI with a window size of 3 km had the highest correlations with
all the selected indicators. Meanwhile, the representativeness and the effectiveness of the VQI were
validated by the percentage eigenvalues of PC1, as well as Pearson correlation analysis and bivariate
spatial autocorrelation analysis. We also revealed that the proposed VQI had the greatest explanatory
power for land surface temperature (LST) among all the factors in both studied years (2000 and 2016),
with the VQI’s interpretation of LST being 0–44% better than any individual indicator except for AI
in 2000. Additionally, our work revealed that the location of vegetation has a great impact on the
urban thermal environment. The VQI can assess urban vegetation quality effectively and quickly.

Keywords: urban vegetation; vegetation quality index; landscape metrics; normalized difference
vegetation index (NDVI); principal component analysis

1. Introduction

Global urban area increased from 362,700 km2 in 1985 to 653,400 km2 in 2015, with a net
growth rate of up to 80% [1], and it is projected to increase by 1.2 million km2 by 2030, which
is nearly three times the area in 2000 [2]. Although urbanization has significantly promoted
socioeconomic welfare for urban residents, this process can potentially threaten a broad
array of ecosystem services [3,4]. As a consequence, experts in different research fields are
constantly striving to seek countermeasures for sustainable urban development [5]. Urban
vegetation, which is an important indicator to measure urban forest vegetation coverage,
determined by plant species, growth status, coverage density, and spatial pattern context,
can provide a variety of ecosystem services for urban dwellers [6–8]. Higher vegetation
coverage has always been considered to have a greater mitigation effect on the urban heat
environment with a higher shading canopy and evapotranspiration rate [9]. However, land
resources are very scarce in densely populated urban areas, motivating research to optimize
the spatial layout of vegetation coverage to mitigate urban eco-environmental problems. In
this context, it is a prerequisite to develop an appropriate quantitative index to assess the
quality of urban vegetation for rational planning and construction of urban vegetation.
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Many indices have been proposed to estimate urban vegetation status, including
plot-based and remote sensing-based measures. Plot-based index estimates from field
measurements, including diameter at breast height, height of tree, crown size, and plant
species, have been used to investigate species diversity, stand density, basal volume,
biomass, etc. [10,11]. However, plot-based data collection is a labor-intensive task, lead-
ing to a relatively limited study scope and coarse-spatial-resolution data [6]. With the
advancement of remote sensing technology, its utilization to detect vegetation dynamics,
including quality and quantity, has blossomed quickly in recent years [10]. Remote sensing
has not only been employed to identify vegetation area and extents, but also to quantify
biophysical features of trees or forests [12]. The normalized difference vegetation index
(NDVI) is one of the critical parameters reflecting the growth and nutritional information of
vegetation, which has been extensively employed to assess eco-environmental changes [13].
NDVI is commonly defined as the ratio of the difference between the reflection value of the
near-infrared band and the reflection value of the red band to their sum in remote sensing
images [14]. NDVI has important implications for urban energy balance, air purification,
climate regulation, and providing recreational venues for humans [7,15,16]. In urban areas,
the leaf area index (LAI) is another simple and promising optically ecological index to mon-
itor vegetation growth dynamics, which can be measured using plot data, light detection
and ranging (LiDAR) data, or both [17]. Above-ground biomass has been quantified by
radar images, such as Radarsat, ALOS Palsar, Sentinel 1, and LiDAR [18–20].

One of the challenges in assessing vegetation quality is that there is still a lack of a
unified standard definition for vegetation quality. Some previous studies used a single
indicator (e.g., NDVI or LAI) to estimate vegetation quality, while others used several
indicators (e.g., basal area and volume) [10]. However, few studies have constructed a
comprehensive index to evaluate vegetation quality. Several studies attempted to detect
urban ecological change using a remote sensing-based ecological index (RSEI), composed
of a couple of indicators integrated via principal component analysis (PCA) [21,22]. Some
previous studies also employed PCA to develop synthetic landscape indices to observe the
cooling effect of urban vegetation [23]. Unfortunately, most previous studies evaluated the
quality of urban vegetation from an individual perspective and ignored the impact of the
surrounding landscape. Therefore, the construction of a comprehensive index considering
the spatial correlation of urban vegetation merits further study.

In this context, this study aimed to construct a comprehensive index to evaluate urban
vegetation quality, considering both the quality of the vegetation and its spatial relationship
with the surroundings, via the utilization of geospatial technology. This index is spatially
explicit; specifically, it can be spatially visualized at the pixel level, which allows it to
quickly, quantitatively, and objectively evaluate the regional vegetation quality.

2. Materials and Methods
2.1. Study Area

Fuzhou City is the capital of Fujian Province and one of the central cities in the
economic zone on the west side of the Taiwan Straits. The total area is 11,968 km2, and
the built-up area is 416 km2. Fuzhou has a typical subtropical monsoon climate, with
moderate temperatures; it is warm, humid, and evergreen throughout the year, with
plenty of sunshine, abundant rainfall, little frost and no snow, long summers, and short
winters, characterized by a frost-free period of 326 days in a year. The annual average
sunshine is 1700–1980 h, the annual average precipitation is 900–2100 mm, and the annual
average temperature is 20–25 ◦C; the coldest month is January/February, with an average
temperature of 6–10 ◦C, whereas the hottest month is July/August, with an average
temperature of 33–37 ◦C. The maximum extreme temperature is 42.3 ◦C and the lowest
is −2.5 ◦C. According to the seventh census data, the population of Fuzhou City was
829 million in 2020. Fuzhou achieved a GDP of 1002.02 billion CNY in 2020, a 5.1% increase
compared to the previous year. In this study, we focused on the highly urbanized areas of
the city (i.e., the red areas in Figure 1a). The study area was the central urban area, covering
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approximately 660.546 km2. This selected area experienced extremely rapid urbanization
in the past 20 years, becoming one of the new furnace cities in China, with the annual high
temperature duration ranking among the highest in the country [21]. Consequently, a study
on the spatiotemporal variation in the vegetation quality of this area is meaningful, and it
can also be applied to rapidly urbanized cities in other regions.
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Figure 1. Location of Fuzhou City and spatial distribution of greenspace: (a) study area; (b,c) spatial
distribution of greenspace in 2000 and 2016, respectively.

2.2. Data Source and Preprocessing

Two cloud-free Landsat-7 and Landsat-8 images with a spatial resolution of 30 m
acquired on 4 May 2000 and 25 June 2016 were employed to extract the greenspace. The
two images were obtained from the United States Geological Survey (USGS) (https://
glovis.usgs.gov/) (accessed on 3 September 2020). The extraction of greenspace was
accomplished in five steps: (1) the digital number (DN) of the multi-spectral bands was
converted to the radiation brightness using the radiometric calibration tool in the ENVI
software; (2) the atmospheric correction was processed using the FLAASH tool of the
ENVI; (3) the normalized difference vegetation index (NDVI) was calculated according to
(NIR − red)/(NIR + red); (4) the greenspace of the two studied years was extracted using
the artificial threshold method, with threshold values of 0.52 for 2000 and 0.48 for 2016;
(5) visual interpretation by comparing high-resolution Google images was employed to
verify the classification accuracy using a confusion matrix with 100 random points for 2016
(Figure 1c). The accuracy was not verified for the year 2000 because the corresponding high-
resolution image was unavailable. The overall classification accuracy of the greenspace in
2016 was 87.0%, and the kappa coefficient was 0.824. The land surface temperature (LST)
was retrieved using the single-channel algorithm [24,25]. The inversion results of the LST
were verified by correlation analysis, and the results showed that the correlations with
the indices of the NDVI, land surface moisture, and normalized differential built-up and
soil index were between 0.956 and 0.993 for both years, highlighting the reliability of the
inversion results [24].

2.3. Calculation of Urban Vegetation Quality Index
2.3.1. Selection of Representative Metrics

To overcome the limitations of small-scale empirical indices and the neglection of
spatial teleconnections of homogeneous plaques, landscape metrics, quantifying the spa-
tial characteristics of patches, classes of patches, or entire landscape mosaics, have been
developed on the basis of graph theory [26] to examine the changes in vegetation pat-
terns [5,27–29]. These metrics can be divided into two general categories: those quantifying
landscape composition without spatial attributes, and those quantifying the spatial con-
figuration of the landscape in a spatial context [30]. Landscape composition refers to the

https://glovis.usgs.gov/
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magnitude and proportion of each patch type or the diversity and abundance of patch types
within a study region, regardless of their spatial pattern, such as placement or location of
patches within a mosaic [30], e.g., the percentage of a certain landscape element (PLAND)
and the patch density (PD). Spatial configuration refers to the spatial pattern of patches,
such as the spatial arrangement, location, or orientation of patches within a landscape.
For example, patch division or patch aggregation (AI) measures the placement of patches
relative to other patches, whereas the landscape shape index (LSI), fractal dimension index
(FRAC), and edge density (ED) measure the spatial characteristics of the patches. Such
metrics represent the recognition of a patch type according to its ecological properties,
which are influenced by their shape and size, as well as their surroundings.

Screening representative landscape metrics is essential for a specific study area to
construct the vegetation quality index (VQI). The principles of selecting landscape metrics
in this study are comprehensiveness, interpretability, and ecological significance [5,31,32].
Consequently, a total of six metrics at the class level were considered, including the com-
monly used composition metrics, PLAND and PD, and the commonly used spatial con-
figuration metrics, LSI, FRAC, ED, and AI. These class metrics were calculated using a
moving window strategy. Briefly, each calculated grid (i.e., 30 m) of the study area yields a
parameter value, with the consideration of all its defined neighboring cells in the square
window, and, by moving the window, all grids of the study area are assigned a value
(i.e., the abovementioned metrics). To compare the scale effect and obtain the optimized re-
sults, several window sizes were designed to calculate the class metrics using the Fragstats
software, namely, 500 m × 500 m, 1 km × 1 km, 2 km × 2 km, 3 km × 3 km, 4 km × 4 km,
and 5 km × 5 km. This software has a detailed operation guide [30], including formulas
and parameter settings. Therefore, the calculation formula is not repeated here. Because
the study area was an urban center area, the spatial distribution of the greenspace was
discontinuous. If the moving window is too small, there will be many pixels with no
value in the class metrics of the green space; if the moving window is too large, the spatial
variation of the type index of green space will be too smooth. After careful comparison
of the calculation results, it was decided to use a moving window size of 3 km as the
calculation window for this study.

The calculation results showed that the indices related to the shape of greenspace
patches (i.e., ED, LSI, and FRAC) were not sensitive across the study area, with their values
hardly changing across the entire study area. Finally, the three-landscape metrics were
selected (Figure 2 and Table 1): (1) AI, in the range of 0–100, examining the connectivity
between greenspace patches, where a smaller value indicates a more discrete greenspace;
(2) PD, in the range of 0–100, describing the degree of landscape fragmentation, where
a larger value indicates a more shattered greenspace; (3) PLAND, in the range of 0–100,
reflecting the percentage of greenspace. These three metrics are the most intuitive and
frequently used class metrics [31,33]. Therefore, they were considered to be representative
of the study area.

Table 1. Statistics of each indicator of VQI (3 km window size).

2000 2016

AI PD PLAND NDVI VQI 1 VQI 2 AI PD PLAND NDVI VQI 1 VQI 2

Maximum 99.801 24.507 99.637 0.835 128.343 1 99.886 23.527 99.853 0.915 133.269 1

Minimum 13.636 0.109 0.118 0.286 4.897 0 18.280 0.109 0.520 0.435 8.217 0

Mean 82.163 6.484 39.534 0.555 65.625 0.492 77.743 7.593 30.827 0.654 61.194 0.424

SD 11.887 4.096 27.130 0.102 28.992 0.235 14.812 4.169 26.611 0.104 29.515 0.236

Note: VQI 1 and VQI 2 refer to the original value and the normalized value, respectively.
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Figure 2. Spatial distribution of landscape metrics using a window size of 3 km: (a,b) calculated
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in ArcGIS software in 2000 and 2016; (c,d) calculated AI in 2000 and 2016; (e,f) calculated PD in 2000
and 2016; (g,h) calculated PLAND in 2000 and 2016.

2.3.2. Construction and Testing of Urban Vegetation Quality Index

On the basis of the above-calculated landscape metrics, representing the amount and
spatial configuration of the greenspace, combined with NDVI, indicating the quality of
the greenspace, the proposed VQI was integrated using four metrics, AI, PD, PLAND,
and NDVI. Then, the weight for each variable was determined to construct the VQI index.
At present, there are many potential weighting methods, such as the commonly used
analytic hierarchy process (AHP) and the Delphi method. However, these methods rely
on expert experience and are highly subjective. In this study, we used PCA to compute
the weight of each variable [21,24,34]. PCA is a compression method for multidimensional
data, which can remove the multicollinearity between variables [35]. More importantly, the
weight of each variable is automatically and objectively allocated according to its respective
contribution to the principal components, which can eliminate the subjectivity of artificially
determining weights. The PCA rotation tool was employed to process the PCA in ENVI;
thus, the first PC (PC1) was used to build the VQI images for the both years.

In this study, the moving window strategy, percentage eigenvalue, Pearson correlation
matrix, and bivariate spatial autocorrelation analysis were employed to test the robustness
of the VQI. We applied a “moving window” strategy to compute the landscape metrics
across the study area, which allowed us to filter the optimized results in terms of the
percentage eigenvalue. PCA is a statistical method, which transforms a set of potentially
correlated variables (e.g., four indicators in this case) into a group of linearly uncorre-
lated variables through orthogonal transformation, namely, PCs. PC1 is then employed
to represent a new comprehensive index, under the premise of it accounting for a large
variance, thus representing more information from the original variables. The variance is
usually measured by the correlation between indicators and the percentage eigenvalue.
The correlation coefficient ranges between −1 and 1, with closer absolute values to 1 be-
ing better; the percentage eigenvalue ranges between 0% and 100%, with larger values
being better. Furthermore, we used Pearson correlation analysis and bivariate spatial
autocorrelation analysis to analyze the correlation between the proposed VQI and each
factor. A larger index (i.e., R2 and Moran’s I) indicates stronger explanatory power of the
proposed VQI for each factor. Pearson correlation analysis and bivariate spatial autocor-
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relation analysis were carried out using the Statistical Program for Social Sciences (SPSS)
(IBM) and Geoda software (https://geodacenter.github.io/download.html) (accessed on
1 December 2020), respectively.

3. Results
3.1. Scale Effects of the Synthetic Vegetation Quality Index
3.1.1. Correlations between VQI Indicators

Table 2 indicates that all the indicators of VQI were highly correlated and statistically
significant at the 1% level for all window sizes, except for the relationship between PD and
NDVI for a window size of 1 km, which was statistically significant at the 5% level. Specif-
ically, PD was consistently negatively correlated with the other indicators (i.e., PLAND,
AI, and NDVI) for all window sizes, while all the other factors were positively correlated.
Among all the factor pairs, the correlation between PLAND and AI was the highest, with a
correlation coefficient of 0.706–0.822, while the correlation between NDVI and PD was the
lowest, with a correlation coefficient between −0.029 and −0.312. Moreover, it should be
noted that among all window sizes, the average correlation coefficient of 3000 m was the
largest in both 2000 and 2016, with values of 0.523 and 0.618, respectively (Figure 3).

Table 2. Correlation matrix of VQI indicators.

Window
Size

2000 2016

Index PD PLAND AI NDVI PD PLAND AI NDVI

500 m

PD 1.000 1.000
PLAND −0.462 ** 1.000 −0.380 ** 1.000

AI −0.594 ** 0.733 ** 1.000 −0.458 ** 0.706 ** 1.000
NDVI −0.098 ** 0.548 ** 0.321 ** 1.000 −0.073 ** 0.533 ** 0.314 ** 1.000

1 km

PD 1.000 1.000
PLAND −0.417 ** 1.000 −0.433 ** 1.000

AI −0.482 ** 0.761 ** 1.000 ** −0.390 ** 0.768 ** 1.000
NDVI −0.029 * 0.653 ** 0.402 ** 1.000 −0.040 ** 0.603 ** 0.406 ** 1.000

2 km

PD 1.000 1.000
PLAND −0.424 ** 1.000 −0.519 ** 1.000

AI −0.400 ** 0.808 ** 1.000 −0.502 ** 0.812 ** 1.000
NDVI −0.053 ** 0.666 ** 0.457 ** 1.000 −0.116 ** 0.590 ** 0.421 ** 1.000

3 km

PD 1.000 1.000
PLAND −0.454 ** 1.000 −0.563 ** 1.000

AI −0.428 ** 0.822 ** 1.000 * −0.583 ** 0.808 ** 1.000
NDVI −0.229 ** 0.603 ** 0.603 ** 1.000 −0.312 ** 0.841 ** 0.600 ** 1.000

4 km

PD 1.000 1.000
PLAND −0.487 ** 1.000 −0.600 ** 1.000

AI −0.463 ** 0.815 ** 1.000 −0.633 ** 0.800 ** 1.000
NDVI −0.163 ** 0.602 ** 0.403 ** 1.000 −0.207 ** 0.543 ** 0.388 ** 1.000

5 km

PD 1.000 1.000
PLAND −0.522 ** 1.000 −0.642 ** 1.000

AI −0.509 ** 0.812 ** 1.000 * −0.681 ** 0.801 ** 1.000
NDVI −0.210 ** 0.572 ** 0.394 ** 1.000 −0.238 ** 0.524 ** 0.381 ** 1.000

Note: ** indicates significance at 0.01 level, * indicates significance at 0.05 level.

https://geodacenter.github.io/download.html
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3.1.2. Principal Component Analysis

Table 3 shows the PCA results of VQI, indicating that the percentage eigenvalues of
PC1 were 84.134–94.993% for all window sizes in both of the studied years. Figure 4 reveals
that the percentage eigenvalues increased as the window size increased, with the curves
growing quickly up to a window size of 3 km before becoming relatively stable in both
of the studied years. The percentage eigenvalues of PC1 were 94.014% and 92.192% for a
window size of 3 km in 2000 and 2016, respectively, indicating that this component could
express more than 92% of the information of all the factors. The correlations among all VQI
indicators were also highest for a window size of 3 km; thus, PC1 with a 3 km window size
was chosen to construct the VQI.
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Table 3. Principal component analysis of VQI (eigenvalues and eigenvectors).

Window
Size

2000 2016

Index PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

500 m

PD −0.142 −0.409 0.901 −0.004 −0.108 −0.156 0.982 −0.004
PLAND 0.905 −0.423 −0.050 −0.005 0.850 −0.527 0.009 −0.005

AI 0.402 0.808 0.430 0.001 0.516 0.835 0.189 0.001
NDVI 0.003 −0.004 0.003 1.000 0.003 −0.004 0.003 1.000

Eigenvalue 685.947 72.226 27.050 0.017 767.722 111.525 33.236 0.020
Percentage eigenvalue (%) 87.355 9.198 3.445 0.002 84.134 12.222 3.642 0.002

1 km

PD −0.092 −0.217 0.972 −0.008 −0.083 −0.003 0.997 −0.009
PLAND 0.914 −0.406 −0.004 −0.006 0.854 −0.516 0.069 −0.006

AI 0.395 0.888 0.235 0.002 0.514 0.857 0.045 0.001
NDVI 0.004 −0.005 0.008 1.000 0.004 −0.004 0.010 1.000

Eigenvalue 673.721 55.926 19.810 0.013 725.153 77.561 19.220 0.017
Percentage eigenvalue (%) 89.893 7.462 2.643 0.002 88.223 9.436 2.338 0.002

2 km

PD −0.070 −0.054 0.996 −0.011 −0.083 −0.044 0.996 −0.012
PLAND 0.920 −0.390 0.044 −0.007 0.882 −0.469 0.053 −0.007

AI 0.386 0.919 0.077 0.003 0.464 0.882 0.077 0.002
NDVI 0.004 −0.006 0.011 1.000 0.004 −0.005 0.012 1.000

Eigenvalue 566.461 33.652 11.538 0.012 572.231 42.645 9.373 0.018
Percentage eigenvalue (%) 92.610 5.502 1.886 0.002 91.665 6.831 1.501 0.003

3 km

PD −0.066 −0.055 0.996 −0.005 −0.084 −0.090 0.992 −0.005
PLAND 0.932 −0.359 0.042 −0.004 0.894 −0.448 0.035 −0.004

AI 0.355 0.932 0.075 0.002 0.441 0.890 0.118 0.001
NDVI 0.003 −0.004 0.005 1.000 0.003 −0.003 0.005 1.000

Eigenvalue 454.260 21.849 7.076 0.001 480.369 34.674 6.100 0.001
Percentage eigenvalue (%) 94.014 4.522 1.464 0.000 92.192 6.655 1.153 0.000

4 km

PD −0.065 −0.065 0.996 −0.009 −0.085 −0.102 0.991 −0.011
PLAND 0.941 −0.337 0.040 −0.007 0.901 −0.434 0.033 −0.006

AI 0.333 0.939 0.083 0.005 0.426 0.895 0.129 0.001
NDVI 0.005 −0.008 0.009 1.000 0.004 −0.005 0.011 1.000

Eigenvalue 389.680 17.760 4.925 0.015 420.534 30.458 4.277 0.020
Percentage eigenvalue (%) 94.496 4.307 1.194 0.004 92.366 6.690 0.940 0.004

5 km

PD −0.066 −0.086 0.994 −0.007 −0.087 −0.112 0.990 −0.011
PLAND 0.947 −0.318 0.035 −0.007 0.907 −0.419 0.032 −0.006

AI 0.313 0.944 0.103 0.004 0.411 0.901 0.138 0.001
NDVI 0.005 −0.007 0.007 1.000 0.005 −0.004 0.011 1.000

Eigenvalue 332.156 14.022 3.468 0.017 370.479 25.468 3.078 0.021
Percentage eigenvalue (%) 94.993 4.010 0.992 0.005 92.841 6.382 0.771 0.005

Note: PC1–PC4 refer to the first to fourth principal components, respectively.

3.2. Validity of the Synthetic Vegetation Quality Index

Pearson correlation analysis and bivariate spatial autocorrelation analysis revealed
that the VQI and all its indicators were significantly correlated (p < 0.01) (Table 4). Among
all the indicators, the VQI had the highest correlation with PLAND, with a correlation
coefficient as high as 0.952–0.996, while the correlation between the VQI and PD was the
lowest, with a correlation coefficient between −0.440 and −0.589. The average correlation
coefficient values between the VQI and the other indicators were 0.76–0.82.

According to Pearson correlation analysis, the average coefficients between the VQI
and each variable were 0.793 and 0.820 in 2000 and 2016, respectively, higher than those of
any other factor pairs (Table 4).
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Table 4. Correlations between the VQI and all indicators (3 km).

Indicators Index AI PD PLAND NDVI Average 1

2000
R2 0.866 ** −0.469 ** 0.996 ** 0.840 ** 0.793

Moran’s I 0.828 ** −0.440 ** 0.956 ** 0.822 ** 0.762

2016
R2 0.879 ** −0.589 ** 0.991 ** 0.820 ** 0.820

Moran’s I 0.841 ** −0.561 ** 0.952 ** 0.803 ** 0.789

Note: ** statistically significant at the 0.01 level, l 1 the value of the correlation was the average of the absolute
value of each correlation coefficient.

Additionally, Pearson correlation and bivariate spatial autocorrelation were adopted to
compute the correlations between the VQI and LST at the pixel level (30 m) (Table 5). Both
the coefficients of Pearson correlation and Moran’s I of bivariate spatial autocorrelation
demonstrated that all the indicators were significantly related to LST except for NDVI in
2000. Specifically, the influence of PD was consistently positive and statistically significant
at the 1% level in both studied years, while the effects of other variables were consistently
negative and statistically significant at the 1% level (except for NDVI in 2000 for the spatial
autocorrelation analysis) in both studied years. As expected, the VQI had the greatest
correlation with LST among all the factors in both studied years except for AI in 2000,
indicating that the VQI’s interpretation of LST was 0–44% better than that of any other
indicators in both studied years except for AI in 2000. Moreover, AI also had a higher
potential explanatory power for LST, closely followed by PLAND. However, the exception
was that NDVI was not highly correlated with LST, with correlation coefficients between
−0.121 and −0.011.

Table 5. Correlations between VQI and LST.

Year Indicator AI PD PLAND NDVI VQI

2000
Pearson correlation −0.515 ** 0.179 ** −0.350 ** −0.011 −0.382 **

Moran’s I −0.508 ** 0.170 ** −0.343 ** −0.047 * −0.375 **

2016
Pearson correlation −0.505 ** 0.454 ** −0.494 ** −0.078 ** −0.515 **

Moran’s I −0.495 ** 0.437 ** −0.479 ** −0.121 ** −0.501 **
Note: ** statistically significant at the 0.01 level, * statistically significant at the 0.05 level.

3.3. Spatiotemporal Characteristics of Vegetation Quality

Figure 5 reflects the distribution patterns of the VQI using histograms generated
individually for each VQI with an interval of 10 in 2000 and 2016, where the lines are the
kernel smooth curves of the VQI, denoting the frequency estimation with kernel functions.
Figure 6 illustrates that the degree of right-skewed distribution of the VQI in 2016 was
greater than that in 2000, with skewness values of 0.720 for 2016 and 0.415 for 2000. These
figures also demonstrated that the location of the maximum bin shifted to the left from
2000 to 2016. The maximum bin for 2000 was in the range of 40–50, while that for 2016 was
in the range of 30–40.

To facilitate the analysis of the spatiotemporal variations in the VQI, the VQI initial
values were standardized within the range of 0–1, where a closer value to 1 indicates
a higher vegetation quality, and vice versa. Then, the standardized RSEI was classified
into five levels using the natural break (Jenks) method (Figures 6 and 7): excellent, good,
moderate, fair, and poor. Table 1 shows that the VQI decreased slightly from 0.492 in 2000
to 0.424 in 2016. Figure 7 reveals that the excellent level of the VQI decreased from 14.3% in
2000 to 10.1% in 2016, and the good level of the VQI also decreased from 16.8% in 2000 to
13.9% in 2016, while the fair and poor levels of the VQI increased from 33.0% and 9.7% in
2000 to 39.5% and 15.9% in 2016, respectively.
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Figure 6a,b indicate an obvious circle structure in the spatial distribution of the VQI
in both study years, with the values gradually increasing from the center to the periphery.
Meanwhile, we can also see that the fair and poor levels of the VQI areas showed a larger
expansion trend within the city from 2000 to 2016. Figure 6c reveals the temporal variation
of the VQI between 2000 and 2016. Our calculations revealed that the unchanging area still
represented the majority, accounting for 65.5% of the study area; a considerable proportion
of the study area was degraded, accounting for 31.4%, while only a small proportion of
the study area was improved, accounting for 3.1%. As shown in Figure 8, most of the
transitions (93.0%) of the VQI classes occurred between adjacent levels, and only a small
number of transitions (7.0%) occurred across multiple levels. The latter mainly occurred in
the transformation from a good level of the VQI to fair and poor levels of the VQI, or from
a medium level of the VQI to a poor level of the VQI.
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Figure 8. Chord diagram of the transfer matrix between different levels of VQI during 2000 and 2016.
Different colors represent different levels of the VQI, while the number on the outer ring represents
the initial area of each level in 2000 plus the area transferred in during the study period of 2000 and
2016, including self-transferred areas. The direction of the arrow indicates the direction of transfer
among different levels, while the number on the arrow indicates the amount of area transferred. The
outer and inner values indicate the number of cells at the beginning of the period and the number of
cells transferred during 2000 and 2016.

4. Discussion

An ideal ecological index must have three basic properties: representativeness, mea-
surability, and effectiveness [24,34,36]. Representativeness requires that the proposed index
should objectively and comprehensively reflect the characteristics of an ecosystem. The
representativeness of our proposed index was reflected in several aspects. Firstly, this index
includes not only indicators of vegetation physical structure (i.e., AI, PLAND, and PD),
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but also an indicator of vegetation quality (i.e., NDVI). In terms of the indicators of the
vegetation physical structure, they cover both the landscape composition and the spatial
configuration metrics, measuring patch magnitude without spatial attributes, as well as
patch locations in a spatial context. These three metrics are the most intuitive and frequently
used class metrics [31,33]. Secondly, to overcome the shortcomings of most ecological in-
dices composed only from a localized perspective and ignoring the spatial context [37], this
proposed index holistically considers the quality of the pixel itself, as well as the effect of
the surrounding environment. This is because each measurement has its own influence
on the surrounding or external environment [10]. Lastly, one challenge in constructing a
comprehensive index is assigning weights to each indicator. The current main weighting
methods are the analytic hierarchy process (AHP) and Delphi method [38,39]. However,
these methods are relatively subjective and are greatly influenced by human experience.
In this study, we employed PCA, which is totally free from interference, to calculate the
weights of each variable; thus, the VQI can be used to assess the urban vegetation status
more objectively and easily. The percentage eigenvalues of PC1 were 94.014% and 92.192%
for a window size of 3 km in 2000 and 2016, respectively. We further used correlation
analysis and bivariate spatial autocorrelation analysis to explore the relationship between
the VQI and the various indicators from the perspective of traditional statistics and spatial
statistics (Table 4). Table 4 shows that the VQI and all indicators were all significantly
correlated (p < 0.01). These results all confirm the representativeness of the VQI proposed
in terms of all constitutive factors, especially PLAND, AI, and NDVI.

In addition, all the indicators can be quickly calculated using a moving window
strategy. However, it should be noted that the scale of input data or analysis can impact
the values of landscape metrics [33]. With the development of spatial analysis technology
in recent decades, the scale effects (e.g., spatial extent, grain size, and cell resolution) of
landscape metrics have become a global hotspot in landscape ecology studies. We also
discussed the scale effects of the proposed VQI computed at different window sizes, and
we identified the optimal analysis window size (i.e., 3 km) (Tables 2 and 3, Figures 3 and 4).
Our research results confirm the existence of the scale effect of the landscape metrics [33],
demonstrating that the analysis window size also impacts the values of landscape metrics.

In terms of the effectivity of the calculated VQI, a validity evaluation was implemented
using correlation analysis. Table 4 shows that the VQI was significant correlated with
various indicators. Moreover, the average correlation coefficients between the VQI and
each variable were higher than those of any other factor pairs. These results highlight
the superiority of the proposed VQI in terms of effectivity and representativeness. An
interesting phenomenon is that NDVI revealed an obvious vegetation increase from 0.555 in
2000 to 0.654 in 2016, while the VQI has decreased slightly from 0.492 in 2000 to 0.424 in 2016
(Table 1). To prove which of these seemingly contradictory indicators was more effective,
LST was employed as a response proxy, because vegetation has been widely considered to
be responsible for urban heat island mitigation [9,40]. Pearson correlation and bivariate
spatial autocorrelation observed that all the indicators were significantly related to LST
except for NDVI in 2000. As expected, the VQI had the highest explanatory power for
LST among all the factors in both of the studied years except for AI in 2000. However,
unexpectedly, NDVI was found to be not highly correlated with LST in both of the studied
years for the study area. This empirical case agrees with the results of multiple studies
with regard to understanding the effect of greenspace on the urban heat environment [5,34],
which revealed that the percentage of vegetation (PLAND) has a great impact the urban
heat environment, while the R2 between NDVI and LST was not high according to the
ordinary least square (OLS) model. On one hand, this confirms that the proposed index
considering both the pixel itself and the surrounding environment has a greater impact
on LST than indices only considering the pixel itself, and that the VQI can explain the
urban thermal environment more effectively. On the other hand, it should be noted that
the relationship between LST and its impactors may vary across locations [5]. Thus, Hu
and Xu [34] employed a local regression model to explore the spatial non-stationarity
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in the relationships between the urban heat environment and land-cover features. The
application of the local model greatly improved the regression coefficients (R2) of LST and
NDVI. This also confirms the finding that the location of vegetation greatly affects the urban
thermal environment [5]. Our result is in line with these previous studies, demonstrating
a high negative correlation between AI and LST, which indicates that more concentrated
vegetation in space contributes to a lower urban thermal environment.

Lastly, we used a histogram of the proposed VQI (Figure 6) and its spatiotemporal,
observing that the quality of vegetation in the study area showed a downward trend during
the study period. We also detected places (red areas in Figure 6) where the vegetation
quality degraded between 2000 and 2016. This was mainly due to changes caused by
the encroachment of vegetation land by construction land in the process of urbanization.
These degraded areas are in good agreement with the areas of reduced vegetation in
Figure 1. Since 2000, the island surrounded by the two rivers in the middle of the study
area has ushered in large-scale urbanization [21]. This also reflects the objectivity of our
proposed index (VQI), which could be successfully used to detect the status of and changes
in vegetation quality in this study area at the pixel level.

This index can also be applied for the evaluation of spatiotemporal changes in vegeta-
tion quality in other regions, but attention should be paid to the selection of an appropriate
moving window size when calculating the landscape class-level metrics. It should be noted
that the principal components after dimensionality reduction through PCA are orthogonal,
which can eliminate factors influencing the original data. PCA can retain most of the main
information of the composed indices. The standard for PCA dimensionality reduction is to
select the principal component that maximizes the variance of the original data on the new
coordinate axis. However, features with small variance are not necessarily unimportant,
and such a unique criterion may lose some important information of the vegetation. More-
over, PCA depends strongly on the ranges, distributions, and correlations of the observed
datasets. When using the same variables but sampled at different sites, these relationships
might differ substantially. Therefore, the quantities and interpretation of the VQI will
change from site to site and from study to study.

5. Conclusions

In this study, a new index, the VQI, was constructed to detect urban vegetation quality.
The VQI was synthesized using the PCA technique on the basis of four indicators: AI, PD,
PLAND, and NDVI, thereby holistically considering both the quality of the vegetation and
its spatial relationship with the surroundings. With the merit of objectivity in assigning
weights for each variable using principal component analysis (PCA), the calculation of the
index was totally free of artificial interference. The moving window strategy, Pearson corre-
lation analysis, and bivariate spatial autocorrelation analysis were employed to validate the
proposed index. The results showed that the percentage eigenvalues of PC1 were 94.014%
and 92.192% for the 3 km window size in 2000 and 2016, respectively. The VQI had the
greatest explanatory power for LST among all factors in both of the studied years except
for AI in 2000, with its interpretation of LST being 0–44% better than any other indicator.
We also conclude that the spatial location of vegetation has a great impact on the LST, with
more concentrated vegetation in space contributing to a lower urban thermal environment.
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