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Abstract: Moso bamboo is characterized by its fast growth and high yield and is important as a carbon
sink species. Therefore, understanding the biomass distribution of its components is crucial. Based
on the measured individual biomass data of 66 Phyllostachys heterocycla cv. Pubescens plants in the
Yixing state-owned forest in Jiangsu Province, nonlinear simultaneous equations with measurement
errors were constructed using nonlinear error-in-variable models (NEIVM) (one step, two step)
and nonlinear seemingly unrelated regression (NSUR). Variables affecting biomass were evaluated,
including diameter at breast height (DBH), bamboo height (H), height to crown base (HCB), node
length at DBH (NL), base diameter (BD), and bamboo age (A). DBH, H, and HCB had significant
effects on the biomass of each component. They were used to construct a one-predictor system using
DBH, a two-predictor system using DBH and H, and a three-predictor system using DBH, H, and
HCB. Regardless of the number of variables used, the fitting accuracy of the NEIVM one-step method
exceeded that of the two-step method, and that of NEIVM exceeded that of NSUR estimation. As
a system using three predictive variables is better than other systems, we recommend using the
one-step NEIVM method for Moso bamboo biomass estimation.

Keywords: biomass; nonlinear error-in-variable; nonlinear seemingly unrelated regression; leave-
one-out cross-validation

1. Introduction

Biomass, a non-renewable energy source, is the fourth largest energy source in the
world. Forest biomass is an important supplier of fodder and fuel and is also important for
environmental protection that mitigates climate change through carbon sequestration [1,2].
Bamboo forests are among the most important forest types in the world, accounting for
approximately 2.94% of the total forest area in China (data from the Ninth National Forest
Resource Inventory Report).

The sixth report of IPCC stated that global warming continues unabated, and the
CO2 content is still increasing (the sixth report of IPCC). Bamboo achieves high growth
in only a few months [3]. Bamboo is an important carbon source and sink [4]. Biomass
quantification is an important means of understanding the carbon pool and productivity of
bamboo forests [5,6]. Figuring out how to calculate bamboo biomass is therefore urgent
and important.

Globally, bamboo is an important resource, with 1500 varieties of under 87 genera in
its subfamily [7]. China has the most abundant bamboo resources and is known as the
kingdom of bamboo. These include more than 500 species under 48 genera of bamboo
subfamilies [8,9]. Among them, Moso bamboo covers an area of 4.68 million hectares (ha),
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accounting for 72.96% of the total bamboo coverage (data from the Ninth National Forest
Resource Inventory Report).

However, biomass surveys are time consuming and laborious [9,10]. The use of
biomass models is currently a popular method. Biomass data need to be measured during
the modeling process. However, when the model is established, forest resource inven-
tory data can be used to estimate the biomass of the entire stand in similar stands with
guaranteed accuracy.

The allometric growth equation is often used in biomass equations, and the estimation
method of the biomass equation has been developed from the least square method to
seemingly uncorrelated regression (SUR) [11–16]. In previous studies, the methods of
estimating bamboo biomass mainly included the following: field survey statistics [17],
where only the biomass of the culm was considered [18], all components were constructed
using one equation [19], bivariate distribution model [20], and construction of biomass
models with different components [21,22]. These methods have some drawbacks, such
as high investigation costs owing to the different growth factors of branches, culms, and
leaves; also, the accuracy of these methods is relatively low. When different components
are used to build the model, it is built independently, resulting in the total biomass not
being equal to the sum of each component. This method ignores the correlation between
the components of bamboo biomass, and the sum of the predicted biomass of each bamboo
component should be equal to the estimated total bamboo biomass. In other words, there is
a lack of additivity between the components [23]. To solve this problem, many researchers
have used simultaneous additive biomass equations [16,24,25]. However, this method is
rarely used for modeling bamboo biomass.

The independent variable has no measurement error, which is the assumption of the
biomass nonlinear seemingly uncorrelated simultaneous equations. Error-in-variable (EIV)
models not only ensure the additivity of nonlinear biomass equations but also consider
the impact of measurement errors [16,25–31]. However, there are relatively few studies on
bamboo forest biomass.

The influence of six candidate factors was evaluated based on the aboveground
biomass of the Moso bamboo in the Yixing state-owned forest farm in Jiangsu Province. Us-
ing NEIVM (nonlinear error-in-variable models) and NSUR (nonlinear seemingly unrelated
regression) as parameter estimation algorithms, one-, two-, and three-predictor systems
of biomass equations with measurement error were constructed, and the fitting accuracy
of each model was verified by the leave-one-out cross-validation (LOOCV) method. We
aimed to select the best biomass model construction method and parameter estimation
method and provide technical support for the calculation and research of bamboo forest
biomass models.

2. Materials and Methods
2.1. Study Areas

The study area is located on the Yixing state-owned forest farm, Jiangsu Province,
western China (31◦13′–31◦15′ N, 119◦41′–119◦44′ E) (Figure 1). Yixing City covers a total
area of 1996.6 square kilometers. It belongs to the junction of the northern scattered
bamboo area and Jiangnan bamboo area and is at the northeast edge of the Moso bamboo
distribution area.

Yixing City has a subtropical monsoon climate, with an average annual rainfall of
1805.4 mm and a mean annual temperature of 16.7 ◦C. The main types of traditional
management measures adopted in Moso bamboo forests in this region include bamboo
forest cutting (cutting bamboo over three degrees old), shrub and grass cutting, winter
bamboo shoot and spring bamboo shoot harvesting, bamboo cutting, and tourism. Yixing
forest farms do not fertilize Moso bamboo forests. All human behavior in the experimental
area was controlled. The stand density of Moso bamboo was 2000–4000 plants/hm2, the
average DBH was approximately 9.8 cm, and the age structure of grade I, grade II, and
grade III bamboo was 3:4:3.
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Figure 1. Sampling location map of bamboo forest biomass.

2.2. Data Collection

Field sampling was conducted in January 2022 in the Moso bamboo forest of the
Yixing state-owned forest farm in Jiangsu Province. First, bamboo in the study area was
measured to obtain the DBH distribution of the bamboo forest in the study area. Then,
according to the two factors of DBH (7–14 cm) and age (1–4 degrees), a stratified sampling
method was adopted. Taking 1 cm as the diameter class, 10 stems were sampled from each
diameter class. Because there was little bamboo in the large-diameter and small-diameter
classes, eight stems were taken for each diameter class. A total of 66 bamboo samples were
obtained. The DBH, base diameter, and node length of each bamboo plant were measured
in the field. After the bamboo was cut down, its height and the height to the crown base
(HCB) were measured. Bamboo age (A) was determined based on the features of the culms,
such as external color, branch, and leaf development, and the status of the culm sheaths.
The bamboo culm biomass was sampled, and the fresh weight of each section of bamboo
was determined using the full weight method, marked, and recorded. Samples were taken
from the upper, middle, and lower parts of each 2 m section of the bamboo trunk, and
500–1000 g was sampled after mixing. The standard branch method was adopted for the
determination of bamboo branch biomass. After the bamboo stem was divided into 2 m
sections, three standard branches were selected according to the average base diameter and
length in each section, the fresh weight was weighed, the average value was obtained, and
the number of live branches in the section was multiplied to obtain the total fresh weight
of the branches in the section. After mixing the standard branches, samples of 500–1000 g
were obtained. For the biomass of bamboo leaves, all the leaves of the selected standard
branches were removed, the fresh weight was obtained, and 100–200 g was taken as a
sample and taken back to the laboratory.

2.3. Laboratory Tests

The samples were placed in an oven at 105 ◦C for 30 min and dried at a temperature
of 75 ◦C until a constant weight was obtained. The total biomass of bamboo in each
component was calculated according to the ratio of dry weight to fresh weight. Figure 2
shows the relationship between the biomass of various organs of bamboo and different
variables (DBH, H, HCB, NL, BD, and A). The biomass of the bamboo components and
variation ranges of the bamboo variables are listed in Table 1.
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Figure 2. Relationship between total aboveground (AG) biomass and each component (culm, branch,
and leaf) of six bamboo variables, including diameter at breast height (DBH), bamboo height (H),
height to crown base (HCB), node length at DBH (NL), base diameter (BD), and bamboo age (A);
r is the correlation between predictive variables and biomass of different components; the p value
between each variable is less than 0.001.

Table 1. Statistics of bamboo biomass variables.

Variables Minimum Maximum Mean Standard Deviation

DBH (cm) 6.8500 13.8500 9.4590 1.5106
H (m) 8.5300 17.4000 13.1600 1.5661

HCB (m) 3.2600 8.7100 5.9890 1.1731
A (degree) 1.0000 4.0000 2.200 0.9640
NL (cm) 17.3000 28.2000 21.8600 2.2682
BD (cm) 7.8500 15.6300 11.0700 1.7054

Culm (kg) 6.8690 35.010 16.4420 6.1108
Branch (kg) 1.9290 5.8720 3.2820 0.8217

Leaf (kg) 0.7479 3.0143 1.8407 0.4901
AG (kg) 9.9010 43.8960 21.5650 7.2138

Notes: diameter at breast height (DBH), bamboo height (H), height to crown base (HCB), bamboo age (A), node
length at DBH (NL), base diameter (BD), and total aboveground (AG) biomass.

2.4. Methods
2.4.1. Nonlinear Error-in-Variable Models (NEIVM)

When the observed values of the dependent variables contain measurement errors,
the usual model estimation methods will no longer be applicable, and the measurement
error model can better solve this problem [32,33]. Fuller (1987) proposed the general
form of nonlinear error-in-variable models (NEIVM) [26]. On this basis, Tang extended
it and divided the model’s variables into two categories: error-in-variables and error-out-
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variables, according to whether the measurement error was included [29]. According to
Tang’s expansion, the formula is as follows:

f (yi, xi, β) = 0 i = 1, . . . , N
Yi = yi + ei
E(ei) = 0 Var(ei) = ∑

(1)

where N is the number of observed values of the target object; f (yi, xi, β) represents the
model form (m-dimensional vector function); xi represents the independent variable with-
out measurement error (error-out-variables); yi is the dependent variable with measurement
error (error-in-variables) (p-dimensional EIV, p ≥ m); ∑ is the p∗p-dimensional positive-
definite variance–covariance matrix of the error term ei. This study considered only the
measurement error of the dependent variables.

Model (1) can be solved using the two-stage error (TSEM) algorithm in the variable
model. Please refer to Tang 2001 and 2002 for the specific calculation process [29,30].

For Model (1), we chose two forms to develop the nonlinear measurement error model
(to ensure the additivity of the model). One method is to divide bamboo biomass into
three basic components: bamboo culm, bamboo branch, and bamboo leaf; this is called the
one-step method. The one-step method ensures that the sum of the biomass values of all
bamboo components is equal to the total bamboo biomass. Its expression is as follows:

w1i =
f1(y

(1)
i ,xi ,β1)

f1(y
(1)
i ,xi ,β1)+ f2(y

(1)
i ,xi ,β2)+ f3(y

(1)
i ,xi ,β3)

Ŵ0i

w2i =
f2(y

(1)
i ,xi ,β2)

f1(y
(1)
i ,xi ,β1)+ f2(y

(1)
i ,xi ,β2)+ f3(y

(1)
i ,xi ,β3)

Ŵ0i

w3i =
f3(y

(1)
i ,xi ,β3)

f1(y
(1)
i ,xi ,β1)+ f2(y

(1)
i ,xi ,β2)+ f3(y

(1)
i ,xi ,β3)

Ŵ0i

Yi = yi + ei, Yi = (W1i, W2i, W3i, (Yi)
T)

T
, yi = (w1i, w2i, w3i, (y

(1)
i )

T
)

T

E(ei) = 0, var(ei) = σ2ψ, i = 1, . . . , N

(2)

where i = 1, . . . , N, W0i ∼ W4i represents the observed biomass values of aboveground,
bamboo culm, bamboo branch, and bamboo leaf of the ith bamboo and their values contain
measurement errors. w0i ∼ w3i are the measured value. f1(y

(1)
i , xi, β1), f2(y

(1)
i , xi, β2),

and f3(y
(1)
i , xi, β3) represent the equation functions for culm, branch, and leaf biomass,

respectively. Ŵ0i is the estimated aboveground biomass of the ith bamboo plant. The
structural matrix ψ is used to explain the internal correlation between the components of
various organs [30,34].

The second method is to divide the total biomass into bamboo culm and crown and
then divide the bamboo crown into bamboo branches and leaves. This method is known as
the two-step method. The advantage is that it also ensures that bamboo crown = bamboo
branch + bamboo leaf. Its expression is as follows:

w1i =
f1(y

(1)
i ,xi ,β1)
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(3)

where f4(y
(1)
i , xi, β4) is a function corresponding to bamboo crown biomass. The other

variables have the same meaning as in Equation (2).
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2.4.2. Nonlinear Seemingly Unrelated Regression (NSUR)

The NSUR is also a commonly used estimation method for measurement error mod-
els [13,35]. We mainly use this method to estimate the following two model forms
(Equation (4): proportion method; Equation (5): summation method).

w0i = f0(y
(1)
i , xi, β0) + ξ0i

w1i =
f1(y

(1)
i ,xi ,β2)

f1(y
(1)
i ,xi ,β1)+ f2(y

(1)
i ,xi ,β2)+ f3(y

(1)
i ,xi ,β3)

Ŵ0i + ξ1i

w2i =
f2(y

(1)
i ,xi ,β2)

f1(y
(1)
i ,xi ,β1)+ f2(y

(1)
i ,xi ,β2)+ f3(y

(1)
i ,xi ,β3)

Ŵ0i + ξ2i

w3i =
f3(y

(1)
i ,xi ,β3)

f1(y
(1)
i ,xi ,β1)+ f2(y

(1)
i ,xi ,β2)+ f3(y

(1)
i ,xi ,β3)

Ŵ0i + ξ3i

(4)


w0i = f1(y

(1)
i , xi, β1) + f2(y

(1)
i , xi, β2) + f3(y

(1)
i , xi, β3) + ξ0i

w1i = f1(y
(1)
i , xi, β1) + ξ1i

w2i = f2(y
(1)
i , xi, β2) + ξ2i

w3i = f3(y
(1)
i , xi, β3) + ξ3i

(5)

where ξ0i, ξ1i, ξ2i, and ξ3i represent the aboveground biomass and residuals of culms,
branches, and leaves, respectively. The meanings of the other variables are described in
Equation (2).

2.5. Selection of Predictor Variables

According to the number of variables contained in fi(y
(1)
i , xi, βi), we divided the model

into one, two, and three predictor variables. By comparing the effects of the six variables
on the biomass of different components of bamboo forest, we selected the variables with
significant effects to develop the model. The common form of the allometric growth
equation was selected by fk(x) = axb

1xc
2 . . . xm

n [36].
Five indicators were used to evaluate the significance of variables: mean residual

(e), variance (ξ), root mean square error (RMSE), determination coefficient (R2), and total
relative error (TRE) (Equations (6)–(10)). In addition, the fitted model also requires stable
parameters (t value of the estimated value of the parameter > 2 or the coefficient of variation
(CV) < 50%) and a random residual distribution (the positive and negative residuals of
each diameter order were offset, and 0 was used as the reference line and distributed
symmetrically below). Therefore, the stability of parameter estimation in this study mainly
refers to the CV. Some studies have proposed that the parameter estimation is unbiased
when the sample size is 50 [37–39]. In the study of bamboo forest biomass, Yang (2016) and
Guo et al. (2015) established biomass models using the measured data of 32 and 25 Moso
bamboos, respectively [40,41]. Therefore, the sample data size estimation in this study
was unbiased.

e = ∑ (yi − ŷi)/N (6)

ξ = ∑ (yi − ŷi)
2/(N − 1) (7)

RMSE =
√

e2 + ξ (8)

R2 = 1− ∑ (yi − ŷi)
2

∑ (yi − y)2 (9)

TRE = 100 ∑ (yi − ŷi)

∑ ŷi
(10)
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where yi is the measured value of the ith bamboo biomass and ŷi represents the estimated
value of the ith bamboo biomass. y is the average of the samples, and N is the number
of observations.

2.6. Heteroscedasticity

The biomass model is a heteroscedastic model. Heteroscedasticity must be eliminated
when nonlinear joint estimation is used. The weighted regression method was used to
eliminate heteroscedasticity. We used 1√

fi(y
(1)
i ,xi ,βi)

and 1

fi(y
(1)
i ,xi ,βi)

2 as weight functions.

2.7. Model Evaluation

Five indicators (Equations (6)–(10)) are mainly used to evaluate the prediction ability
of biomass simultaneous equations. In this study, a leave-one-out cross-validation (LOOCV)
method was used to verify the model. The LOOCV method deletes one bamboo at a time
and uses the remaining data for fitting, and the fitted equation is used to predict the deleted
bamboo value. This is repeated 66 times and each index is calculated using the predicted
and observed values. NEIVM methods were calculated using the software ForStat 3.0 [34],
and NSUR was calculated using the R Software (version 4.1.0) systemfit package.

3. Results

By comparing the six independent variables, we found that DBH, H, BD, and HCB had
significant effects on the total aboveground biomass and component biomass (Figure 2).
Because DBH and BD have strong collinearity, only one was considered in this study.
Therefore, using three variables (DBH, H, and HCB), we developed a one-predictor system
with only DBH, a two-predictor system with DBH and H, and a three-predictor system
with DBH, H, and HCB. Table 2 shows the parameters of the basic model.

Table 2. Estimation of basic model parameters using a different number of predictive variables.

One-Predictor Two-Predictor Three-Predictor

AG W(D) = 0.31D1.87 W(D, H) = 0.12D1.47H0.71 W(D, H, HCB) = 0.10D1.76H0.67HCB−0.19

Culm W(D) = 0.16D2.04 W(D, H) = 0.05D1.52H0.90 W(D, H, HCB) = 0.03D1.85H0.87HCB−0.22

Branch W(D) = 0.17D1.31 W(D, H) = 0.14D1.22H0.16 W(D, H, HCB) = 0.13D1.38H0.18HCB−0.16

Leaf W(D) = 0.08D1.37 W(D, H) = 0.07D1.28H0.16 W(D, H, HCB) = 0.10D1.52H−0.18HCB−0.01

3.1. One-Predictor System of Biomass Equations

The parameter estimates of the bamboo components based on different estimation
methods (one-step, two-step, proportion, and summation methods) are shown in Table 3.
The CV of the system parameters of each model was less than 50% and the parameters were
stable. The evaluation indicators are presented in Table 4. These estimation methods have
a common premise: ensuring that the sum of the biomass of each component is equal to
the total biomass. The fitting indicators of the four methods are almost the same; however,
the fitting effect of NEIVM’s one-step method is slightly better than that of the two-step
method, and the proportional method of NSUR is better than the summation method
(larger R2 and smaller TRE and RMSE). Among the four methods, the NEIVM one-step
method exhibited the best fit. Thus, the NEIVM one-step method was selected as the best
one-predictor system for predicting the aboveground biomass and its three components.

3.2. Two-Predictor System of Biomass Equations

The model parameter estimates for the two prediction variables using the four estima-
tion methods are listed in Table 5. The CV of the system parameters of each model was less
than 50% and the parameters were stable. The model-fitting indicators are listed in Table 6.
The evaluation indicators of each component are slightly different under the calculation of
the four different estimation methods. Overall, the fitting index of the NEIVM one-step
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model was slightly better than those of the other models. Under the same estimation
method, the fitting accuracy was as follows: above ground > bamboo culm > bamboo
branch > bamboo leaf. The NEIVM one-step method had a larger and smaller TRE and
RMSE. Therefore, we chose the NEIVM one-step method as the best two-predictor equation
system for predicting bamboo biomass and its three components.

Table 3. Parameter estimates for the one-predictor systems of biomass equations.

Equation System Component
Fixed Parameters

a b CV (%)

NEIVM one step
Culm 0.1599 2.0439 17.2305

Branch 0.1697 1.3096 14.0972
Leaf 0.0837 1.3666 15.0497

NEIVM two step
Culm 0.1634 2.0401 17.2301

Branch 0.3295 1.1194 14.0973
Leaf 0.1625 1.1764 15.0497

NSUR-P
Culm 0.1466 2.1493 17.5228

Branch 0.1713 1.3730 14.5962
Leaf 0.0904 1.4007 15.8605

NSUR-S
Culm 0.1684 2.0280 16.6988

Branch 0.1562 1.3515 13.8897
Leaf 0.0743 1.4240 15.0906

Notes: nonlinear, seemingly unrelated regression (NSUR); NSUR-P is the proportional method used to estimate the
parameters by NSUR; NSUR-S is the summation method; nonlinear error-in-variable model (NEIVM); coefficient
of variation (CV). a and b are parameter estimation.

Table 4. Evaluation indicators of the one-predictor variable model system using different
estimation methods.

Component Method R2 TRE RMSE e

Bamboo culm

NEIVM-one step 0.8046 2.4291 2.7219 −0.0175
NEIVM-two step 0.8045 2.4349 2.7224 −0.0037

NSUR-P 0.8046 2.4286 2.7218 −0.0146
NSUR-S 0.8042 2.4339 2.7245 −0.0255

Bamboo branch

NEIVM-one step 0.7022 1.7881 0.4518 −0.0004
NEIVM-two step 0.7008 1.8002 0.4529 0.0098

NSUR-P 0.7020 1.7891 0.4520 −0.0025
NSUR-S 0.7016 1.7930 0.4523 0.0056

Bamboo Leaf

NEIVM-one step 0.6902 2.0938 0.2749 −0.0010
NEIVM-two step 0.6892 2.1040 0.2753 0.0041

NSUR-P 0.6898 2.0958 0.2750 −0.0029
NSUR-S 0.6885 2.1074 0.2756 0.0038

Total aboveground

NEIVM-one step 0.8314 2.9846 1.7288 0.0100
NEIVM-two step 0.8314 2.9846 1.7288 0.0100

NSUR-P 0.8314 2.9844 1.7258 −0.0200
NSUR-S 0.8311 2.9870 1.7286 −0.0161

Notes: mean residual (e), root mean square error (RMSE); determination coefficient (R2); total relative error (TRE);
nonlinear, seemingly unrelated regression (NSUR); NSUR-P is the proportional method used to estimate the
parameters by NSUR; NSUR-S is the summation method; nonlinear error-in-variable model (NEIVM); coefficient
of variation (CV).

Table 5. Parameter estimates for the two-predictor systems of biomass equations.

Equation System Component
Fixed Parameters

a b c CV (%)

NEIVM-one step
Culm 0.0529 1.5475 0.8696 14.0623

Branch 0.1415 1.2121 0.1646 15.8615
Leaf 0.0688 1.2618 0.1763 15.009

NEIVM-two step
Culm 0.0528 1.5388 0.8794 14.0623

Branch 0.1407 1.2233 0.1499 15.8616
Leaf 0.0684 1.2727 0.1621 15.0086

NSUR-P
Culm −0.0012 1.8261 0.7126 16.7149

Branch −0.0029 1.4375 0.0823 15.0731
Leaf −0.0012 1.3640 0.2578 16.4680

NSUR-S
Culm 0.0518 1.5117 0.9065 15.4741

Branch 0.1530 1.4211 −0.0529 14.0863
Leaf 0.0508 1.1181 0.4157 13.6757

Nonlinear, seemingly unrelated regression (NSUR); NSUR-P is the proportional method used to estimate the
parameters by NSUR; NSUR-S is the summation method; nonlinear error-in-variable model (NEIVM); coefficient
of variation (CV). a, b and c are parameter estimation.
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Table 6. Evaluation results of the biomass equation with two prediction variables.

Component Method R2 TRE RMSE e

Bamboo culm

NEIVM-one step 0.8344 2.0507 2.5057 −0.0114
NEIVM-two step 0.8342 2.0524 2.5074 −0.0430

NSUR-P 0.8346 2.0491 2.5045 −0.0098
NSUR-S 0.8343 2.0517 2.5066 −0.0154

Bamboo branch

NEIVM-one step 0.7037 1.7792 0.4507 6.13 × 10−5

NEIVM-two step 0.7035 1.7813 0.4508 0.0031
NSUR-P 0.7018 1.7917 0.4521 −0.0009
NSUR-S 0.6666 1.9984 0.4781 0.0041

Bamboo Leaf

NEIVM-one step 0.6919 2.0822 0.2741 −0.0008
NEIVM-two step 0.6917 2.0835 0.2742 9.69 × 10−5

NSUR-P 0.6889 2.1046 0.2755 0.0013
NSUR-S 0.6913 2.0814 0.2744 −0.0013

Total aboveground

NEIVM-one step 0.8552 1.4787 2.7660 −0.0121
NEIVM-two step 0.8551 1.4788 2.7670 −0.0397

NSUR-P 0.8552 1.4791 2.7661 −0.0094
NSUR-S 0.8566 1.4646 2.7525 −0.0126

Note: nonlinear, seemingly unrelated regression (NSUR); NSUR-P is the proportional method used to estimate the
parameters by NSUR; NSUR-S is the summation method; nonlinear error-in-variable model (NEIVM); coefficient
of variation (CV); mean residual (e), root mean square error (RMSE); determination coefficient(R2); total relative
error (TRE).

3.3. Three-Predictor System of Biomass Equations

The parameter estimates of the simultaneous models of the bamboo components based
on the different estimation algorithms are listed in Table 7. The CV of the system parameters
of each model was less than 50% and the parameters were stable. The evaluation indicators
for the simultaneous models are listed in Table 8. For the TSEM estimation, the model-
fitting accuracies of the one-step and two-step models were similar, but the form of the
one-step model is relatively simple; therefore, the one-step model was selected. The fitting
accuracy of the NSUR proportional method was better than that of the summation method.
The values of the NEIVM one-step and NSUR proportional methods were slightly higher
than those of other models. However, the differences between the other indices were not
substantial. In summary, we chose the NEIVM one-step and NSUR proportional methods
as the three best prediction equation systems for predicting the aboveground biomass and
its components.

Table 7. Parameter estimates for the three-predictor systems of biomass equations.

Equation System Component
Fixed Parameters

a b c d CV (%)

NEIVM-one step
Culm 0.0651 1.7926 0.6882 −0.0822 15.8574

Branch 0.1482 1.4616 0.1047 −0.1779 13.7621
Leaf 0.0782 1.5111 0.0577 −0.1343 15.2208

NEIVM-two step
Culm 0.0373 1.7716 0.8251 −0.1500 15.3539

Branch 0.2285 1.3803 0.1360 −0.1553 14.2135
Leaf 0.1198 1.4297 0.0890 −0.1117 15.2208

NSUR-P
Culm 0.5462 1.2560 0.3478 −0.2594 17.3672

Branch 0.9548 0.7043 0.1187 −0.4355 15.7943
Leaf 0.7832 1.1205 −0.7258 0.0386 17.8646

NSUR-S
Culm 0.0486 1.3796 1.0644 −0.0230 15.6681

Branch 0.4566 3.0008 −1.6722 −0.2994 24.4795
Leaf 0.0662 0.4328 0.1472 1.0924 22.9157

Notes: nonlinear, seemingly unrelated regression (NSUR); NSUR-P is the proportional method used to estimate the
parameters by NSUR; NSUR-S is the summation method; nonlinear error-in-variable models (NEIVM); coefficient
of variation (CV). a, b, c and d are parameter estimation.
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Table 8. Evaluation index of biomass equations with three prediction variables.

Component Method TRE RMSE e

Bamboo culm

NEIVM-one step 0.8345 2.0496 2.5050 −0.0113
NEIVM-two step 0.8345 2.0497 2.5050 −0.0110

NSUR-P 0.8346 2.0488 2.5045 −0.0106
NSUR-S 0.8330 2.0560 2.5160 −0.1046

Bamboo branch

NEIVM-one step 0.7071 1.7586 0.4481 −6.99 × 10−5

NEIVM-two step 0.7071 1.7586 0.4481 −6.20 × 10−5

NSUR-P 0.6986 1.8092 0.4546 −0.0070
NSUR-S 0.1022 5.4693 0.7844 0.1292

Bamboo Leaf

NEIVM-one step 0.6930 2.0745 0.2736 −0.0009
NEIVM-two step 0.6930 2.0745 0.2736 −0.0009

NSUR-P 0.6596 2.3128 0.2881 0.0159
NSUR-S 0.3042 4.6487 0.4120 0.0113

Total aboveground

NEIVM-one step 0.8554 1.4768 2.7642 −0.0122
NEIVM-two step 0.8554 1.4768 2.7642 −0.0123

NSUR-P 0.8553 1.4786 2.7651 −0.0016
NSUR-S 0.8591 1.4444 2.7283 0.0359

Notes: nonlinear, seemingly unrelated regression (NSUR); NSUR-P is the proportional method used to estimate the
parameters by NSUR; NSUR-S is the summation method; nonlinear error-in-variable models (NEIVM); coefficient
of variation (CV); mean residual (e), root mean square error (RMSE); determination coefficient (R2); total relative
error (TRE).

3.4. Model Evaluation

Using leave-one-out cross-validation (LOOCV), we evaluated the biomass system of
one-, two-, and three-predictors selected above. The statistical indicators of each equation
for the biomass system are shown in Table 9. The one-predictor and three-predictor systems
(NSUR proportional method) showed a slight underestimation of aboveground, culm,
and leaf biomass; the other models showed a slight overestimation of aboveground and
other component biomasses. The mean residual for each biomass system was very small.
The fitting accuracy of each index of the biomass system of the three predictors (NEIVM
one-step estimate) was better than that of the other model systems (was larger, and RMSE
and TRE were smaller). For example, the R2 values of the culm, branch, leaf, and AG
(total aboveground) were greater than those of the two predictors, which were 0.79%,
1.31%, 1.89%, and 0.59%, respectively. These results show that the three predictors using
the NEIVM one-step method are more accurate than those using the other equations.
Therefore, we chose the three predictors using the NEIVM one-step method to predict the
aboveground biomass and its components in Moso bamboo in southern China.

Table 9. The evaluation results for the one-, two-, and three-prediction variable model systems
estimated by the NEIVM one-step method and three-prediction variable model systems esti-mated
by the NSUR using a leave-one-out cross-validation method.

Method Component R2 TRE RMSE e

One-predictor
NEIVM one-step Culm 0.7950 2.5490 2.7878 −0.0125

Branch 0.6801 1.9251 0.4683 −0.0003
Leaf 0.6698 2.2315 0.2838 −0.0017
AG 0.8233 1.8101 3.0553 −0.0146

Two-predictor
NEIVM one-step Culm 0.8111 2.3430 2.6766 0.0132

Branch 0.6589 2.0634 0.4835 0.0086
Leaf 0.6565 2.3276 0.2894 1.53 × 10−5

AG 0.8342 1.6975 2.9597 0.0219
Three-predictor

NEIVM one-step Culm 0.8175 2.2685 2.6302 0.0172
Branch 0.6675 2.0042 0.4775 0.0008

Leaf 0.6687 2.2466 0.2843 −0.0012
AG 0.8391 1.6501 2.9159 0.01678
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Table 9. Cont.

Method Component R2 TRE RMSE e

NSUR-P Culm 0.8107 2.3484 2.6794 0.0087
Branch 0.6882 1.8379 0.4623 −0.0331

Leaf 0.6373 2.4741 0.2974 0.0056
AG 0.8383 1.6499 2.9222 −0.0188

Notes: nonlinear, seemingly unrelated regression (NSUR); NSUR-P is the proportional method used to estimate the
parameters by NSUR; NSUR-S is the summation method; nonlinear error-in-variable models (NEIVM); coefficient
of variation (CV); mean residual (e), (RMSE); determination coefficient (R2); total relative error (TRE).

3.5. Model Evaluation

Figure 3 shows the residual distribution of the no-use weight function and the weight
function. Using the weight function 1

fi(y
(1)
i ,xi ,βi)

2 , the original heteroscedasticity in the model

can be eliminated (Figure 3C). When using the weight function 1

fi(y
(1)
i ,xi ,βi)

2 to eliminate

heteroscedasticity, the residual distribution was the same as that of the original function
(Figure 3B). Therefore, the following equation, 1

fi(y
(1)
i ,xi ,βi)

2 , is recommended as a weight

function to eliminate heteroscedasticity. Therefore, it is feasible to use a weight function to
eliminate heteroscedasticity in this study.
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The one-, two-, and three-prediction variable model systems estimated by the NEIVM
one-step method proposed in this study can calculate the aboveground biomass and that of
each component. Under the same site conditions as the study area, the stand density was
2000–3500 and the average DBH was 8–10 cm. The biomass value required by the operator
can be obtained from the collected bamboo forest factors combined with the model form in
this study.

4. Discussion

In this study, four commonly used measurement error model estimation methods
were used to establish the aboveground biomass and compatibility model between the
components of Moso bamboo. These estimation methods are obtained through nonlinear
joint estimation, and the parameters are estimated to ensure compatibility between the
components [16,42]. They not only ensured the additivity between different biomass
components, but also considered the internal correlation between components (i.e., bamboo
crown = bamboo branch + bamboo leaf).

In this study, we used the ratio of aboveground biomass on each component as the
basic model (direct control method), and the model parameters were estimated by NEIVM
in one step. According to the investigation and demonstration, it was found that this
method is more in line with the law of biomass distribution and estimated by the NEIVM
two-step method, which may lead to over-prediction of some bamboo leaves and branches.
In this study, the fitting result of the one-step method was slightly better than that of the
two-step method regardless of the number of prediction variables (Tables 4, 6, and 8). This
is similar to the findings of Zeng and Tang [16,32]. This may be because, according to the
law of error propagation, the greater the number of layers in the equations, the greater
the error accumulation and the greater the difference in the estimated values of biomass
parameters with finer classification [43].

Tables 4, 6, and 8 show that for the one-predictor system, the fitting indexes of each
component estimated by NSUR and NEIVM are similar, but the fitting indexes of branch
and leaf biomass equations of the two-predictor and three-predictor systems are quite
different. This may be related to the fitting ability of NSUR. It may lead to non-convergence
of parameter estimation, mainly because the convergence of the iterative optimization algo-
rithm (i.e., Gauss–Newton) used in its calculation depends on the initial value given [13].
When NEIVM estimates the model system, the convergence problem will not occur [34].

Some studies have shown that age is an important variable in bamboo forests [9].
However, we took this into consideration in this study and discovered that its impact was
not significant. Therefore, age is not considered in this study.

In this study, NEIVM modeled and solved the components jointly, which ensured the
compatibility between the biomass of each component and obtained a more optimized
parameter estimation. In summary, the total amount control simultaneous equations
method (one step) is better than the other methods in terms of fitting accuracy and model
stability. The prediction accuracy of this method is verified using the LOOCV method
(Table 9).

Six variables (DBH, H, HCB, NL, BD, and A) were used as candidate factors to
construct the compatibility model. Through the analysis and evaluation of each factor, it
was discovered that diameter at breast height (DBH) had the greatest impact, followed
by height. Parresol and Zeng also revealed similar results [13,32]. In studies of bamboo
forests, HCB is a key index for evaluating the vitality and quality of bamboo [44,45].
Therefore, we chose DBH; DBH and H; and DBH, H, and HCB as predictors for the one-,
two-, and three-predictor systems, respectively. Therefore, we compared the prediction
results of the one-predictor, two-predictor, and three-predictor systems in each method
(Tables 4, 6, and 8). The prediction accuracy of the three-predictor system corresponding
to each component was the highest, followed by the two-predictor and the one-predictor
system. Theoretically, the greater the number of prediction factors, the higher the model’s
accuracy. However, in our study, we found differences among the system models, but these
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differences were very small. Therefore, the three-predictor system considered in this model
can be used in practical applications.

The TSEM one-step, two-step, and NSUR proportional methods calculate AG biomass
first, and then distribute it to each component; however, the summation method of NSUR
calculates each component first, and then sums it. In forestry practice, the goal is to obtain
the whole plant or aboveground biomass [46,47]. Therefore, it is more practical to choose a
biomass model estimated using the TSEM one-step method.

Owing to the operational needs of this area, there was no bamboo older than 4 degrees
in the bamboo forest. If bamboo older than 4 degrees is included in the calculation, there
may be a certain deviation in the calculation of the biomass. When the site conditions to be
calculated are similar to those of this study (stand density of 2000–3500 and the average
DBH of 8–10 cm), the model can be used directly for calculation.

However, the application of biomass models has limitations in terms of scale or region.
Moso bamboo grown in different regions often exhibits differences in stem shape and
biomass distribution. When the biomass model established on a small scale or in a small
watershed is extrapolated to a larger scale or regions, samples need to be collected for
model verification and parameter adjustment.

5. Conclusions

In this study, based on the measured data of the aboveground biomass of Moso
bamboo in the Yixing state-owned forest farm of Jiangsu Province, a biomass equation was
constructed using NEIVM and NSUR estimation models. NEIVM (one-step and two-step)
and NSUR (proportional and summation methods) were adopted to ensure additivity
between the components. We found that DBH, H, and HCB had significant effects on
aboveground and component biomass. We developed a one-predictor system using D, two-
predictor system using DBH and H, and a three-predictor system using DBH, H, and HCB.
The accuracy of the one-step NEIVM method is better than that of the two-step method,
regardless of the number of prediction variables used. The accuracy of each biomass system
was verified using the leave-one-out cross-validation method. The heteroscedasticity in
the equation is eliminated by the weight function. We recommend using a three-predictor
system estimated by NEIVM to construct a biomass equation for Moso bamboo.

Author Contributions: X.Z. (Xiao Zhou), X.Z. (Xuan Zhang), C.L., X.X. and F.G. collected data; X.Z.
(Xiao Zhou) and Y.Z. analyzed data; X.Z. (Xiao Zhou), Y.Z. and F.G. wrote manuscript and contributed
critically to improve the manuscript and gave a final approval for publication. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by the Basic scientific research funding of International Center
for Bamboo and Rattan (Grant No. 1632021009).

Acknowledgments: We would like to thank the Basic scientific research funding of International
Center for Bamboo and Rattan (Grant No. 1632021009) for the financial support of this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lobovikov, M.; Schoene, D.; Lou, Y. Bamboo in climate change and rural livelihoods. Mitig. Adapt. Strateg. Glob. Chang. 2012, 17,

261–276. [CrossRef]
2. Song, X.; Zhou, G.; Jiang, H.; Yu, S.; Fu, J.; Li, W.; Wang, W.; Ma, Z.; Peng, C. Carbon sequestration by Chinese bamboo forests and

their ecological benefits: Assessment of potential, problems, and future challenges. Environ. Rev. 2011, 19, 418–428. [CrossRef]
3. He, C.Y.; Cui, K.; Zhang, J.G.; Duan, A.G.; Zeng, Y.F. Next-generation sequencing- based mRNA and microRNA expression

profiling analysis revealed pathways involved in the rapid growth of developing culms in Moso bamboo. BMC Plant Biol. 2013,
13, 119. [CrossRef] [PubMed]

4. Li, Z.C.; Fu, M.Y.; Xu, D.Y. Bamboo ecosystem and carbon dioxide Sequestration. J. Bamboo Res. 2003, 22, 1–6. (In Chinese)
5. Whittaker, R.H.; Woodwell, G.M. Measurement of NPP of forests. In Productivity of Forest Ecosystems; Duvigneaud, P., Ed.;

UNESCO: Paris, France, 1971; pp. 159–175.
6. Esser, G. The signi6cance of biospheric carbon pools and >uxes for the atmospheric CO2: A proposal mode structure in progress

in Biometerology. Prog. Biometeorol. 1984, 3, 253–294.

http://doi.org/10.1007/s11027-011-9324-8
http://doi.org/10.1139/a11-015
http://doi.org/10.1186/1471-2229-13-119
http://www.ncbi.nlm.nih.gov/pubmed/23964682


Forests 2022, 13, 774 14 of 15

7. Ohrnberger, D. The Bamboos of the World: Annotated Nomenclature and Literature of the Species and the Higher and Lower Taxa; Elsevier:
Amsterdam, The Netherlands, 1999.

8. Zhou, B.Z.; Fu, M.-Y.; Xie, J.Z.; Yang, X.-S.; Li, Z.-C. Ecological functions of bamboo forest: Research and Application. J. For. Res.
2005, 16, 143–147.

9. Zhou, G.M. Carbon Storage, Fixation and Distribution in Mao Bamboo (Pjyllostachys pubescens) Stands Ecosystem. Ph.D. Thesis,
ZheJiang University, Hangzhou, China, 2006. (In Chinese).

10. Willebrand, E.; Eedin, S.; Verwijst, T. Willow coppice systems in short rotation forestry: Effects of plant spacing, rotation length
and clonal composition on biomass production. Biomass Bioenergy 1993, 4, 323–331. [CrossRef]

11. Verwijst, T.; Telenius, B. Biomass estimation procedures in short rotation forestry. For. Ecol. Manag. 1999, 121, 137–146. [CrossRef]
12. Zellner, A. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J. Am. Stat. Assoc.

1962, 57, 348–368. [CrossRef]
13. Parresol, B.R. Additivity of nonlinear biomass equations. Can. J. For. Res. 2001, 31, 865–878. [CrossRef]
14. Bi, H.; Turner, J.; Lambert, M.J. Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees 2004, 18,

467–479. [CrossRef]
15. Bi, H.; Long, Y.; Turner, J.; Lei, Y.; Snowdon, P.; Li, Y.; Harper, R.; Zerihun, A.; Ximenes, F. Additive prediction of aboveground

biomass for Pinus radiata (D. Don) plantations. Ecol. Manag. 2010, 259, 2301–2314. [CrossRef]
16. Fu, L.; Lei, Y.; Wang, G.; Bi, H.; Tang, S.; Song, X. Comparison of seemingly unrelated regressions with error-in-variable models

for developing a system of nonlinear additive biomass equations. Trees 2016, 30, 839–857. [CrossRef]
17. Yen, T.M. Culm height development, biomass accumulation and carbon storage in an initial growth stage for a fast-growing moso

bamboo (Phyllostachy pubescens). Bot. Stud. 2016, 57, 10. [CrossRef] [PubMed]
18. Nath, A.J.; Das, G.; Das, A.K. Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass

Bioenergy 2009, 33, 1188–1196. [CrossRef]
19. Fu, W.; Jiang, P.; Zhao, K.; Wu, J. The carbon storage in moso bamboo plantation and its spatial variation in Anji County of

southeastern China. J. Soils Sediments 2014, 14, 320–329. [CrossRef]
20. Zhou, G.M.; Liu, E.B.; Shi, Y.J.; Xu, X. Accurate Estimation for Moso Bamboo (Phyllostachys edulis) Biomass in Zhejiang Province

Based on the Lowest Scale Technique. Sci. Silvae Sin. 2011, 47, 1–5.
21. Wi, S.G.; Lee, D.S.; Nguyen, Q.A.; Bae, H.J. Evaluation of biomass quality in short-rotation bamboo (Phyllostachys pubescens) for

bioenergy products. Biotechnol. Biofuels 2017, 10, 127. [CrossRef]
22. Lin, M.Y.; Hsieh, I.F.; Lin, P.H.; Laplace, S.; Ohashi, M.; Chen, T.H.; Kume, T. Moso bamboo (Phyllostachys pubescens) forests as a

significant carbon sink? A case study based on 4-year measurements in central Taiwan. Ecol. Res. 2017, 32, 845–857. [CrossRef]
23. Parresol, B.R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 1999, 45, 573–593.
24. Lei, X.; Zhang, H.; Bi, H. Additive aboveground biomass equations for major species in over-logged forest region in northeast

China. In Proceedings of the IEEE 4th International Symposium on Plant Growth Modelling, Simulation, Visualization and
Applications, Shanghai, China, 31 October–3 November 2011.

25. Fu, L.; Liu, Q.; Sun, H.; Wang, Q.; Li, Z.; Chen, E.; Pang, Y.; Song, X.; Wang, G. Development of a System of Compatible Individual
Tree Diameter and Aboveground Biomass Prediction Models Using Error-In-Variable Regression and Airborne LiDAR Data.
Remote Sens. 2018, 10, 325. [CrossRef]

26. Fuller, W.A. Measurement Error Models; Wiley: New York, NY, USA, 1987.
27. Kangas, A.S. Effect of errors-in-variables on coefficients of a growth model and on prediction of growth. For. Ecol. Manag. 1998,

102, 203–212. [CrossRef]
28. Tang, S.; Zhang, S. Measurement error models and their applications. J. Biomath. 1998, 13, 161–166.
29. Tang, S.; Li, Y.; Wang, Y. Simultaneous equations, errors-in-variable models, and model integration in systems ecology. Ecol.

Model 2001, 142, 285–294. [CrossRef]
30. Tang, S.; Li, Y. Statistical Foundation for Biomathematical Models; Science Press: Beijing, China, 2002. (In Chinese)
31. Carroll, R.; Ruppert, D.; Stefanski, L.A.; Crainiceanu, C.M. Measurement Error in Nonlinear Models: A Modern Perspective, 2nd ed.;

Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2006.
32. Zeng, W.S.; Tang, S.Z. Using measurement error modeling method to establish compatible single-tree biomass equations system.

For. Res. 2010, 23, 797–802, (In Chinese with English abstract).
33. Tang, S.Z.; Li, Y. An algorithm for estimating multivariate non-linear error-in-measure models. J. Biomath. 1996, 11, 23–27.

(In Chinese)
34. Tang, S.Z.; Lang, K.J.; Li, H.K. Statistics and Computation of Biomathematical Models (ForStat Course); Science Press: Beijing, China,

2008. (In Chinese)
35. Bi, H.; Birk, E.; Turner, J.; Lambert, M.; Jurskis, V. Converting stem volume to biomass with additivity, bias corrections and

confidence bands for two Australian tree species. N. Z. J. For. Sci. 2001, 31, 298–319.
36. Ruark, G.A.; Martin, G.L.; Bockheim, J.G. Comparison of constant and variable allometric ratios for estimating populus

tremuloides biomass. For. Sci. 1987, 33, 294–300.
37. Goldstein, H. Multilevel Statistical Models, 3rd ed.; Arnold: London, UK, 2003.
38. Hox, J.J. Multilevel Analysis: Techniques and Applications; Erlbaum: Mahwah, NJ, USA, 2002.
39. Maas, C.J.M.; Hox, J.J. Sufficient sample sizes for multilevel modeling. Methodology 2005, 1, 86–92. [CrossRef]

http://doi.org/10.1016/0961-9534(93)90048-9
http://doi.org/10.1016/S0378-1127(98)00562-3
http://doi.org/10.1080/01621459.1962.10480664
http://doi.org/10.1139/x00-202
http://doi.org/10.1007/s00468-004-0333-z
http://doi.org/10.1016/j.foreco.2010.03.003
http://doi.org/10.1007/s00468-015-1325-x
http://doi.org/10.1186/s40529-016-0126-x
http://www.ncbi.nlm.nih.gov/pubmed/28597419
http://doi.org/10.1016/j.biombioe.2009.05.020
http://doi.org/10.1007/s11368-013-0665-7
http://doi.org/10.1186/s13068-017-0818-9
http://doi.org/10.1007/s11284-017-1497-5
http://doi.org/10.3390/rs10020325
http://doi.org/10.1016/S0378-1127(97)00161-8
http://doi.org/10.1016/S0304-3800(01)00326-X
http://doi.org/10.1027/1614-2241.1.3.86


Forests 2022, 13, 774 15 of 15

40. Yang, X.H. A Study on Per Plant Aboveground Biomass Compatible Models for Phyllostachy Edulis. Master’s thesis, Beijing
Forestry University, Beijing, China, 2016. (In Chinese)

41. Guo, X.Y.; Sun, Y.J.; Liu, J. Compatible single-tree biomass models with measurement error for moso bamboo. Acta Agric. Univ.
Jiangxiensis 2015, 37, 849–858. (In Chinese)

42. Tang, S.Z.; Zhang, H.R.; Xu, H. Study on establish and estimate method of compatible biomass model. Sci. Silvae Sin. 2000, 36,
19–27. (In Chinese)

43. Feng, Z.K.; Liu, Y.X. Precision analysis of forest biomass measurements. J. Beijing For. Univ. 2005, S2, 108–111.
44. Pan, L.; Mei, G.Y.; Wang, Y.F.; Saeed, S.; Chen, L.; Cao, Y.; Sun, Y. Generalized nonlinear mixed-effect model of individual tree

height to crown base for Larix Olgensis Henry in Northeast China. J. Sustain. For. 2020, 39, 827–840. [CrossRef]
45. Zhang, H.X.; Zhuang, S.; Sun, B.; Ji, H.; Li, C.; Zhou, S. Estimation of biomass and carbon storage of moso bamboo (Phyllostachys

pubescens Mazel ex Houz.) in southern China using a diameter-age bivariate distribution model. Forestry 2014, 87, 674–682.
[CrossRef]

46. Dong, Y.F.; Kuang, X.X.; Qin, N.H.; Sang, Y. Effects of initial planting spacing on growth and above-ground biomass of poplous
plantation. J. Northeast For. Univ. 2015, 43, 30–33. (In Chinese)

47. Liu, X.H.; Jiang, C.Q.; Xu, R.; He, X.; Qi, M. Comparison of methods to construct individual tree biomass models: A case study of
Cyclobalanopsis glauca. Sci. Silvae Sin. 2020, 56, 164–173. (In Chinese)

http://doi.org/10.1080/10549811.2020.1734026
http://doi.org/10.1093/forestry/cpu028

	Introduction 
	Materials and Methods 
	Study Areas 
	Data Collection 
	Laboratory Tests 
	Methods 
	Nonlinear Error-in-Variable Models (NEIVM) 
	Nonlinear Seemingly Unrelated Regression (NSUR) 

	Selection of Predictor Variables 
	Heteroscedasticity 
	Model Evaluation 

	Results 
	One-Predictor System of Biomass Equations 
	Two-Predictor System of Biomass Equations 
	Three-Predictor System of Biomass Equations 
	Model Evaluation 
	Model Evaluation 

	Discussion 
	Conclusions 
	References

