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Abstract: Inherent water-use efficiency (IWUE) is a vital parameter connecting the carbon and water
cycles. However, the factors influencing the IWUE in different forest ecosystems are still a subject of
debate. In this work, FLUXNET platform measurements of 67 forest sites were used to detect trends of
the IWUE of four forest ecosystems, namely deciduous broadleaf forests (DBF), evergreen broadleaf
forests (EBF), needle-leaf forests (ENF), and mixed forests (MF). The IWUE differed significantly
among different forest ecosystems and positively correlated with temperature and solar radiation.
The IWUE of EBF was the highest at 32.02 g·C·Kg·H2O−1. The values of DBF and MF were similar
and higher than that of ENF. With increasing latitude, the IWUE increased first and then decreased,
with a maximum of 35◦ N. The IWUE of EBF was negatively correlated with precipitation and leaf
area index. Temperature and solar radiation were the main factors controlling the IWUE of forest
ecosystems, whereas precipitation was the major factor controlling the inter-annual variation in the
∆IWUE of forest ecosystems. Our results provide a scientific basis for the study of forest carbon sinks,
forest eco-hydrological processes, and forest ecosystem responses to global climatic changes.

Keywords: evapotranspiration; environmental factors; FLUXNET; net primary productivity

1. Introduction

Forests are important components of terrestrial ecosystems. Plants absorb CO2 from
the atmosphere by photosynthesis and lose water by transpiration, driving energy, and
water cycling [1–3]. In this context, water-use efficiency (WUE) is a key parameter in
connecting carbon fixation and evapotranspiration (ET) [4], defined as the ratio of gross
primary productivity (GPP) to the ET of an ecosystem. The WUE indicates the water-use
strategy among different species or at different life stages of plants at the stand scale [5]. At
the ecosystem level, WUE can be used to quantify the coupling between carbon and water
cycles. Water loss and C gain are highly complex at the ecosystem level. Various factors,
including temperature (T), precipitation (P), vapor pressure deficit (VPD), leaf area index
(LAI), and solar radiation (Rg), affect WUE by affecting ET and carbon exchange [6–8].
However, one factor affecting WUE may be masked or enhanced by the effects of other
factors, resulting in considerable controversy in the research results [9]. For example,
during droughts, WUE can first increase and then decrease [10]. Based on previous studies,
the WUE does not significantly correlate with latitude because of the similar changes in
GPP and ET with variations in latitude [10]. However, in other studies, the WUE of forest
ecosystems increased or decreased with increasing latitude [11–14]. Such controversy
has also been observed regarding the relationships between WUE and the precipitation,
temperature, VPD, LAI, and Rg [15–18].

Forest ecosystems occupy approximately 25% of the terrestrial surface, two to three
times the total agricultural land area. The spatial patterns, magnitude, and factors affecting
the carbon and water cycles of forest ecosystems are, however, not fully understood, mostly
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because of the lack of long-term flux data. The FLUXNET and the eddy covariance (EC)
technique provide a platform and a method for determining carbon and water fluxes at
the ecosystem level [19]. The FLUXNET is a reliable platform providing global ecosystem
data, collected and processed in a unified manner [20]. Via FLUXNET, gross primary
production (GPP) and evapotranspiration (ET) can be estimated at various time scales,
allowing obtaining the WUE values for forest ecosystems. Recent studies have defined
intrinsic water use efficiency (IWUE), which mainly considers the important impact of
saturated water vapor pressure difference (VPD) on the carbon water coupling process on
daily and hourly scales [21–23]. Beer et al. [5] put GPP × The ratio of VPD to ET is called
IWUE, which is tested by using the data of 43 flux stations in different ecosystems around
the world. It is confirmed that IWUE is more suitable than WUE for analyzing the carbon
water coupling mechanism of the ecosystem on a daily scale.

In this study, we selected flux observations from 67 EC flux sites encompassing a range
of forest ecosystems worldwide to compare the WUEs of different forest ecosystems from
longer time series and larger spatial scales. In the context of climate change, comparing the
WUE of these forest ecosystems will help elucidate the ecosystem response and adaptation
to climate change. The overall objective of this study was to examine the spatial patterns,
magnitude, and climate rules of the inherent water-use efficiency (IWUE) of forest ecosys-
tems. The following questions were answered: (1) what is the specific trend of the IWUE of
forest ecosystems? (2) How does the IWUE response mechanism to environmental factors
differ across forest ecosystems? The outcomes of this study provide a scientific basis for
regional ecological construction and water and carbon management.

2. Materials and Methods
2.1. Data Sources and Processing

The net exchange of CO2 and water vapor between forest ecosystems and the atmosphere
was measured every 30 min. Using the eddy covariance technique from FLUXNET, the IWUE
can be calculated at the ecosystem level (Beer et al., 2009). For this study, data from 67 research
sites were collected from FLUXNET (http://fluxnet.fluxdata.org, accessed on 1 May 2021)
and published studies. These sites were divided into four forest ecosystem types, namely
18 deciduous broadleaf forests (DBF), 10 evergreen broadleaf forests (EBF), 34 evergreen
needle-leaf forests (ENF), and 6 mixed forests (MF). The study sites were distributed in
Asia, Europe, North America, and Oceania (Figure 1 and Supplementary Materials). All
measurements were taken from 9:00 a.m. to 05:00 p.m. Annual-scale temperature, solar
radiation, photosynthetic photon flux density, and vapor pressure deficit were calculated
based on the daily average values, whereas precipitation was calculated based on the daily
sum. The GPP and ET on the annual scale were calculated by accumulating the values
for each day. The annual IWUE was calculated by dividing the annual GPP by the annual
ET and multiplying it by the annual VPD. The LAI data were collected from the website
http://www.glass.umd.edu/LAI/AVHRR/, accessed on 1 May 2021.

Missing data can be supplemented by the gap-filling method. Here, gap-filling of
the eddy covariance and meteorological data was performed under three conditions:
(1) when data of direct interest were missing, but all meteorological data were available,
the missing value was replaced by the mean value under similar meteorological conditions
with a look-up table (LUT), within a certain time window [11]; (2) When the temperature
or VPD was missing but radiation was available, the missing value was replaced using
the same LUT approach, though similar meteorological data can only be defined via Rg
within a time window of 7 days; (3) In the case of a loss of Rg data, the missing value was
replaced by the mean value at the same time of the day (1 h), using the mean diurnal course
(MDC). If the value could not be filled after these steps, the procedure was repeated with
an increased window size until the value could be filled [24].

http://fluxnet.fluxdata.org
http://www.glass.umd.edu/LAI/AVHRR/
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Figure 1. Distribution of the study sites (http://data.ess.tsinghua.edu.cn/, accessed on 1 May 2021).

2.2. The IWUE of Forest Ecosystems

The value obtained by multiplying the WUE by the vapor pressure deficit (VPD) is
termed “inherent water-use efficiency” (IWUE) and is calculated as follows [24]:

IWUE =
GPP
ET

× VPD (1)

ET = λ−1 × LE (2)

λ = −2.2965 × T + 2492.1 (3)

where T is the air temperature (◦C), λ is the coefficient of water vaporization heat (KJ·Kg−1),
LE is the latent heat flux (wm−2), ET is evapotranspiration (kg·H2O·m2·d−1), GPP is the
gross primary production (gCm2·yr−1), and IWUE is the inherent water-use efficiency
(g·C·hpa·kg·H2O−1).

To measure drought resistance, we compared IWUE to IWUEa under different forest
ecosystems, using the following equation [25]:

∆IWUE = IWUE −IWUEa (4)

where ∆inherent water-use efficiency is the difference between IWUE and the average
(IWUEa) over years (g·C·hpa·kg·H2O−1).

2.3. Statistical Analysis

The relationships between GPP, ET, and climatic variables were fitted with linear, polyno-
mial, and exponential growth equations. All analyses were conducted using the SAS package.
Statistically significant differences were assumed at p < 0.05 unless otherwise stated.

Precipitation, solar radiation, and temperature were calculated based on the annual
average values of the sites. One-way ANOVA with LSD-t test was performed to test
the differences in WUEs of different forest ecosystems. Pearson’s correlation coefficients
(via the functions cor, cor.test, and corrplot in base R and the package corrplot) described
linear correlations between the IWUE of forest ecosystems and environmental factors. In
addition, the standard deviations of IWUE and ∆IWUE were determined for more than
30 research sites, based on data over 5 years. All statistical analyses were performed with
SPSS 16.0, the “REddyProc” package in R Studio 3.6.1 (RStudio, Boston, U.S.A), and Plot in
R Studio 3.6.1 (Table 1).

http://data.ess.tsinghua.edu.cn/
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Table 1. Basic information for various algorithms for calculating water use efficiency.

Type Symbol

water use efficiency WUE
intrinsic water use efficiency IWUE

evapotranspiration ET
gross primary productivity GPP

vapor pressure deficit VPD
temperature T
precipitation P

leaf area index LAI
mean diurnal course MDC

look-up table LUT
deciduous broadleaf forests DBF
evergreen broadleaf forests EBF

evergreen needle-leaf forests ENF
mixed forests MF

inherent water-use efficiency ∆WUE

3. Results
3.1. Differences in the IWUE of Forest Ecosystems

The IWUE differed significantly among forest ecosystems (p < 0.05) (Figure 2). The
mean IWUE of the four forest types was 19.78 g·C·hpa·Kg·H2O−1, ranging from 17.70 to
32.02 g·C·hpa·Kg·H2O−1. The IWUE of EBF of 32.02 g·C·hpa·Kg·H2O−1 was significantly
higher than the other forest types. The IWUE of ENF of 17.70 g·C·hpa·Kg·H2O−1 was 12.82
and 3.05% lower than DBF (19.97 g·C·hpa·Kg·H2O−1) and MF (18.24 g·C·hpa·Kg·H2O−1),
respectively.
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Figure 2. Spatial distribution of inherent water-use efficiency (IWUE) of forest ecosystems. DBF, 
EBF, ENF, and MF are deciduous broadleaf forests, evergreen broadleaf forests, evergreen needle-

Figure 2. Spatial distribution of inherent water-use efficiency (IWUE) of forest ecosystems. DBF, EBF,
ENF, and MF are deciduous broadleaf forests, evergreen broadleaf forests, evergreen needle-leaved
forests, and mixed forests, respectively. The letters above each forest ecosystem indicate significant
differences among forest ecosystems based on a one-way analysis of variance (α = 0.05). Bars indicate
error bars.

The four forest ecosystem types represented the major forest ecozones of the Northern
Hemisphere, with latitudes from 20◦ N to 70◦ N (Figure 3). The ENF were widely dis-
tributed at latitudes of 20◦ N to 70◦ N, whereas DBF were mainly distributed at 30◦ N to
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55◦ N. The EBF were mainly distributed at latitudes from 20◦ N to 40◦ N, whereas the MF
was mainly distributed at latitudes from 40◦ N to 50◦ N, which is the transition zone of
needle-leaved and broad-leaved forests. The IWUE values were significantly impacted by
latitude; the annual average IWUE first increased and then decreased with latitude, with a
peak at approximately 35◦ N.
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broadleaf forests, evergreen broadleaf forests, evergreen needle-leaved forests, and mixed forests,
respectively. The blue line is the relation curve between WUE and latitude.

3.2. Effects of Environmental Factors on the IWUE of Different Ecosystems

The responses of the IWUE of forest ecosystems to environmental factors were dif-
ferent (Figure 4). The IWUE values of forest ecosystems were significantly positively
correlated with temperature (p < 0.01) and solar radiation (p < 0.05), whereas the EBF
was significantly correlated with precipitation. The IWUE values of DBF, ENF, and MF
increased with increasing precipitation (p < 0.05), whereas those of EBF decreased with
increasing precipitation (p > 0.05). The IWUE values of DBF and EBF were significantly
negatively correlated with LAI (p < 0.05), whereas the IWUE of ENF and MF showed no
significant changes with LAI (p > 0.05). Overall, the IWUE was strongly correlated with
temperature and weakly related to precipitation, Rg, and LAI (Figure 4). In DBF, EBF,
ENF, and MF, temperature explained 22%, 25%, 57%, and 46%, respectively, of the yearly
variation in IWUE.

3.3. Influence Weight of Environmental Factors on the IWUE

The results of the correlation analysis indicated that IWUE was positively correlated
with temperature and GPP (p < 0.05) and negatively with elevation and LAI (p < 0.05),
without significant changes with precipitation (p > 0.05) (Figure 5). Temperature and Rg
explained 57.3% and 25.0% of the variation in IWUE among all forest types, respectively
(Figure 6). The weight value of temperature to IWUE was 2.3 times that of the Rg, whereas
the weight values of LAI and precipitation were 8.8%, which was significantly lower than
the weight values of temperature and Rg. This indicates that temperature and Rg were the
main factors affecting the IWUE of forest ecosystems.
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index (LAI), and (d) solar radiation (Rg, W·m−2). DBF, EBF, ENF, and MF are deciduous broadleaf
forests, evergreen broadleaf forests, evergreen needle-leaved forests, and mixed forests, respectively.
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Figure 5. Correlation analysis between inherent water-use efficiency and environmental factors in
forest ecosystems (× means not significant (p > 0.5); colors indicate the level of correlation). IWUE,
Tair, Rg, LAI, Precip, GPP, and ET are inherent water-use efficiency, air temperature, solar radiation,
leaf area index, precipitation, gross primary production, and evapotranspiration, respectively.

3.4. Factors Influencing IWUE Interannual Changes

The ∆IWUE of forest ecosystems was significantly positively correlated with pre-
cipitation (R2 = 0.37, p < 0.05) but not with temperature (R2 = 0.034, p > 0.05) (Figure 7),
indicating that precipitation controls the inter-annual variation of ∆IWUE. There was a
significant relationship between annual average evapotranspiration and annual average
carbon sequestration only in ENF (R2 = 0.91, p < 0.01) (Figures 7 and 8), but no significant
difference was recorded in other forest ecosystems (p < 0.01).
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4. Discussion
4.1. Spatial Distribution of the IWUE of Forest Ecosystems

The IWUE of forest ecosystems exhibited an obvious latitudinal effect, with an initial
increase followed by a decrease with increasing latitude. This can be explained by the de-
crease in solar radiation with increasing latitude, resulting in decreased evapotranspiration
and, thus, an improved IWUE. However, when the latitude increased to 35◦ N, the carbon
sequestration ability of the forest ecosystems decreased due to low temperatures, leading
to a gradual decline in WUE. This indicates that temperature is the main factor affecting
the IWUE with changes in latitude. Similarly, Xiao et al. demonstrated that the annual
net carbon flux varies linearly with latitude, most likely because latitude mainly affects
temperature and radiation [26]. Yu et al. also found that temperature and solar radiation
were the main factors controlling the annual WUE of forest ecosystems [27]. This also
confirms that the lower IWUE of ENF since half of ENF was distributed in high latitudes
with lower annual temperatures. At the same latitude, the IWUE significantly differed
among forest ecosystems; in particular, the IWUE of EBF was the highest. This may be
because EBF were mainly distributed at low latitudes, and plants have a greater carbon
sequestration potential at appropriate temperatures. In addition, the high canopy density
formed by EBF results in higher humidity, inhibiting evapotranspiration and, therefore,
maintaining a higher IWUE. Besides, the thicker litter layer in EBF limits the evaporation of
soil moisture [28]. Beer et al. have reported similar results [24], whereas Gilbert observed
that the WUE of needle-leaved tree species was higher than that of broadleaved tree species
since needle-leaved trees have a higher carbon sequestration capacity [29]. This discrepancy
may be due to the difference in research scales; whereas Gilbert used the stand scale, in the
present study, the ecosystem scale was used. The IWUE of DBF was significantly lower
than that of other ecosystems, most likely because of the short growing season of DBF, with
about 6 months for carbon fixation and all 12 months for evapotranspiration, resulting in a
low IWUE. Ji et al. also showed that although broadleaf forests usually store more water
than needle-leaved forests, the WUE of needle-leaved forests is lower because of excessive
transpiration [30].

4.2. Effects of Environmental Factors on the IWUE in Different Ecosystems

There was a significant correlation between temperature/Rg and IWUE across all
forest ecosystems, consistent with the study in a tropical monsoon forest in western
Thailand [31–33]. However, we found no significant relationship between IWUE and
annual precipitation, except in EBF. One explanation is that the evapotranspiration of forest
ecosystems was not limited by precipitation. The WUE of forests has a certain threshold
effect on precipitation in areas with water scarcity [34], which might explain the poor rela-
tionship between precipitation and IWUE. Heilman et al. found that the IWUE of young
trees was more sensitive to precipitation than old ones, indicating that the EBF stands were
younger than the other forests [35]. In a previous study, the sensitivity of broad-leaved
forests to environmental changes was higher than that of needle-leaved forests [8]. This
can also explain that only the IWUE of EBF had a significant impact on precipitation.
Although temperature and solar radiation explained 57.3% and 25.0% of the changes in
IWUE, respectively, the correlation between ∆IWUE and meteorological factors showed
that precipitation controls the interannual variation of the IWUE forest ecosystems. This
leads us to infer that precipitation was the main factor limiting carbon fixation and plant
growth in forest ecosystems. The adjustment of photosynthesis and transpiration may also
be an adaptive strategy to changes in precipitation.

The factors affecting the WUE of forest ecosystems are highly complex and not only
affected by external environmental conditions but also by the plants themselves [18]. For
example, the LAI values were significantly negatively correlated with the IWUE values of
broad-leaved forests but not with those of needle-leaved forests. Possibly, the increase in
transpiration was higher than that in carbon acquisition since radiation was blocked by
overlapping leaves of broad-leaved forests. Needle-leaved tree species were not affected
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by LAI because of the elongated leaves and the large specific surface area, increasing the
amount of radiation received [26]. In addition, several factors also affected the IWUE,
such as CO2 concentration, nitrogen deposition, stomatal conductance, genotype, and age,
indirectly affecting the WUE. Further studies on the above factors are therefore needed to
obtain a deeper insight into these issues.

5. Conclusions

Based on FLUXNET measurements, we filtered and built a dataset containing annual
total GPP, ET, and VPD data from 67 forest sites and analyzed the spatial variation and the
influencing factors of the IWUE. Among the forest ecosystems, the IWUE values differed
significantly, with the highest values for the EBF. The values for the DBF and the MF were
similar and higher than that of the ENF. The IWUE of forest ecosystems increased first and
reached the maximum at a latitude of 35◦ N, with a subsequent decrease. Across all forest
ecosystems, the IWUE was significantly positively correlated with temperature and solar
radiation. In addition, the IWUE of EBF was negatively correlated with precipitation and
LAI. Temperature and solar radiation were the main factors influencing the IWUE of forest
ecosystems, whereas precipitation was the main factor controlling inter-annual variations
in the ∆IWUE of forest ecosystems. Based on this, precipitation is the main factor limiting
carbon fixation and plant growth in forest ecosystems.
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