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Abstract: China’s state-owned forest farms are the basic sectors of forestry production, and their
carbon cycle functions, such as timber processing and forest carbon sequestration, are of great
significance to the national emission reduction strategy. By three-stage DEA and Tobit models,
this paper measures the carbon sequestration output efficiency of 3706 state-owned forest farms
involved in China’s National Forestry and Grassland Administration’s 2008–2018 survey. We figure
out how the mechanism on the carbon sequestration impacts output efficiency of these forest farms
and analyze the temporal trends and spatial distributions of their outputs in various regions. Our
results indicate that the overall output efficiency of state-owned forest farms in China is relatively
low compared with the international advanced level and show that distinctive north-south regional
differences exist. Specifically, the carbon storage of the state-owned forest farms in Northeast China
and Inner Mongolia occupies more than half of the carbon storage of total amounts, but their output
efficiency is unsatisfactory. Conversely, the forest farms in Southwest China have a medium amount
of carbon storage and the highest output efficiency. After improving the external environments of
these farms, the efficiency value in each province appears as a significant increment. Moreover, the
effects of afforestation, timber harvests, the under-forest economy, and other operating behaviors
exhibit regional heterogeneity to some extent. Therefore, this paper advocates reforming the current
forest cultivation strategy that emphasizes afforestation and neglects management, and relevant
government departments are supposed to adjust operations according to local conditions to promote
sustainable forest management.

Keywords: state-owned forest farms; carbon sequestration; panel data; three-stage DEA; Tobit model

1. Introduction

Forest carbon sequestration is the most economic strategy of carbon absorption that
plays a vital role in addressing climate change [1–3]. Since the 1970s, China has im-
plemented large-scale artificial afforestation and forest protection projects, continuously
increasing forested areas and playing an important role in carbon sequestration [4,5]. China
approved the Paris Climate Agreement in 2016, assuming the responsibility of reducing
greenhouse gas emissions as a responsible country. In recent years, the Chinese government
has taken practical actions to address its commitments and has introduced a series of legal
frameworks, policies, and action plans related to carbon reduction and fixation, with some
achievements. Meanwhile, China highlights the important function of forests in the carbon
cycle. At present, China has 220 million hectares of forest area and 17.56 billion cubic
meters of forest volume, and forest coverage has reached 22.96% of the country [6]. With
China becoming the country with the largest and fastest increase in global forest resources,
the forests have experienced 30 years of continuous growth in both area and volume. In
2020, at the 75th United Nations General Assembly, Chinese President Xi Jinping solemnly
pledged to “strive to peak carbon dioxide emissions by 2030 and strive to achieve carbon
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neutrality by 2060” [7]. To achieve that, the Chinese government put forward a series
of policies to promoting two goals: carbon peaking and carbon neutrality. It also clearly
proposed a continuous improvement in carbon sequestration capacity. The above behaviors
fully reflect China’s commitment to promote green development.

Under the carbon peaking and carbon neutrality goals, the low carbon and sustainable
development of forestry have attracted extensive attention. In earlier years, the forest sector
began to transition from a traditional economy to a circular economy [8,9]. A circular econ-
omy aims to find value throughout a product’s life cycle [10]. Fully exploiting the efficient
utilization of resources in forestry production is crucial to the sustainable development of
forestry. In the 1940s, to meet timber needs, the Chinese government began to establish
state-owned forest farms nationwide. Then, until the end of the 20th century, with the
implementation of the Natural Forest Protection Project, the development of state-owned
forest farms gradually realized their ecological benefits [11]. By 2020, there were 4297 state-
owned forest farms in the country, more than 95% of which were established as public
welfare forest farms to protect and improve ecology. As the backbone of forest resource
cultivation in China, state-owned forest farms can not only undertake the country’s main
timber production but also provide a carbon cycle function. However, due to the differ-
ences in the natural environments, infrastructure construction, and operating behaviors
of state-owned forest farms in different regions, the forest output levels of forest farms in
different regions are also quite different. Therefore, combined with China’s strategic goals,
it is meaningful to improve forest carbon sequestration and economic output performance
and explore the factors affecting output performance.

Estimating the carbon storage in forests is the basis for researching carbon sequestra-
tion potential, which usually relies on the biomass method to estimate the carbon storage of
a forest. Many studies propose biomass methods such as method (MBM), biomass expan-
sion factor (BEF) method, and continuous BEF method (CBM). They reveal the correlation
between forest inventory data and biomass to help estimate carbon storage at the regional
scale. They also improve the estimation accuracy [12–15]. In the past 20 years, the BEF
method and CBM have been widely used to study carbon storage in forests [16,17]. To take
into account the actual needs of regions and provinces, several studies are committed to
building a stand biomass model at the provincial level by tree species [18,19]. Zhang and
Wang [20] divided China into seven regions and established a biomass model of 25 tree
species in 21 coniferous forests, broad-leaved forests, and mixed coniferous and broad-
leaved forests in different zones to calculate the carbon storage in forests more accurately.
This carbon storage estimation method is more suitable for a comparative study of carbon
storage at the microlevel of provinces and cities.

With the enhancement of China’s environmental regulations and improvement in the
carbon trading market, forestry carbon sequestration projects have become an important
part of the carbon trading market. Their ecological and economic benefits have been
attracting the attention of more and more researchers. Nowadays, there are abundant
achievements in the research of forestry carbon sequestration efficiency at the macro-
level [21,22], Most of them are based on data such as continuous forest resource inventory
data and forestry statistical yearbooks. Lin and Ge [23] used the three-stage SBM model
and the Malmquist–Luenberger index to measure and analyze China’s forest ecological
and economic efficiency. On the microlevel, based on bamboo growers’ survey data,
Ao et al. [24] proposed a three-stage data envelopment analysis (DEA) model to calculate
the production efficiency of carbon sequestration in bamboo forests in Zhejiang Province.

Combined with the current strategic goal in China, the transition of forest-based enter-
prises to a sustainable circular economy is critical [25], and enhancing forest sequestration
output in forestry production is a suitable model for the cyclic development of state-owned
forest farms. Tong et al. [26] showed that short-term, high amounts of carbon storage
in forests were generated in South China through a series of land-use policies for forest
management. Koponen et al. [27] revealed that sustainably managed commercial forests
can serve as energy reserves and act as areas of carbon sequestration. Ni et al. [28] found
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that increasing logging over the next 100 years will increase carbon sequestration so that
forest carbon sequestration will not conflict with wood production. The timber production
and forest carbon sequestration functions of state-owned forest farms are crucial to China’s
carbon sequestration and emission reduction capacities. At the same time, the important
role of forestland as an opportunity cost related to harvest production goals should not be
ignored, which further reflects that operators must fully consider how to allocate planting
space and make optimal harvesting decisions [29]. Gu et al. [30] found that strengthening
management improved the economic benefits of the bamboo forest carbon sequestration
project they studied.

The above research serves as a reference for improving the carbon sequestration
output efficiency, sustainable forest management, and the decision-making of forestry-
related enterprise managers. They also become the important motivations that inspire us
to do this study. By far, China’s research on forestry production and carbon sequestration
management is mainly concentrated at the provincial level. Few studies have focused on
state-owned forest farms to analyze their output efficiency, spatial and temporal distribution
patterns, and improvement directions. Due to the state-owned and public welfare attributes
of state-owned forest farms, they play an important role in China’s current goals of carbon
peaking and carbon neutrality. Therefore, it is of great significance to deeply analyze its
output efficiency and adjust its operating strategy.

By sorting out the research background, we put forward three hypotheses. (1) The
carbon sequestration and efficiency of state-owned forest farms in China have spatial
distribution characteristics. Especially after the reform of state-owned forest farms in 2015,
the carbon sequestration output efficiency of forest farms may change. (2) The effects
of external environmental factors on carbon sequestration output and economic output
may be different. (3) In different regions, whether the impact of certain internal operating
behavior on the carbon sequestration output efficiency of the forest farm will have different
significance, or even have the opposite effect. To test these hypotheses, this paper relies
on a three-stage DEA model and combines the 2008–2018 data for China’s state-owned
forest farms, calculating the output efficiency of these forest farms after the removal of
external environmental factors. Based on it, we further analyze the mechanism through
which external environmental factors and internal operating behaviors affect the output
efficiency of forest farms through the second-stage stochastic frontier analysis (SFA) and
panel Tobit model. The results will be conducive to China’s state-owned forest farms to
increase carbon sequestration output and sustainable management.

2. Materials and Methods
2.1. Methodology
2.1.1. Carbon Storage Measurement Model

This study area encompasses state-owned forest farms nationwide. Because the
dominant tree species are different in different areas, the carbon sequestration capacities of
different tree species are also different. If only forest volume is considered when calculating
the carbon storage on each state-owned forest farm, then there will be substantial errors.
Each forest farm actively cultivates dominant tree species suitable for planting according to
the natural conditions of the area where it is located. The first two dominant tree species
occupy most of the forest volume on each farm and effectively represent the forest carbon
sequestration capacity of each forest farm. Therefore, this paper calculates the carbon
storage of each state-owned forest farm based on the forest accumulation biomass model
established by Zhang and Wang. The study area contains 3706 state-owned forest farms in
25 provinces of China. According to the principles of having similar climatic conditions,
natural geographical environments, and tree species distributions, China is divided into
6 regions. Northeast China includes three provincial units in Heilongjiang, Jilin, and
Liaoning; North China includes three provincial units in Hebei, Inner Mongolia, and
Shanxi; Northwest China includes three provincial units in Shaanxi, Ningxia, and Xinjiang;
Central South China includes six provincial units in Jiangsu, Shandong, Anhui, Henan,
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Hubei, and Hunan; Southeast China includes six provincial units in Zhejiang, Jiangxi,
Fujian, Guangdong, Guangxi and Hainan; and Southwest China includes 4 provincial units
in Sichuan, Chongqing, Guizhou, and Yunnan.

The basic formula for the regression model of forest biomass per unit volume is

y = axb (1)

and the calculation formulas for forest carbon density and carbon storage are

cρ = y × Cc (2)

C = cρ × s (3)

where y is the total biomass per unit area (t/ha), referred to as biomass density, cρ is
the carbon storage per unit area (t/ha), referred to as carbon density, and C is the forest
carbon storage (t). In this study, the carbon content coefficient Cc is taken as 0.5, x is
the storage volume per unit area

(
m3/ha

)
, s is the forest area (ha), and a and b are the

model parameters.
The carbon storage model of a state-owned forest farm can be expressed as

Cij = Cij1 + Cij2 + Cij3

= cρ1sij1 + cρ2sij2 + cρ3sij3 = Cca1xb1
1 sij1 + Cca2xb2

2 sij2 + Cca3xb3
3 sij3

(4)

where Cij is the carbon storage of the j forest farm in i region, Cij1 is the carbon storage
of the first dominant tree species on j forest farm, Cij2 is the carbon storage of the second
dominant tree species on j forest farm, Cij3 is the carbon storage except for the dominant
tree species on j forest farm, and cρ1, cρ2, and cρ3 are the forest carbon density of the first
dominant tree species, the second dominant tree species and the forest carbon density other
than the dominant tree species in the forest farm, respectively. sij1, sij2, and sij3 are the forest
area of the first dominant tree species, the forest area of the second dominant tree species,
and the forest area other than the dominant tree species on the forest farm, respectively.

2.1.2. Three-Stage DEA Model

DEA is a classical method for measuring efficiency. Fried et al. [31] proposed a three-
stage DEA model that combines the traditional DEA model with the SFA model. The key
to the three-stage DEA model is that the environmental factors and statistical noise are
eliminated in the second-stage SFA. This approach overcomes the disadvantage that the
one-stage DEA method cannot measure the influence factors of the efficiency value, and
the two-stage DEA method can only give the function form of the influence factors but
cannot eliminate them. In this paper, the three-stage DEA model effectively eliminates the
influence of social environmental factors such as a state-owned forest farm’s attributes,
location, infrastructure, and statistical noise on the output efficiency value. Therefore,
the results can more objectively and truly reflect the output efficiency value of carbon
sequestration of each state-owned forest farm. This study involves the calculation of output
efficiency in a cross-year time series. Based on the methods of Liu et al. [32], the same
decision-making unit (DMU) at different times is regarded as different DMUs. The DMUs
are placed under a unified frontier for the efficiency measurements, and then the output
values of all DMUs are adjusted using the second stage SFA results. Finally, the adjusted
output value and the initial input value are used to calculate the output efficiency value
under a unified frontier. The results can be compared across periods.

Stage 1: Initial efficiency measurement. Based on the initial input-output data, the
same DMU at different times is regarded as a different DMU, and the DEA efficiency is
measured under a unified frontier. Given the different operating scales of the different
state-owned forest farms and the large differences in their input and output levels, this
paper uses a more realistic BBC model with variable returns at scale to estimate output
efficiency [33]. In addition, compared with economic and carbon sequestration output,



Forests 2022, 13, 778 5 of 20

the labor input, land input, and capital investment of China’s state-owned forest farms
cannot be easily changed. Improving operational efficiency and increasing the output of
state-owned forest farms have also been goals since the reform of state-owned forest farms.
Therefore, this paper uses the output-oriented BBC model to measure the output efficiency
of each state-owned forest farm. The model is relatively mature at present; thus, the model
principle will not be described.

Stage 2: The SFA method is used to analyze the slack variables of each DMU in the first
stage. Fried et al. believed that the slack variables in the results of the first stage are affected
by environmental factors, statistical noise, and management efficiency. Through the SFA
in the second stage, the influence of three factors at the observation site is observed, and
the influence of the environmental factors and statistical noise can be eliminated. In this
paper, the output slack variable is used as the explained variable, the social environment
factor indicators of the forest farm are used as the explanatory variable, and the SFA model
is established as follows:

sijt = f
(
zjt; βit

)
+ vijt + µijt (5)

In the formula, sijt represents the slack variable of the ith output of the jth DMU
in period t; (i = 1, 2, · · · , m; j = 1, 2, · · · , n); zjt =

(
z1jt, z2jt, · · · , zpjt

)
represents the p

environmental variables of the jth DMU; βi represents the coefficient of the environmental
variable to be estimated; f

(
zjt; βit

)
represents the influence of the environmental variable

on the output slack variable; and vijt + µijt represents the mixed error term, and the terms
are independent of each other.

Through the above regression results, all DMUs are adjusted to the same optimal
external environment to eliminate the influence of environmental heterogeneity and output-
oriented adjustment of the output of each DMU:

y∗ijt = yijt + [max
(

f
(
zjt, β̂it

))
− f

(
zjt, β̂it

)
] + [max(v̂ijt)− v̂ijt] (6)

where y∗ijt and yijt are the adjusted and initial output values, respectively, and β̂it represents
the parameter estimates of the environmental variables. Finally, the output values for the
same external environment and random errors are obtained, and then, we calculate more
objective output efficiency values.

Stage 3: The adjusted output efficiency is calculated. Based on the adjusted output
values and initial input values, using the BBC model in the first stage, all DMUs are still
placed under a unified frontier, and the actual efficiency values of the carbon sequestration
output of state-owned forest farms are calculated. The efficiency values at this time are not
affected by external environmental factors and random errors.

2.1.3. Panel Data Tobit Model

The output efficiency of state-owned forest farms is affected not only by social envi-
ronmental factors but also by the internal operating behaviors of the farms. To improve
the carbon sequestration efficiency of forest farms, it is necessary to identify and analyze
the mechanisms and effects of various operating behaviors on the carbon sequestration
efficiency of state-owned forest farms in different regions. The efficiency value range mea-
sured by the DEA model is [0, 1], which has the characteristics of nonnegative truncation
as an explanatory variable. Using the ordinary least squares (OLS) method to estimate
the limited dependent variable will lead to biased estimation results. Therefore, the Tobit
model [34] is suitable for exploring the internal influencing factors of the output efficiency
of state-owned forest farms. Previous studies have suggested that efficiency values cal-
culated by the DEA method combined with the Tobit model can effectively identify the
factors affecting efficiency. In the efficiency evaluations of forestry and environmental
development, many studies have used the Tobit model to identify and evaluate the factors
affecting its efficiency [35–37].

Technical efficiency (abbreviated to TE) refers to the optimal allocation state between
input and output factors [38]. It can be decomposed into pure technical efficiency (ab-
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breviated to PTE) and scale efficiency (abbreviated to SE). By definition, PTE is affected
by factors such as management and technology, while SE is affected by scale factors. To
analyze the influencing factors of operating behavior affecting the carbon sequestration
output efficiency of state-owned forest farms, the PTE obtained in the third stage is used
as the explained variable, and six internal operating behaviors are selected as explanatory
variables. Tobit models are constructed for 6 regions to analyze the impact mechanism
of internal operating behaviors on the output efficiency of forest farms. The models are
as follows:

PTE∗
jt = f

(
Xjt, β jt

)
+ µjt

PTEjt = PTE∗
jt i f 0 < PTE∗

jt ≤ 1
PTEjt = 0 i f PTE∗

jt ≤ 0
(7)

where PTE∗
jt is the latent variable; PTEjt is the actual dependent variable, which is the pure

technical efficiency value of the jth DMU in period t; when 0 < PTE∗
jt ≤ 1, the explanatory

variable is the actual observed value; when PTE∗
jt ≤ 0, the observed value is truncated to 0,

β jt is the coefficient vector to be estimated, Xjt is the explanatory variable, and µjt is the
random error term.

2.2. Variables and Data
2.2.1. Data Sources

This paper uses investigation and tracking data (2008–2018) for 4855 state-owned forest
farms in China that were obtained from the State Forestry and Grassland Administration’s
State-owned Forest Farm Management and Reform Research Group. These data contain
the most comprehensive and authoritative statistical information on state-owned forest
farms in China to date, which is a nationwide inventory of all state-owned forest farms
complied with by China’s forestry authorities. They include information on forest farm
infrastructure, forest resources, financial revenue and expenditures, ecological construction,
general conditions of the workforce, and operational conditions of forestry industries.

Considering that it will take a long time for carbon storage in forests to change
significantly and that state-owned forest farm reform started in 2015, this paper divides the
study time into three periods: 2008–2010 (period I), 2012–2014 (period II), and 2015–2018
(period III). The indicators in the study use the annual average of each period.

With the reform of state-owned forest farms in 2015, small-scale forest farms are
simplified and integrated into large-scale forest farms. As of 2020, there were 4297 state-
owned forest farms in China. After removing outliers and using the moving average of
adjacent years to address missing values, 3706 state-owned forest farms in 25 provinces
were obtained, with a total of 11,118 observations. The sample data in this paper accounts
for more than 75% of the original dataset and more than 85% of the number of existing
forest farms, which can effectively represent China’s state-owned forest farms.

2.2.2. Input and Output Variables

Land, labor, and capital are recognized as the necessary input indicators for the
production and development of state-owned forest farms. Specifically, land input is the
total operational area of a state-owned forest farm (104 mu); labor input is the total number
of on-the-job employees of a forest farm (person); capital is the total expenditure of a forest
farm (104 yuan), in which the total expenditure includes the management and protection of
forest production, infrastructure maintenance, employee wages, and social security.

The output indicators are based on the economic and carbon sequestration benefits of
forest farms. The total income of a forest farm (104 yuan) is used to represent the economic
benefits. Since the implementation of the natural forest protection project to stop timber
harvesting, the public welfare attributes of state-owned forest farms have been increasingly
strengthened, resulting in severe economic losses in terms of operation. Therefore, the total
income of the forest farm in this study not only includes the operating income but also
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includes the forest ecological benefit compensation funds. The carbon storage (104 tons)
calculated in this paper is used to represent the carbon sequestration benefit.

2.2.3. Environmental Variables

This paper proposes the SFA model to eliminate the impact of environmental factors
on the output efficiency of carbon sequestration. Natural resource endowment is the
most important explanatory variable for forest carbon sequestration [38]. According to
forest classification and management theory, the innate endowment of forestry carbon
sequestration in various regions is inherent and unchanged over the long term. Therefore,
this paper does not consider natural environmental factors and only selects economic and
social environment variables.

Managing forestry carbon sequestration mainly affects carbon sequestration through
the protection of existing forest resources, reductions in deforestation, and increases in
forest area and forest management [39]. However, different forest farm management
environments will lead to different operating behaviors. China’s state-owned forest farms
are grassroot forestry units that the state has invested in and specifically established to
engage in forestry construction, production, and forest protection [40]. The management
modes of various state-owned forest farms are not uniform, and these farms do not have
sufficient rights to self-operate and obtain benefits. From the perspective of affiliation,
state-owned forest farms can be divided into provincial, municipal, and county-owned
farms. As a result, different state-owned forest farms have different financial support
mechanisms, and thus different development capabilities. Impoverished state-owned
forest farms are those that have experienced severe losses and have poor infrastructure,
poor production, and living conditions. Research shows that there is a correlation between
resource endowment and poverty [41], so both poor forest farms and poor areas may have
an adverse impact on local producers’ production and operational modes. The human
capital incentive mechanism is a key factor in realizing the sustainable management of
state-owned forest farms. For example, the education level of forest farm workers can reflect
their ability to attract human capital to the location. It will also have an impact on a forest
farm’s management methods and the implementation of a management system [42]. This
is contrasted by the substantial aging of state-owned forest farm workers, the imbalance
in talent structure, and the minimal ability to attract high-quality labor in forest farms.
Those are the challenges state-owned forest farms face in terms of upgrading industrially
and developing a high-quality industry [43]. At the same time, forestry production and
the development of state-owned forest farms are inseparable from the need for material
resources. For example, factory buildings are an important production factor in terms
of being able to maintain the daily operation of state-owned forest farms [44]. However,
during the survey, it was found that there are still forest farms that have water, electricity,
and communication facilities that are not fully functional. In summary, this paper selects
environmental variables from three aspects: forest farm attributes, labor factors, and
material resources, as shown in Table 1.

Table 1. Description of environment variables.

First-Level Indicator Second-Level Indicator Variables and Their Descriptions Mean S.D.

Forest farm attributes
Aff (Affiliation) County = 1; Municipal = 2; Provincial = 3 1.18 0.44
Pov (Poverty) Yes = 1; No = 0 0.32 0.47

Labor factors
Edu (Education) The proportion of the total number of employees with a

college degree or above (%) 22.69% 0.16

Agi (Aging) The proportion of retired workers to total workers (%) 39.13% 0.19

Inc (Income) Per capita annual income of in-service employees
(104 yuan) 3.01 1.86

Material resources
Inf (Infrastructure)

Access to electricity, internet, telephone, and sufficient
water, completed four = 4; three = 3; two = 2; one = 1;

none = 0
3.03 0.89

Fac (Factory) Per capita factory buildings area (m2/person) 60.48 131.28
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2.2.4. Operating Behaviors

Farm Forest Cover (FFC). Forestry land refers to the land specifically used for forestry
production on forest farms, and it is expressed as the ratio of the forestry land area to the
total managed area (unit: %). The main operational income of state-owned forest farms is
derived from forest resources, so the change in land use on forest farms will have an impact
on the carbon sequestration and operational income of forest farms.

Forestry Land Use Structure (FLUS). FLUS is expressed by the proportion of forestland
type within a forestry land area (unit: %). According to the classification of forestry land-
use types, forestry land can be divided into secondary land-use types such as forestland,
shrub forestland, sparse forestland, and immature forestland. There are obvious differences
in the amounts of carbon sequestered by different types of forestland [45].

Afforestation Intensity (AI). AI is expressed by the proportion of afforestation area on
forest farms in a forestry land area (unit: %). China has carried out a large-scale afforestation
project since the 1970s, but studies indicate that China’s mode of emphasizing afforestation
and neglecting management may lead to poor forest quality and limited forest carbon
sequestration potential [46].

Harvest (HAR). HAR is expressed as the proportion of timber production and pro-
cessing income of a forest farm to the total operating income (unit: %). Forests can harvest
timber as energy fuel and can continue to conduct carbon sequestration without harvesting
timber [29].

Under-forest Economy (UFE). UFE is expressed as the proportion of the income of
forest planting and aquaculture to the total operating income (unit: %). The UFE refers to
under-forest planting and aquaculture developed by relying on forest resources and the
ecological environment. Forest farms make full use of forestland and can generate certain
economic benefits without logging, which can be regarded as a side benefit of state-owned
forest farms.

Forest Tourism (FT). FT is expressed by the ratio of the tourism income of a forest farm
to its total operating income (unit: %). Forest tourism brings considerable income to forest
farms, improves the regional economy of forest parks, and promotes forest conservation
and management. However, a large number of tourists may also put pressure on natural
resources [47].

Combined with the above analysis, the model system for carbon sequestration output
performance of state-owned forest farms is shown in Figure 1.
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3. Results
3.1. Carbon Storage

To evaluate the output efficiency of state-owned forest farms, we used a carbon storage
measurement model to calculate the carbon storage and carbon density of state-owned
forest farms in each province during the three study periods. The results are shown in
Table 2. From a national perspective, the carbon storage and carbon density of state-owned
forest farms show an overall upward trend between 2008 and 2018, incrementing by 10.95%
in carbon storage. From a regional and provincial perspective, the carbon storage and
carbon density of the farms in most regions and provinces also show an upward trend.
Only the provinces in Northwest China and Central South China experience a slight decline
and fluctuation in carbon storage and carbon density on their forest farms.

Table 2. Carbon storage and carbon density of state-owned forest farms in China’s provinces in three
periods (2008–2018).

Region Provincial Unit
Number of

Forest Farms
(Pieces)

2008–2010 2012–2014 2015–2018

Carbon
Storage (106t)

Carbon
Density (t/ha)

Carbon
Storage (106t)

Carbon
Density (t/ha)

Carbon
Storage (106t)

Carbon
Density (t/ha)

North China

Inner Mongolia 262 131.63 28.51 145.26 30.87 151.55 31.65
Shanxi 243 33.53 23.02 34.75 23.63 35.49 23.76
Hebei 82 7.18 19.89 8.19 21.91 9.18 23.15
total 587 172.33 26.78 188.19 28.74 196.21 29.38

North East

Jilin 327 120.91 43.16 125.73 47.33 129.77 48.95
Liaoning 177 21.85 34.39 23.64 35.58 23.77 36.18

Heilongjiang 424 180.96 35.15 188.89 35.87 198.06 37.71
total 928 323.72 37.71 338.25 39.40 351.61 41.07

North West

Ningxia 66 2.31 20.22 2.18 17.37 2.05 18.97
Xinjiang 58 70.25 55.17 69.29 56.03 77.97 66.03
Shaanxi 142 48.40 30.52 48.97 30.55 49.41 29.86

total 266 120.96 40.68 120.45 40.62 129.43 43.97

Central South

Anhui 132 7.66 34.52 7.65 33.43 7.82 33.89
Shandong 140 3.72 31.18 4.07 32.66 4.17 33.48

Jiangsu 31 1.07 20.98 1.81 30.30 1.01 26.38
Henan 92 11.59 33.58 12.29 34.64 12.24 34.71
Hubei 235 19.75 33.27 21.80 36.50 24.16 40.58
Hunan 201 25.84 28.92 25.83 29.93 24.21 30.69

total 831 69.63 31.30 73.44 32.96 73.61 34.55

South West

Yunnan 110 48.86 51.72 48.89 51.44 49.46 51.65
Sichuan 123 35.85 44.08 35.72 44.23 38.14 44.61
Guizhou 108 7.74 31.90 9.06 34.39 11.14 43.16

Chongqing 69 7.76 29.62 9.01 31.90 10.99 30.97
total 410 100.21 44.29 102.67 44.57 109.72 45.24

South East

Guangdong 188 17.62 29.90 20.62 33.18 21.64 33.16
Guangxi 144 26.15 31.53 29.17 36.44 33.34 37.83
Jiangxi 140 23.87 30.50 27.75 29.10 29.36 30.20

Zhejiang 87 6.86 37.31 7.86 36.46 8.75 38.75
Hainan 19 12.29 60.39 14.97 58.93 14.76 57.45
Fujian 106 14.68 42.83 16.07 44.64 17.20 45.57
total 684 101.46 34.61 116.44 36.33 125.04 37.15

Total China 3706 888.32 34.96 939.44 36.36 985.63 37.76

As of 2018, among the 25 provinces, Heilongjiang, Inner Mongolia, Jilin, and Xinjiang
provinces store the most carbon on their state-owned forest farms, accounting for more
than 50% of the carbon storage on all state-owned forest farms in China. The state-owned
forest farms in Jiangsu, Ningxia, Shandong, Anhui, and Zhejiang store the least amount of
carbon. Among them, Jiangsu, Shandong, Anhui and Zhejiang appear the characteristics of
rapid economic development and a high-density population. In particular, there are many
rivers and lakes in Jiangsu Province, so the forest resource endowment is minimal. Ningxia
is located on the Loess Plateau, with an arid climate and severe soil erosion. In terms
of the amount of carbon storage in each region, Northeast, North China, and Northwest
China store the most carbon, at 351.61 million tons, 196.21 million tons, and 129.43 million
tons, respectively. These areas are vast, sparsely populated, and rich in forest resources,
and among them, Inner Mongolia accounts for the vast majority of carbon storage in
North China.
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In terms of the carbon density of each region, as of 2018, Southwest, Northwest, and
Northeast China have the highest carbon densities at 45.24 t/ha, 43.97 t/ha and 41.07 t/ha,
respectively. The carbon density of the state-owned forest farms in North China and
Central South China is low at 29.38 t/ha and 34.55 t/ha, respectively, which is lower than
the national average.

3.2. Output Efficiency of Carbon Sequestration and Economics
3.2.1. DEA in the First Stage

In the first stage of the DEA model, based on the initial input-output value, efficiency
is calculated, and the results include TE, PTE, and SE. The same state-owned forest farms
in the three periods are regarded as different DMUs, the DMUs in the three periods are
placed under a unified frontier to measure efficiency, and the output-oriented BBC method
is used. The space here is limited, and the results are not displayed.

3.2.2. SFA in the Second Stage

Due to the large differences in the economic and social environment around the
state-owned forest farms, the efficiency value of each state-owned forest farm in the first
stage includes the impact of the external environment. Some forest farms rely on their
advanced management systems, and they exist in an area where there is superior local
economic development, convenient transportation, relatively high education and income
levels of employees, and complete infrastructure construction. These factors are sufficient to
support the high-quality development and transformation of state-owned forest farms; thus,
these farms have higher output efficiencies. However, some forest farms exist in poverty-
stricken areas, and there are low educational and income levels, a weak understanding of
sustainable forest farm management, and poor forestry production conditions, resulting
in low output efficiencies and even losses. Under these conditions, it is not objective or
fair to evaluate the output efficiency of each forest farm. Therefore, it is necessary to
exclude the impact of environmental heterogeneity on the results. The differences between
natural environmental factors, such as climate and ecosystem, are based on the natural
endowments in the region and will not change for a long time. Therefore, we should not
eliminate the natural environmental factors of a forest farm.

The logarithm of the output slack values in the first stage DEA results are used as
the dependent variables, and the environmental variables are used as the independent
variables. First, the time-varying decay model is tested, and the decay coefficient test is
not significant; thus, this paper adopts a time-invariance model, and the panel SFA model
results are shown in Table 3.

Table 3. Stage 2 panel SFA model results (the effect of external environmental factors).

Environment Variables
Carbon Sequestration Slack Variable Income Slack Variable

Coefficient S.D. Coefficient S.D.

Constant 7.3338 *** 0.1781 7.6280 *** 0.1661

Forest farm
attributes

Aff 0.1802 *** 0.0397 0.4622 *** 0.0330
Pov 0.0229 0.0318 −0.0576 ** 0.0276

Labor factors
Agi −0.2483 *** 0.0757 0.2264 *** 0.0683
Edu 0.4032 *** 0.0840 −0.0765 0.0793

LnInc −0.0325 ** 0.0154 0.3114 *** 0.0152

Material resources
Inf 0.0250 * 0.0127 0.0881 *** 0.0120

Lnfac −0.0490 *** 0.0083 −0.0329 *** 0.0079

σ2 2.8616 0.0695 1.7704 0.1370
γ 0.8463 *** 0.0044 0.7347 *** 0.0187

log likelihood Estimates −16,455.693 −15152.534

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% significance levels, respectively.
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It can be seen that the γ is between 0.7 and 0.9 and passes the 1% significance test,
and most of the environmental variables pass the significance test, indicating that the
environmental variables selected by the SFA model have strong explanatory power in
terms of the amount of output slack. When the regression coefficient is positive, it means
that increasing the value of this environment variable can promote an increase in output
slack and improve efficiency, and vice versa.

Organizing the management system of forest farms, improving infrastructure con-
struction, and fully using idle factory buildings can significantly increase the carbon
sequestration and income outputs of forest farms. Reducing the aging degree of workers
and introducing professional and technical personnel can significantly increase the carbon
sequestration output of forest farms. In addition, alleviating poverty and improving the
incomes of on-the-job workers can significantly increase the income of forest farms.

3.2.3. DEA in the Third Stage

After eliminating the environmental factors and statistical noise in the second stage
of the SFA, all DMUs are in the same environment, and the output efficiency values are
calculated using the initial input values and the adjusted output values. The results are
shown in Table 4.

Table 4. Carbon sequestration output efficiency of China’s state-owned forest farms in the third stage.

Region Provincial Unit
2008–2010 2012–2014 2015–2018

TE PTE SE TE PTE SE TE PTE SE

North China

Hebei 0.2413 0.2644 0.9053 0.2576 0.2747 0.9345 0.2256 0.2373 0.9483
Inner Mongolia 0.2065 0.2491 0.8483 0.2139 0.2530 0.8672 0.2145 0.2548 0.8672

Shanxi 0.2651 0.2918 0.9070 0.2540 0.2713 0.9372 0.2748 0.2908 0.9472
mean 0.2356 0.2689 0.8806 0.2366 0.2636 0.9056 0.2410 0.2673 0.9116

North East

Heilongjiang 0.2279 0.2730 0.8403 0.2249 0.2645 0.8550 0.2429 0.2773 0.8803
Jilin 0.2364 0.2829 0.8495 0.2359 0.2776 0.8639 0.2266 0.2690 0.8637

Liaoning 0.2302 0.2517 0.9151 0.2330 0.2485 0.9382 0.2519 0.2679 0.9446
mean 0.2313 0.2724 0.8578 0.2303 0.2660 0.8740 0.2389 0.2726 0.8867

North West

Ningxia 0.2405 0.2617 0.9182 0.2582 0.2770 0.9332 0.2770 0.2967 0.9369
Shaanxi 0.2321 0.2692 0.8612 0.2321 0.2662 0.8783 0.2356 0.2652 0.8949
Xinjiang 0.2884 0.3257 0.8898 0.2651 0.2973 0.8974 0.3183 0.3623 0.8971

mean 0.2465 0.2797 0.8816 0.2458 0.2756 0.8961 0.2639 0.2942 0.9058

Central South

Anhui 0.2169 0.2285 0.9527 0.2186 0.2278 0.9625 0.2233 0.2315 0.9664
Henan 0.1997 0.2257 0.8855 0.2241 0.2491 0.9032 0.2168 0.2383 0.9129
Hubei 0.2589 0.2807 0.9249 0.2549 0.2739 0.9422 0.2946 0.3131 0.9487
Hunan 0.2120 0.2399 0.8837 0.2281 0.2479 0.9218 0.2537 0.2699 0.9407
Jiangsu 0.2225 0.2335 0.9490 0.2381 0.2527 0.9485 0.2316 0.2393 0.9690

Shandong 0.2713 0.2835 0.9655 0.2854 0.2995 0.9682 0.3012 0.3130 0.9679
mean 0.2350 0.2551 0.9227 0.2437 0.2611 0.9408 0.2635 0.2786 0.9496

South West

Guizhou 0.2675 0.2805 0.9525 0.3045 0.3171 0.9619 0.3206 0.3358 0.9540
Sichuan 0.2771 0.2963 0.9392 0.2769 0.2951 0.9446 0.2914 0.3061 0.9603
Yunnan 0.3118 0.3340 0.9254 0.3173 0.3349 0.9390 0.3321 0.3548 0.9359

Chongqing 0.2352 0.2516 0.9356 0.2817 0.2918 0.9662 0.3127 0.3257 0.9607
mean 0.2768 0.2947 0.9384 0.2958 0.3110 0.9513 0.3136 0.3303 0.9521

South East

Fujian 0.2849 0.2962 0.9626 0.2793 0.2994 0.9301 0.2831 0.3049 0.9262
Guangdong 0.2624 0.2827 0.9369 0.2846 0.3051 0.9438 0.3453 0.3681 0.9485

Guangxi 0.2359 0.2660 0.8974 0.2637 0.2933 0.9159 0.2637 0.2938 0.9165
Hainan 0.2782 0.3553 0.8522 0.2915 0.3775 0.8439 0.2754 0.3491 0.8585
Jiangxi 0.2228 0.2529 0.8762 0.2181 0.2453 0.8914 0.2342 0.2619 0.9001

Zhejiang 0.2893 0.3026 0.9602 0.3007 0.3141 0.9576 0.3163 0.3321 0.9541
mean 0.2561 0.2797 0.9208 0.2680 0.2926 0.9241 0.2901 0.3158 0.9266

China mean 0.2435 0.2723 0.8982 0.2496 0.2751 0.9134 0.2643 0.289 0.9207

Table 4 shows that after excluding the environmental factors, the carbon sequestration
output efficiencies of the state-owned forest farms still show an overall upward trend.
Based on the three efficiency values of each state-owned forest farm in the various regions,
the TE in Southwest and Southeast China is higher than the national average; the TE, PTE,
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and SE in Southwest China are at their highest levels in the three periods; the TE and PTE
in Southeast China are second highest. After excluding the environmental factors, the TE
and PTE rankings in Northeast China are increasing, while the TE and PTE rankings in
North China have declined. In addition, the TE and SE rankings in Northeast China have
always been decreasing, but the PTE has improved. The PTE rankings in Central South
China decreased in the first two periods but increased in the third period.

Figure 2 shows time trends. Finally, we find the TE in Northeast China is relatively
low due to low SE, and similarly, the TE in Central South China is also relatively low due
to low PTE.
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Figure 2. Mean of technical efficiency, pure technical efficiency, and scale efficiency of state-owned
forest farms in China from 2008 to 2018 (Efficiency value after excluding external environmental
factors of state-owned forest farms for the third stage).
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The following section compares the average values of the efficiency during the three
periods in the first and third stages in each province to further determine the characteristics
of the output efficiency in each province. Table 5 shows the change rate of the average
value of the output efficiency of the state-owned forest farms in each province from the
first stage to the third stage, the ranking of the efficiency value in the third stage, and the
ranking change from the first stage to the third stage.

Table 5. Carbon sequestration output efficiency change rate, ranking, and ranking change of state-
owned forest farms in China’s provinces from Stage 1 to Stage 3.

Region Provincial Unit Rate of Change
of TE

Rate of Change
of PTE

Rate of Change
of SE TE Ranking PTE Ranking SE Ranking Ranking

Change for TE
Ranking Change

for PTE
Ranking

Change for SE

North China
Hebei 7.78% 10.08% −2.18% 15 18 15 −4 −6 −4

Inner Mongolia 7.87% 18.69% −6.79% 25 22 22 −4 −2 2
Shanxi 7.60% 10.19% −2.22% 12 12 13 −4 −4 −3

North East
Heilongjiang 14.37% 23.25% −6.73% 19 16 24 0 2 1

Jilin 20.83% 32.32% −7.13% 18 15 23 6 8 0
Liaoning 14.07% 16.63% −2.37% 16 19 12 2 0 −4

North West
Ningxia 4.60% 6.54% −2.10% 13 14 14 −6 −8 −2
Shaanxi 18.45% 26.06% −5.63% 17 17 21 3 4 1
Xinjiang 10.63% 17.76% −4.88% 5 3 19 −3 −2 0

Central
South

Anhui 13.18% 15.17% −1.55% 23 25 2 0 −1 −1
Henan 14.89% 20.25% −4.23% 24 24 18 1 1 2
Hubei 26.25% 26.88% −1.04% 11 11 10 5 5 4
Hunan 6.75% 10.24% −3.37% 20 21 16 −5 −6 0
Jiangsu 8.11% 8.59% −0.59% 21 23 5 −5 −6 1

Shandong 18.87% 16.12% 1.44% 6 9 1 3 0 8

South West

Guizhou 14.92% 15.88% −1.02% 3 6 4 0 −2 1
Sichuan 27.53% 29.17% −1.21% 8 8 7 5 5 0
Yunnan 47.11% 47.68% −1.61% 1 2 11 13 12 2

Chongqing 9.40% 11.10% −1.37% 10 10 6 −5 −3 −2

South East

Fujian 10.87% 14.22% −3.16% 7 7 9 −3 −2 −6
Guangdong 18.37% 17.56% −0.51% 4 4 8 2 −1 7

Guangxi 7.72% 11.18% −3.47% 14 13 17 −4 −3 1
Hainan 25.80% 52.10% −10.07% 9 1 25 3 10 −8
Jiangxi 15.26% 21.11% −5.40% 22 20 20 0 2 1

Zhejiang 12.05% 13.40% −1.36% 2 5 3 −1 −4 −1

Based on the change rate of efficiency values in the first and third stages of the analysis,
as shown in Table 5, we find that after eliminating the environmental factors and random
noise, the TE and PTE of each province increase, and the SE decreases. This result again
shows that the overall low level of TE is limited by the low level of PTE, which indicates
that the forest cultivation mode that China has long attached importance to afforestation
and ignoring forest management. Given the ranking of the efficiency values in the third
stage shown in Table 5, the three efficiency values of state-owned forest farms in the north
are lower than those in the south, especially those in Inner Mongolia, Heilongjiang, Jilin,
and Shanxi. The output efficiency values of the state-owned forest farms in South China
are quite different. The output efficiency values of the forest farms in Anhui, Henan,
Hunan, and Jiangsu in Central South China and Jiangxi in Southeast China are generally
low. In Southeast China, those in Guangdong, Hainan, Zhejiang, and Fujian have higher
efficiency values.

Figure 2 shows the efficiency improvements and ranking changes in each province
after improving the external environmental factors. Based on Table 5 and Figure 3, after
excluding the environmental factors, the TE and PTE of Yunnan, Hubei, Sichuan, Hainan,
and Jilin have greatly increased. Given the changes in ranking, after excluding the en-
vironmental factors and statistical noise, the rankings of Yunnan, Sichuan, Jilin, Hubei,
Hainan, Shaanxi, and other provinces have increased significantly, indicating that the
external environmental factors of the state-owned forest farms in above provinces have
substantial room for improvement, and improvements will enable them to unleash their
carbon sequestration output potentials. But the rankings of Ningxia, Hunan, Jiangsu,
Chongqing, and Hebei provinces decline.
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3.3. Analysis of the Influencing Factors

The low TE of the carbon sequestration output of the forest farms is mainly limited by
PTE. Therefore, in this study, pure technical efficiency is used as the dependent variable to
explore the impact of operating behaviors. The Tobit model panel data was used to build
models from the whole of China, Northeast, North, Northwest, Central South, Southwest,
and Southeast China. The estimated results are shown in Table 6. Each operating behavior
has different effects in different regions.

Table 6. Estimated results of influencing factors of internal operating behavior in different regions.

Independent Variable China North East North China North West Central South South West South East

FFE 0.3240 *** 0.2495 *** 0.3490 *** 0.3310 *** 0.2864 *** 0.1766 *** 0.3000 ***
FLUS 0.00003 * 0.0638 *** 0.00003 * 0.0016 ** 0.0128 *** 0.1781 *** 0.0348 ***

AI 0.0005 −0.0046 0.0734 *** 0.0117 −0.0024 0.0112 −0.0023
HAR −0.0004 0.0042 * 0.0166 * 0.0542 * −0.0094 * −0.0452 *** −0.0164 **
UFE 0.0315 *** −0.0019 0.0409 *** 0.0335 * 0.0347 *** −0.0398 ** 0.0197
FT 0.0207 *** 0.0058 0.0253 0.0852 *** 0.0077 −0.0129 0.0800 ***

σu 0.1058 *** 0.0630 *** 0.1220 *** 0.1594 *** 0.0859 *** 0.1114 *** 0.0989 ***
σe 0.0873 *** 0.0791 *** 0.0774 *** 0.0966 *** 0.0805 *** 0.0838 *** 0.1059 ***
ρ 0.5947 0.3882 0.7129 0.7314 0.5322 0.6388 0.4658

LR 3671.43 *** 368.40 *** 885.37 *** 415.55 *** 628.64 *** 480.71 *** 399.72 ***

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% significance levels, respectively.

4. Discussion

The purpose of this study is to measure the carbon sequestration output efficiency
of state-owned forest farms in China. The impact of their external environments and
operating behaviors are also explored. In addition, we analyze the empirical results from
three dimensions: temporal and spatial nonequilibrium changes, external environmental
factors, and internal operating behaviors, to explore sustainable management methods for
state-owned forest farms.

4.1. Temporal Trends and Spatial Nonequilibrium

From the time trend changes shown in Tables 2 and 4, the carbon storage, carbon
density, and output efficiency values of China’s state-owned forest farms showed an overall
upward trend in the three periods, and only a few provinces experienced slight declines.
Specifically, the carbon storage, carbon density, and output efficiency values of state-owned
forest farms in various provinces increased significantly from 2015 to 2018 (period III),
which may be attributed to the policy dividends produced by the implementation of the re-
form of state-owned forest farms and the promotion effects of forest farm management [48].
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Table 4 shows the temporal and spatial changes in the output efficiency values in
various provinces. From the perspective of time trend changes, the efficiency values of
most provinces in the second period are lower than those in the previous period, and the
efficiency values for only Yunnan, Guizhou, Hainan, Guangdong, and Shandong improve
compared with those in the previous period. Before the reform of state-owned forest farms,
the forest carbon sequestration output of most state-owned forest farms in China is in a
downturn. After the reform, the carbon sequestration output and management efficiency of
state-owned forest farms improve [49]. From the first period to the third period, the value
of the output efficiency of the state-owned forest farms in each province greatly improves.

From a spatial perspective, the output of carbon sequestration from state-owned forest
farms in China shows an obvious spatial imbalance, with a north-south inequality in the
total amount of carbon storage and the output efficiency of carbon sequestration, and an
east-west difference in carbon density. Table 4 shows that the areas with high output effi-
ciency values are concentrated in four provinces in Southwest China, Xinjiang in Northwest
China, and parts of Southeast China. Table 2 shows the total carbon storage by the forest
farms. In Heilongjiang, Jilin and Inner Mongolia store the most carbon, but their output
efficiency values are low, which sufficiently shows that their forest management efficiency
has not reached an optimal level. The result occurs because development constraints such
as management systems and technical support have not been resolved, and the high carbon
sequestration output potential of these farms has not been released. This is consistent with
the conclusion drawn by Yin et al. [50,51]. In contrast, the farms in Southwest China have
moderate carbon storage but have the highest carbon density and output efficiency values,
which is consistent with the conclusion drawn by Lin and Ge [23].

Of the state-owned forest farms, those in Southwest, Northwest, and Northeast China
have the highest carbon density values, which is consistent with the results of forest stand
carbon density values calculated by Zhang and Wang [20]. The distribution of forests in
Northwest China is uneven, with forests mainly concentrated in Xinjiang, while Ningxia
has lower forest coverage and forest carbon density [22]. The carbon density values of
the state-owned forest farms in North China and Central South China are lower than the
national average, which is mainly due to population density and industrial development.

4.2. External Environmental Impacts

In the second stage of the three-stage DEA model, environmental factors are identified
and eliminated. The following explains the effect of external environmental factors on
carbon sequestration and income in Table 3:

(1) Forest farm attributes. The affiliation coefficient has a 1% significant positive effect on
the slack of carbon sequestration and income, and it can be seen that in comparison
to the other state-owned forest farms, those under provincial management systems
are more able to increase carbon sequestration and income output. At present, the
management systems of state-owned forest farms in China are different. It leads to
differences in funding sources, personnel allocation, and policy implementation for
each forest farm. Yan et al. [52] pointed out that most state-owned forest farms are
located in remote areas. If they are not under provincial management, then they are
mostly subordinate to economically underdeveloped cities or counties. As a result,
financial allocation, policy implementation, and infrastructure construction cannot be
effectively guaranteed. Poverty has a significant negative impact of 1% on income
slack. The fact that state-owned forest farms are located in poverty-stricken areas
hinders these forest farms from expanding their economic benefits, especially after
logging is stopped in forest areas, and forest farms in underdeveloped areas face
issues related to traffic and industrial transformation. Slow management, a lack of
motivation for development, and a sharp decline in forest farm incomes have also
made a serious impact on forest farm workers in underdeveloped areas.

(2) Labor factor. The aging of workers has a 1% significant negative impact on carbon
sequestration slack and a 1% significant positive impact on income slack. The aging of
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forest farm workers results in forest farm labor shortages and increases the economic
burden of social security. However, this factor has not been reflected in this study.
Because the special fund for Natural Forest Protection Project and the financial fund for
forest ecological benefits are also included in the definition of the total income of forest
farms, and the issue of retired employees has been properly addressed [53]. Therefore,
only the negative effect of aging workers on carbon sequestration output is considered
in this study. The education level of on-the-job employees has a significant positive
impact of 1% on carbon sequestration slack. Forestry professional has a strong ability
to accept the new forestry industrial practices and implement policies [54], which
is an important factor in promoting the transformation of the forestry industry [44].
The per capita annual income of on-the-job employees has a 5% significant negative
impact on carbon sequestration slack and a 1% significant positive impact on income.
Due to low forestry incomes, an appropriate income performance mechanism will
promote the economic benefits of forest farms [55]. However, to a certain extent, it
will also cause the ecological benefits of forest farms to be neglected.

(3) Material resources. Infrastructure has a 10% significant positive effect on carbon
sequestration slack and a 1% significant positive effect on income slack. The per capita
factory floor area has a significant negative impact of 1% on carbon sequestration and
income. After the implementation of the Natural Forest Protection Project, idle fixed
assets and inadequate utilization of factory buildings appeared in state-owned forest
farms mainly based on timber production and processing [56]. Therefore, the factory
resources of many state-owned forest farms are in a redundant state.

Based on Table 5 and Figure 3, after excluding environmental factors, the output
efficiency of carbon sequestration in some provinces has greatly improved, while in some
provinces, although the efficiency values have also increased, the ranking has declined.
Results indicate that Jiangsu, Chongqing, and Hebei output efficiency values are overesti-
mated due to economic and location factors. This is consistent with the conclusion drawn
by Yin et al. [22]. Ningxia is in an arid region lacking forests and rain, and the carbon
sequestration capacity of trees is insufficient [57]. However, it has carried out a series of
targeted forestry-related poverty alleviation work in recent years, leading to more policy
support, so its output efficiency value is also overestimated.

4.3. Operating Behavior Impacts

From the estimated results of the influencing factors of operating behaviors in Table 6,
improving forest cover, increasing forestland, developing under-forest economy, and en-
couraging forest tourism can significantly improve the output efficiency values of forest
farms across the country.

From a regional perspective, the effects of operating behaviors are different, but
it is certain that improving forest cover and increasing forestland in each region can
significantly improve output efficiency. Increasing afforestation intensity in North China
can significantly improve output efficiency. However, the effects of timber harvesting
and the under-forest economy differ regionally [58]. Many scholars have studied the
decision-making related to the rotation period, the opportunity costs of planting space, and
the trade-off between timber as energy fuel and forest carbon sequestration [27–29,59,60].
Timber harvest rotation planning aimed at carbon sequestration outputs of state-owned
forest farms is a problem we have not considered. This paper only identifies the effect
of timber harvest on the output efficiency of forest farms in different regions. Increasing
timber harvests in North China could significantly improve the output efficiency values
there, but this approach would have significant negative effects in South China. The under-
forest economy is an associated activity that effectively increases the output of state-owned
forest farms, but if it is excessively developed, then it may hurt forest cultivation. In
North China, Northwest China, and Central South China, under-forest economy could
significantly improve output efficiency [61], but it would have significant negative effects
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in Southwest China. Forest tourism has produced significant positive effects in Northwest
and Southeast China [62].

Overall, increasing forest coverage and afforestation is a crude but effective approach
to improving the output on forest farms. However, timber harvesting, developing under-
forest economy, and conducting forest tourism on forest farms in different regions should
be considered according to local conditions.

5. Conclusions

In this study, the three-stage DEA model and Tobit model are used to investigate the
output efficiency of carbon sequestration and its influencing factors in state-owned forest
farms in China.

The application of the three-stage DEA model obtains the carbon sequestration output
efficiency and the spatial and temporal distribution characteristics. The state-owned forest
farms in the north are large but rough management, while those in the south are small in
scale but well managed. The results also expose the defective forest cultivation mode, in
which state-owned forest farms attach importance to afforestation but ignore management.

By the SFA model and Tobit model, the influence mechanism of external environmen-
tal factors and internal operating behaviors on the output efficiency of carbon sequestration
in state-owned forest farms is analyzed. For forest farms with unsatisfactory efficiency,
improving infrastructure, financial support, staff professionalism, and other external envi-
ronmental factors will promote their output efficiency. Afforestation and increasing forest
coverage can effectively promote the output efficiency of carbon sequestration in forest
farms. However, there is regional heterogeneity in timber harvesting, under-forest economy,
and forest tourism, which need to be adjusted according to local conditions.

This paper provides necessary information for state-owned forest farms to improve
carbon sequestration output, participate in forestry carbon sequestration projects, and
promote sustainable forest management. Future work should consider the individual
management of the forest farm. The wood of the forest farm can be used as biomass energy
fuel and bring certain economic benefits. When the forest is not harvested, the forest can
continue to play its carbon storage capacity. In addition, forest tourism also provides
cultural and recreational value. For different types of forest farms, it is very meaningful
to establish a multi-objective model of forest harvest scheduling problems. This requires
a more detailed investigation basis and personnel support. We will continue the current
work progress to promote the sustainable development of state-owned forest farms and
maximize their benefits.
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19. Jagodziński, A.M.; Dyderski, M.K.; Gęsikiewicz, K.; Horodecki, P. Tree and stand level estimations of Abies alba Mill. aboveground

biomass. Ann For. Sci 2019, 76, 56. [CrossRef]
20. Zhang, Y.; Wang, X. Study on forest volume-to-biomass modeling and carbon storage dynamics in China. Sci. Sin. Vitae 2021,

51, 199. [CrossRef]
21. Xue, L.; Luo, X.; Li, R.; Yu, W. Regional differences and dynamic evolution analysis of forest carbon sinks in China. J. China Agr.

Univ. 2018, 23, 197–206.
22. Yin, S.; Gong, Z.; Gu, L.; Deng, Y.; Niu, Y. Driving forces of the efficiency of forest carbon sequestration production: Spatial panel

data from the national forest inventory in China. J. Clean. Prod. 2022, 330, 129776. [CrossRef]
23. Lin, B.; Ge, J. Carbon sinks and output of China’s forestry sector: An ecological economic development perspective. Sci. Total

Environ. 2019, 655, 1169. [CrossRef] [PubMed]
24. Ao, G.; Wu, W.; Cao, X.; Liu, Q. Analysis on production efficiency of carbon sink bamboo forest based on three-stage DEA model:

Evidence from Zhejiang Anji. J. Agr. For. Eco. Manag. 2019, 18, 656–666.
25. Näyhä, A. Transition in the Finnish forest-based sector: Company perspectives on the bioeconomy, circular economy and

sustainability. J. Clean. Prod. 2019, 209, 1294. [CrossRef]
26. Tong, X.; Brandt, M.; Yue, Y.; Ciais, P.; Rudbeck Jepsen, M.; Penuelas, J.; Wigneron, J.-P.; Xiao, X.; Song, X.-P.; Horion, S. Forest

management in southern China generates short term extensive carbon sequestration. Nat. Commun. 2020, 11, 129. [CrossRef]
[PubMed]

27. Koponen, K.; Soimakallio, S.; Kline, K.L.; Cowie, A.; Brandão, M. Quantifying the climate effects of bioenergy—Choice of
reference system. Renew. Sust. Energ. Rev. 2018, 81, 2271. [CrossRef]

28. Ni, Y.; Eskeland, G.S.; Giske, J.; Hansen, J.-P. The global potential for carbon capture and storage from forestry. Carbon Balance
Manag. 2016, 11, 1172. [CrossRef] [PubMed]

http://doi.org/10.1126/science.263.5144.185
http://doi.org/10.1111/gcbb.12253
http://doi.org/10.1016/j.forpol.2014.09.003
http://doi.org/10.2307/2640963
http://doi.org/10.1126/science.1201609
http://doi.org/10.1016/j.resconrec.2021.105959
http://doi.org/10.3390/f12040436
http://doi.org/10.1016/j.scitotenv.2020.141972
http://doi.org/10.1108/JEIM-10-2020-0419
http://doi.org/10.1080/02827581.2016.1227471
http://doi.org/10.1126/science.223.4642.1290
http://doi.org/10.1029/2004GB002253
http://doi.org/10.1126/science.1058629
http://www.ncbi.nlm.nih.gov/pubmed/11423660
http://doi.org/10.1016/j.foreco.2009.09.047
http://doi.org/10.1016/j.jclepro.2019.119715
http://doi.org/10.1186/s40663-019-0208-9
http://doi.org/10.12171/j.1000-1522.20200058
http://doi.org/10.1007/s13595-019-0842-y
http://doi.org/10.1360/SSV-2020-0301
http://doi.org/10.1016/j.jclepro.2021.129776
http://doi.org/10.1016/j.scitotenv.2018.11.219
http://www.ncbi.nlm.nih.gov/pubmed/30577110
http://doi.org/10.1016/j.jclepro.2018.10.260
http://doi.org/10.1038/s41467-019-13798-8
http://www.ncbi.nlm.nih.gov/pubmed/31913268
http://doi.org/10.1016/j.rser.2017.05.292
http://doi.org/10.1186/s13021-016-0044-y
http://www.ncbi.nlm.nih.gov/pubmed/27034713


Forests 2022, 13, 778 19 of 20

29. Koster, R.; Fuchs, J.M. Opportunity costs of growing space—An essential driver of economical single-tree harvest decisions. For.
Policy Econ. 2022, 135, 102668. [CrossRef]

30. Gu, L.; Wu, W.; Ji, W.; Zhou, M.; Xu, L.; Zhu, W. Evaluating the performance of bamboo forests managed for carbon sequestration
and other co-benefits in Suichang and Anji, China. For. Policy Econ. 2019, 106, 101947. [CrossRef]

31. Fried, H.O.; Lovell, C.K.; Schmidt, S.S.; Yaisawarng, S. Accounting for environmental effects and statistical noise in data
envelopment analysis. J. prod. Ana. 2002, 17, 157. [CrossRef]

32. Liu, Z.; Zhang, X.; Yang, D. Research on efficiency change of chinese government health investment:based on panel three stage
DEA mode. J. Cent. Univ. Financ. Econ. 2014, 6, 97–104.

33. Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment
analysis. Manag. Sci. 1984, 30, 1078. [CrossRef]

34. Tobin, J. Estimation of relationships for limited dependent variables. Econom. J. Eco. Soc. 1958, 26, 24–36. [CrossRef]
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