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Abstract: Drilling into melamine-faced-wood-based panels is one of the most common processes in
modern furniture manufacturing. Delamination is usually the main and the most troublesome quality
defect in this case. A lot of scientific studies draw the conclusion that the progress of tool wearing
during the cutting of wood-based materials is the key problem. Therefore, tool condition monitoring
and the replacement of worn tools at the right time is the most useful and common (in the industrial
practice) way to reduce delamination. However, the automation of this process is still a problem due
to various issues. There is yet no commercial (even prototypical) offer for the furniture industry in
this regard. For this reason, it is considered advisable to try to use the multilayer perceptron (MLP)
algorithm to automatically identify a drill’s condition during drilling in a laminated chipboard. It has
been established that, for practical purposes, it is important to distinguish between the three different
classes of tool conditions, which can be conventionally described as “Green” (keep working), “Red”
(implicitly stop and replace) and “Yellow” (warning signal—stop and replace if you want to avoid
deterioration in cutting quality). To register the signals generated in the cutting zone and those
constituting the basis for the identification of the tool condition in the “on-line” mode, the following
elements were used: contact sensor of acoustic emission, accelerometer for vibration, two-component
force gauge and a microphone. The classification effects (with an overall accuracy above 70%) were
ultimately fairly decent but slightly worse than those of the classification algorithms tested earlier
(i.e., “nearest neighbors” or “support vector machine” algorithms). The most troublesome, however,
is the fact that serious errors (mistakes between “Green” and “Red” classes) were occasionally noted
(for about 1% of the analyzed cases).

Keywords: MLP classifier; tool condition monitoring; drilling; laminated chipboard

1. Introduction

It is hard to imagine modern furniture manufacturing without drilling into melamine-
faced-wood-based panels. It is a well-known fact that the machining of any composite
material generates quality problems (defects), mainly delamination. Problems of this kind
also arise during the machining of laminated panels commonly used for furniture or interior
fitting manufacturing [1–4]. A lot of scientific studies of delamination have concluded that
the progress of tool wearing during the cutting of wood-based materials is a key problem
in this case. For example, Szwajka and Trzepieciński [2,3] as well as Śmietańska et al. [4]
observed a clear relationship between the progress of tool wearing and delamination
during the machining of melamine faced panels. Therefore, tool condition monitoring
and the replacement of worn tools at the right time is the most useful and common (in
industrial practice) way to reduce delamination. However, automation is currently the
most stably developing trend in modern furniture manufacturing, which causes a lot of
issues in this particular field. For this reason, the automation of tool wearing diagnostics in
woodworking has been a subject of various research studies.
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Fundamental research on tool condition monitoring in woodworking was presented
in a study by Lemaster et al. [5], which was published almost 40 years ago. At that time,
systematic attempts were initiated to determine the most useful signals and their features
that can allow for reliable tool wear identification in the “on-line” mode (i.e., without
interrupting the machining process). This kind of research has been continued by other
scientists over the years, e.g., [6–14]. This research trend usually involves attempts to
identify the condition of a tool based on an analysis of changes in physical quantities
originating from the machining zone by means of appropriately selected sensors.

Artificial intelligence methods have begun to be increasingly used, and intelligent
machining monitoring is currently developing dynamically [15,16]. One of the precur-
sors of this approach in the wood industry was a study by Zbiec [17]. More modern
research projects in this field should also be noted. Among them are studies carried out by
Tratar et al. [18] and Nasir et al. [19]. However, there are relatively few studies on monitor-
ing the conditions of drills in furniture manufacturing, although the situation has recently
started to change slightly [20–22].

This article is a part of this research trend and aims to fill in the knowledge gap about
drill condition monitoring in the furniture industry. The current state-of-the-art methods
are highly unsatisfactory because there is no commercial or even prototypical offer for this
industry in this regard.

For these reasons, it is considered advisable to try to use the multilayer perceptron (MLP)
algorithm to automatically identify tool conditions during drilling into laminated particleboard.

2. Materials and Methods

During experimental research, the Computerized Numerical Control (CNC) machin-
ing center (Jet 100; Busellato, Thiene, Italy) was used. For the tools, six two-blade drills
with diameters of 12 mm were used, with sintered carbide blades (FABA WP–01; Faba SA,
Baboszewo, Poland—Figure 1) that are normally used for through-boring in wood-based
panels. The holes were made in a three-layer laminated (melamine faced) chipboard (Kro-
nopol U 511 SM; Swiss Krono Ltd., Żary, Poland) at a spindle speed of 4500 rpm and a feed
speed of 1.35 m/min (in accordance with the drill bit manufacturer’s recommendations).
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Figure 1. General view of the drill used in the experiments (FABA WP—01).

A density profile of the chipboard was determined using a GreCon DAX device
(Fagus-GreCon Greten Gmbh & Co. KG, Alfeld, Germany) and is shown in Figure 2.
Other material parameters were as follows: the bending modulus of rupture was 15.4 MPa;
the bending modulus of elasticity was 2950 MPa; and the surface Brinell hardness (HB) was
2.1. The material tests were performed according to [23,24] using an Instron 3382 (Instron,
Norwood, MA, USA) testing machine and a Brinell CV 3000LDB tester (Bowers Group –
UK, Camberley, UK), respectively.
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Figure 2. Density profile of the chipboard used in experiments.

To measure the signals generated in the cutting zone and those constituting the basis
for the automatic identification of the condition of tools, a few measurement channels were
created, in which the following elements were used:

1. Contact sensor of acoustic emission (AE) signal (Kistler 8152B; Kistler Group, Win-
terthur, Switzerland), which was mechanically pressed against the workpiece;

2. Accelerometer for vibration measurement (Kistler 8141B; Kistler Group, Winterthur,
Switzerland), which was mounted to the sample holder (jig);

3. Force gauge based on 2-component sensor (Kistler 9345A; Kistler Group, Winterthur,
Switzerland) for the simultaneous measurement of feed force as well as machining torque;

4. Microphone for noise (acoustic pressure) measurement (B&K 4189; Brüel and Kjær,
Nærum, Denmark) mounted on the stand near the machining zone.

The workpiece clamping and sensor installation are shown in Figures 3 and 4.
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Figure 4. A general view of the workpiece (clamping on a piezoelectric dynamometer) and the
microphone (mounted on the stand near the machining zone).

The signal sampling was performed in the NI LabVIEW (National Instruments Corpo-
ration, ver. 2015 SP1, Austin, TX, USA) environment using two data acquisition cards: NI
PCI—6034E and NI PCI—6111 (Austin, TX, USA). The use of two cards was necessitated
by the occurrence of signals with different frequencies. The AE signal sampling required
the use of a relatively high sampling frequency, 2 MHz, and other signals were registered
at a frequency of 50 kHz.

The real condition of drill bits was (for the purpose of further learning and testing,
the MLP network effectiveness) directly monitored and assessed using a standard workshop
microscope (TM—505; Mitutoyo, Kawasaki, Japan) with a digital camera. As a direct
indicator of the condition of the drill bits, the amount of wear (abrasion) of the outer
(periphery) corner was assumed. The amount of wear (W) was separately determined for
each of the two drill cutting edges, according to the following equation:

W = W′′ −W′ (1)

where W′′ is the initial width of a brand-new cutting edge near the outer corner (mm)
(Figure 5), and W′ is the current width of a brand-new cutting edge near the outer corner
(mm) (Figure 5).
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Figure 5. The method for tool wear measurement: (a) view of a brand new tool, (b) view of worn
tool [25].

The general condition of the drill bit was assessed based on the arithmetic mean of the
wear of two of its cutting edges, i.e., the average value of the W index.
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Five of the six drill bits used for the experiment were subjected to operating cycles
outside the measuring stand, which gradually changed their initial brand-new condition
(W = 0 mm) to the end of the tool life condition (W ≥ 0.5 mm). Each operating cycle
consisted of making holes in the laminated particleboard until the drill bit wear was
increased by a minimum of 0.05 mm (the number of holes thus varied and ranged from
100 to 300). The number of such cycles was usually 8, but one of the drill bits wore out
faster than the others, and, in this case, only 7 cycles were performed. After each such cycle,
the drill bit returned to the measuring stand to make a series of 5 holes along with the
measuring of the aforementioned signals generated in the cutting zone. Then, the signals
accompanying the drilling of three holes with the control drill bit (i.e., the 6th drill bit) were
recorded. The sixth drill bit was used as the control tool, and therefore, it was used only to
record signals on the measuring stand, i.e., it was not subjected to any operating cycles.

The detailed experimental schedule is presented in a standard flowchart (algorithm
diagram) and is shown in Figure 6. The experimental procedure is presented in this figure in
a metaphorical form (as if it was an algorithm of a computer program and not a procedure
performed by a human being).
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During the experimental research, both tool wear and drilling quality were monitored.
The main problem with respect to quality during melamine-faced-wood-based board
machining is delamination. Objective delamination monitoring requires an adoption



Forests 2022, 13, 933 6 of 13

of some sort of a delamination factor [1–4]. In this case, the delamination factor (Fd)
was calculated for each hole (drilled in an experimental workpiece) according to the
following equation:

Fd = 0.5·(D1 − D2) (2)

where D1 stands for the diameter of the smallest circle containing the delamination zone
(mm) (Figure 7), and D2 stands for the diameter of the largest circle inscribed in the outline
of the hole (mm) (Figure 7).
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drawn with a black and white dotted line, respectively.

Both of these diameters (D1 and D2) were determined automatically using computer
image analysis based off of scans (1200 dpi) of all experimental workpieces taken with
a standard office scanner.

In creating the system for the automatic identification of tool conditions, it was con-
sidered that there was no practical need to estimate the current W value. Distinguishing
between the three different classes of tool conditions was ultimately of greater importance.
The classes are described in this article conventionally as “Green”, “Yellow” and “Red”
(analogous to traffic rules). The “Green” class means that the tool is suitable for further
work. However, even a single “Yellow” or “Red” class signal made by the diagnostic
system means that the tool is not suitable for further work and must be replaced with a new
one. The “Yellow” class represents excessive (but not extreme) tool wear. The “Red” class
is reserved for extremely worn tools. Definitions of these classes are based on appropriate
ranges of W values (Table 1). The upper limit of the “Green” class (0.2 mm), which is crucial
from a practical point of view, was suggested by the drill production company. The second
limit (0.35 mm, a border between the “Yellow” and “Red” class) was adopted arbitrarily to
distinguish “worn” and “completely worn-out” tools in a formal way.

Table 1. Classes of tool conditions.

Ranges of W (mm) Class Name

≤0.2 Green
0.2–0.35 Yellow

>0.35 Red
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As part of the research task, a standard MLP algorithm was adopted. The MLP
network is one of the best-known neural networks [26]. It consists of several neuron layers,
and the transmission of the signal between neurons takes place in one direction, starting
from the input layer and going through hidden layers to the output layer, where the signal
is interpreted. The general structure of two-layer MLP neural network is shown in Figure 8.
There can be any number of hidden layers. Neurons connect with each other by means
of synapses. Weights—numerical values—are associated with synapses. The weights
influence the modification of the values of signals transmitted by neurons in individual
layers during network learning. The purpose of the modification of the weights is to
obtain the best possible discrimination of samples that reach the input field, i.e., the entry.
The weights are an important element of the network because they are responsible for
the knowledge it collects. As a result of the weights of synapses, the input information
is developed and leads to the classification result. The neuron with a greater weight,
when transmitting the signal to the next layer, causes the signal to have an advantage over
others. Therefore, as the weight value increases, the variable becomes more important.
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The basic factor determining the operation of the MLP network is learning, and not the
structure itself. Therefore, the standard procedure of learning and testing the identification
system was adopted (Figure 9).
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First, the “test data” and “training data” sets were created. The “test data” set only
included the features of signals registered on the measuring stand with the participation of
one drill bit specified as a “test drill” (it was one of the five experimental drills, which had
not been used to create the “training data” set). All features used in the study (455 features
in total) were extracted using standard functions available in the MATLAB Signal Process-
ing Toolbox and Wavelet Toolbox (MathWorks, Natick, MA, USA). They were standard
statistical parameters (such as arithmetic mean, root mean square, variance, skewness,
kurtosis, frequencies on histograms etc.) and parameters calculated using wavelet packet
transform. The “training data” included the database of five other drill bits (i.e., four other
experimental drills and the control drill), which covered both their real, actual classes of
tool conditions (“Green,” “Yellow” or “Red”) and features of all signals registered with
their participation on the measuring stand. Then, the MLP algorithm was activated in order
to identify the current condition of the “test drill” based only on the features of signals
included in the “test data” set.

Five different options of the “test data” (including, one by one, each of the five
experimental drills) were set up. Thus, five separate tests were performed, but only one
total confusion matrix was determined.

Moreover, nine variants of MLP network architectures were tried (Table 2), as
described above.

Table 2. Nine variants of MLP network architectures.

No. of Variant Number of Hidden Layers Number of Neurons in Each Hidden Layer

1 1 10
2 2 10
3 3 10
4 1 15
5 2 15
6 3 15
7 1 20
8 2 20
9 3 20

On this basis, for each MLP network structure option, one confusion matrix with
a standard structure (Table 3) was generated. The rows correspond to the decisions made
by the classifier (predicted classes). Columns, on the other hand, are real classes. The con-
fusion matrix thus shows the relationship between the classified set (predicted classes)
and the reference set (real classes) and is the standard basis for assessing the efficiency of
the classifier.

Table 3. Standard structure of the confusion matrix in percentage form.

Real Class

Green Yellow Red

Predicted Class
Green KGG (%) KGY (%) KGR (%)
Yellow KYG (%) KYY (%) KYR (%)

Red KRG (%) KRY (%) KRR (%)

In this type of matrix, data from outside the diagonal (different than KGG, KYY and
KRR) show the mismatch between the predicted class and the real one, i.e., incorrect
classifications. For example, KGY means the percentage of observations calculated as the
ratio of the count of true “Green” observations incorrectly assigned to the “Yellow” class to
the total observation count. The most disturbing were considered non-zero KRG and KGR
values, which testified about cases of confusion between “Green” and “Red” or vice versa.
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The sum of properly classified percentages of samples (i.e., the sum of the percentages
that can be read on the diagonal of the matrix) represents the overall accuracy (Acco) of the
classification according to the following equation:

Acco = KGG + KYY + KRR (3)

where KGG + KYY + KRR equals the percentage of samples classified correctly (the percentage
of right decisions made by the classifier).

For each class, separately, the following parameters were also determined:

• TP: the number of true positive predictions;
• TN: the number of true negative predictions;
• FP: the number of false positive predictions;
• FN: the number of false negative predictions.

On this basis, five standard, detailed indicators of the effectiveness of its identification
by the MLP network were calculated for each class separately:

The first of them was sensitivity (Sn):

Sn =
TP

TP + FN
(4)

The second was specificity (Sp):

Sp =
TN

TN + FP
(5)

The third was precision (Pr):

Pr =
TP

TP + FP
(6)

The fourth was accuracy (Acc):

Acc =
TP + TN

TP + FP + FN + TN
(7)

The fifth was the harmonic mean of precision and sensitivity (Fscore):

Fscore = 2
precision× sensivity
precision + sensivity

=
2TP

(2TP + FP + FN)
(8)

It is worth noting that the maximum level of each of the aforementioned indicators
(showing the flawless operation of the classifier) is the number 1.

All numerical calculations and data mining analyses were carried out in the MAT-
LAB environment.

3. Results and Discussion

Firstly, the machining quality (hence the delamination problem) was analyzed. The sam-
ple holes made with drills representing three different tool wear classes are shown in
Figures 10–12.
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Next, as a part of the research project, different MLP network architectures were built
and tested (according to Table 2). Based on comparisons of their overall effectiveness,
the best one (the most effective) was chosen. Ultimately, the most effective network
consisted of 3 hidden layers, and each layer contained 15 neurons. According to the
classification results, further increases in the number of neurons in the layers and the
number of layers themselves resulted in the deterioration of the classification accuracy.
The expansion of the network did not give a positive effect. The quality of the classification
for the best MLP network option is illustrated by the percentage matrix confusion in
Table 4. The general idea of this table is the same for Table 3, which was described earlier.
The overall accuracy (Acco) of the classification was ultimately more than 70%, which can
be calculated using Formula (3). This result is generally decent but slightly worse than that
of the classification algorithms tested earlier (“support vector machine” [20] and “nearest
neighbors” [21] algorithms). The most troublesome, however, is the fact that (as shown in
Table 4) serious errors (mistakes between “Green” and “Red” classes) were occasionally
noted. More specifically, the MLP network twice classified the “Red” tool as a “Green” tool,
which was 0.9% of the whole set classification. In contrast, it was advantageous that there
was never a reverse mistake.

Table 4. Confusion matrix for the best variant of MLP structure.

Predicted Class
Green 26.0% 7.0% 0.0%

Yellow 7.9% 11.2% 4.2%

Red 0.9% 9.8% 33.0%

Green Yellow Red

Real class

Table 5 contains detailed indicators of the effectiveness of the identification of in-
dividual classes of tool conditions by the best MLP network. The table shows that the
Acc, Sn and Fscore parameters had the greatest values (0.85, 0.89 and 0.82, respectively)
for the “Red” class, which shows that the classifier best recognized samples belonging
to this class and most effectively separated them from the others. For the “Green” class,
the aforementioned parameters also had relatively high values (0.84, 0.75 and 0.77, respec-
tively). Moreover, it was the “Green” class that had the best values of Sp and Pr parameters
(0.89 and 0.79, respectively). Good recognition of this class was shown. In the case of the
“Yellow” class, however, the obtained results were by far the worst, because this class is
adjacent to both the “Green” and “Red” classes, and the degree of wear and tear defined in
Table 1 clearly shows that the difference between them was not big, making it difficult to
separate neighboring classes.

Table 5. Detailed indicators of the effectiveness of identification of individual classes of tool conditions.

Class Name Accuracy
(Acc)

Sensitivity
(Sn)

Specificity
(Sp)

Precision
(Pr) Fscore

Green 0.84 0.75 0.89 0.79 0.77
Yellow 0.71 0.40 0.83 0.48 0.44

Red 0.85 0.89 0.83 0.75 0.82

4. Conclusions

1. The classification effects (with an overall accuracy above 70%) were ultimately fairly
decent but slightly worse than those of the classification algorithms tested earlier
(i.e., “nearest neighbors” or “support vector machine” algorithms). The most trou-
blesome, however, is the fact that serious errors (mistakes between extreme classes
“Green” and “Red”) were occasionally noted (for about 1% of the analyzed cases).
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2. The most important and the best news is that the “Green” class (which is the most im-
portant one from a practical point of view) was identified quite accurately (accuracy: 0.84;
Fscore: 0.77). This is very beneficial because the main job of the tool condition moni-
toring system is to identify tools which should not yet be changed.

3. Thinking about future research, we plan to consider the drilling of various wood-
based materials (e.g., MDF), testing other classification algorithms and analyzing the
problem of selecting signal features for their usefulness.
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