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Abstract: Spatial analysis is essential to understand the spreading of the COVID-19 pandemic. Due
to numerous factors of multi-disciplines involved, the current pandemic is yet fully known. Hence,
the current study aimed to expand the knowledge on the pandemic by exploring the roles of forests
and CO; emission in the COVID-19 case-fatality rate (CFR) at the global level. Data were captured
on the forest coverage rate and CO, emission per capita from 237 countries. Meanwhile, extra
demographic and socioeconomic variables were also included to adjust for potential confounding.
Associations between the forest coverage rate and CO, emission per capita and the COVID-19 CFR
were assessed using spatial regression analysis, and the results were further stratified by country
income levels. Although no distinct association between the COVID-19 CFR and forest coverage rate
or CO, emission per capita was found worldwide, we found that a 10% increase in forest coverage
rates was associated with a 2.37 %0 (95%CI: 3.12, 1.62) decrease in COVID-19 CFRs in low-income
countries; and a 10% increase in CO, emission per capita was associated with a 0.94%. (95%ClI: 1.46,
0.42) decrease in COVID-19 CFRs in low-middle-income countries. Since a strong correlation was
observed between the CO, emission per capita and GDP per capita (r = 0.89), we replaced CO,
emission with GDP and obtained similar results. Our findings suggest a higher forest coverage may
be a protective factor in low-income countries, which may be related to their low urbanization levels
and high forest accessibilities. On the other hand, CO, can be a surrogate of GDP, which may be a
critical factor likely to decrease the COVID-19 CFR in lower-middle-income countries.
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1. Introduction

At the end of 2019, a newly emerging virus, later known as SARS-CoV-2 or COVID-19,
was spotted in China, which has unexpectedly started a global pandemic [1,2]. The novel
virus is a sister clade to the previous SARS-CoV [3], less fatal [4] but more contagious [5]. As
of February 2022, nearly 400 million confirmed cases and more than five million deaths were
recorded globally [6], indicating the great impact of the pandemic on global public health.

In the past two years, numerous studies have been conducted on COVID-19, and
those with spatial analysis may play an essential role in understanding the pandemic [7-9]
because spatial spreading is a primary characteristic of all infectious diseases. Spatial
methods have contributed to uncovering the relationships between the COVID-19 case-
fatality rate (CFR) and sociodemographic or environmental factors, such as unemployment
rate [10,11], commuting flows [12], and environmental pollution (e.g., NO, and particulate
matter) [13,14]. Although many factors have been identified, the COVID-19 pandemic is
still full of unknowns because various factors were involved, and their joint influence may
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be complex [15]. Therefore, it is recommended to incorporate more variables of different
kinds and disciplines to understand the COVID-19 phenomenon [16].

Forest is an ecological environment that provides mental and physical restoration
resources during the COVID-19 pandemic [17], which may also help enhance the immune
functions of visitors to fight against the disease [18]. Numerous studies have found negative
associations between greenness and mortality rate [19-21]. Some recent studies have
reported negative associations between green space coverage and COVID-19 CFRs, and
air pollution reduction and immunoregulation are assumed to be potential reasons behind
this [22-24]. However, most relevant studies did not focus on forests, and their data were
only captured from one or several countries or regions. Therefore, the role of forests on the
COVID-19 CFR requires further investigation.

CO; emission is a common ecological variable that is associated with climate change.
During the COVID-19 pandemic, numerous studies were conducted concerning the role
of harmful gas in the pandemic. For example, ozone, nitrogen dioxide, carbon monox-
ide, formaldehyde, and PM 2.5 have been reported to associate with higher COVID-
19 infection or fatality rates [25,26]. In contrast, fewer studies have focused on the re-
lationship between CO, emissions and COVID-19 CFRs, and the mechanisms are un-
clear [27,28]. CO, emission may affect health expenditure and is also a reflection of the
social lockdown/blockade [29,30], therefore worth more attention.

Ecological studies collect and analyze data at the population level, which are con-
venient and inexpensive, and help identify ecological or environmental factors that are
associated with infectious diseases. The aims of ecological studies include monitoring
population health so that public health strategies may be developed, making large-scale
comparisons between countries and regions, studying the relationship between population-
level exposure to risk factors and health outcomes, or looking at the contextual effect of risk
factors on the population [31]. Although other study designs are generally considered more
reliable, particularly in the inference of causation, the population contexts have been shown
to be stronger determinants of disease at the population level than individual-level risk
factors [31]. Therefore, we aimed to examine the associations between COVID-CFRs and
forests and CO, emissions worldwide while controlling socioeconomic factors” potential
confounding using country-level data. Our study may explore ecological factors that may
help monitor, predict, and mitigate the pandemic.

2. Materials and Methods
2.1. Data Sources

The data on the forest coverage rate by country were obtained from the World
Bank [32]. The data providers include the Food Agriculture Organization, electronic
files, and websites. Moreover, the data on the forest area per capita were also obtained
from the Worldometer websites [33]. The data providers include the Food and Agriculture
Organization of the United Nations, the United Nations Population Division, the United
Nations Statistics Division, and the World Bank. The data on the CO, emission by country
were obtained from the Emission Database for Global Atmospheric Research, European
Commission [34]. Following the latest update released in October 2021, CO, emission data
are now available for each country for the time period between 1970 and 2020.

The COVID-19 data included in this study were obtained from the Our World in Data
website [35], a collection of the COVID-19 data maintained by the organization Our World
in Data and updated daily. The dataset includes country-level daily data on confirmed
cases, deaths, testing, and other variables of potential interest. There are 67 variables from
237 countries and territories in the dataset by 6 December 2021.

According to the ISO 3166-1 alpha-2 code for spatial modeling, the datasets were
linked together using the global geospatial vector database. Variables with missing values
in more than 70% of countries were excluded.

In total, 27 variables were included in the final analysis of the presented study. They
are: country, country’s geographic variables/information (shape, location, longitude, and
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latitude of the centroid), forest coverage rate (in percentage of land area), forest area per
capita, CO, emission per capita, total reported COVID-19 cases, total confirmed COVID-19
deaths, population, population density, gross domestic product (GDP) per capita, cardio-
vascular diseases (CVD) death rate, diabetes prevalence, stringency index of government’s
response to the COVID-19 pandemic (a composite measure based on 9 response indicators,
including school closures, workplace closures, and travel bans, rescaled to a value from 0
to 100 with 100 = strictest response) [36], total tests for COVID-19, total vaccinations for
COVID-19, life expectancy, median age of the population, percentage of population aged
65 years or older, percentage of population living in extreme poverty, percentage of female
smokers, percentage of male smokers, hospital beds, percentage of population with basic
handwashing facilities, and the human development index.

The study used data from publicly available worldwide databases, so it was not
required and not possible to involve patients or the public in the design, conduct, reporting,
or dissemination plans of our research. Hence, ethical approval is not applicable.

The study was conducted under the Guidelines for Accurate and Transparent Health
Estimates Reporting (GATHER) statement [37].

2.2. Case-Fatality Rate (CFR)

The CFR of COVID-19 was defined as the number of total deaths due to COVID-19
divided by the number of confirmed COVID-19 cases by 6 December 2020 and multiplied
by 1000. The CFR was selected for our study, as it may reflect disease severity and the
efficiency of treatment and healthcare response, and strain [38]. Furthermore, the CFR is
not constant, which can vary between populations and timeframes, and may depend on the
interplay between the causative agent of the disease, the host, the environment, available
treatments, and the quality of patient care. For instance, it can increase if the healthcare
system collapses due to a sudden increase in cases [39]. The CFR in the current study is a
crude rate without adjusting for age and sex due to no more detailed age/sex data available
worldwide.

2.3. Statistical Analyses

Descriptive statistics (e.g., mean, standard deviation, median, minimum, maximum,
and interquartile range (IQR)) were calculated for the variables.

Linear correlations between the variables were examined with Pearson’s correlation
coefficient [40]. Spatial autocorrelation (or dependence) is the relationship between spa-
tial proximity in observational units and similarity among their values. Positive spatial
autocorrelation refers to situations in which the nearer the observational units mean more
similar values (and vice versa for its negative counterpart) [41]. This feature violates the
assumption of independence among observations to be included in regression analyses.
Spatial autocorrelation among the COVID-19 CFRs of the investigated countries was tested
using a multivariate linear regression model and the Moran’s I test [42]. The autocorrelation
was visualized with the aid of the Matérn correlation coefficient [43].

Matérn correlation models were employed to check the relationship between the
COVID-19 CFR and the ecological and socioeconomic variables. The latitude and longitude
of the centroid of the countries were included as random effects in the Matérn correlation
models [44].

Spearman’s correlation was employed to probe for general patterns of associations
within the core variables (forest, CO, emission, and COVID-19 CFR). Skewed variables were
log-transformed before linear correlation or regression analysis. The multiple imputation
method was employed to handle the missing values in the data (the missing values were
assumed to be missing at random). A total of ten copies of the data were created, and each
of the complete datasets was analyzed independently. Estimates of parameters of interest
were then averaged across the ten copies to create a single estimate according to Rubin’s
rule [45].
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Given the associations might differ by economic level, we also stratified the analyses
by income levels of the countries defined by the World Bank [46].

The associations of the investigated ecological and socioeconomic variables with the
COVID-19 CER were presented as changes in the COVID-19 CFR per 10% increase in the
ecological and socioeconomic variables. The corresponding 95% confidence intervals (CI)
were also provided. An association with a p-value less than 0.05 was considered statistically
significant.

All the analyses were performed in R V.4.1.2 (the R Foundation for Statistical Comput-
ing, Vienna, Austria) using the package spaMM [47], and in Python V.3.7 (Python Software
Foundation) using the packages geopandas and geoplot [48].

3. Results
3.1. Descriptive Characteristics of the Variables
In total, 264,861,480 reported COVID-19 cases and 5,255,849 confirmed deaths related

to COVID-19 between 1 January 2020 and 6 December 2021, from 194 countries were
included in the study. The descriptive statistics of the variables are shown in Table 1.

Table 1. Descriptive statistics of the variables.

Variable N Mean SD Median Min Max IQR
Forest cover (%) 207 3241 23.98 31.23 0.01 97.41 38.74
Forest area (m? per capita) 202 11,055.09 28,442.80 2661.50 4.00 268,615.00 7561.25
CO; emission (tons per capita) 201 4.76 6.52 271 0.02 55.29 543
Total COVID-19 cases 194 1,370,420.43 4,789,589.59 194,817.50 1.00 49,085,361.00 713,475.25
Total COVID-19 deaths 186 28,257.25 89,303.97 2982.50 1.00 788,363.00 14,259.25
COVID-19 CER (%o) 186 21.43 21.90 15.52 1.14 194.91 15.93
Population (million) 222 35.34 139.78 6.32 0.01 1444.22 22.64
GDP per capita (USD) 194 19,110.90 20,439.72 12,265.79 661.24 116,935.60 23,190.07
Population density (per km?) 207 451.33 2089.29 87.18 0.14 20,546.77 176.53
CVD death rate (per 100,000 people) 189 264.92 122.70 244.66 79.37 724.42 164.06
Diabetes prevalence (%) 201 8.48 4.90 7.20 0.99 30.53 5.33
Stringency index 182 55.38 12.65 56.11 10.93 82.95 16.18
Total tests for COVID-19 (per 1000 people) 131 1340.29 2421.37 573.74 8.63 18,758.22 1229.37
Total vaccinations for COVID-19 (per 100 people) 217 96.76 60.73 101.75 0.01 297.99 98.62
Life expectancy (year) 218 73.38 7.49 74.71 53.28 86.75 10.64
Median age of the population(year) 190 30.30 9.12 29.50 15.10 48.20 16.65
Percentage of population aged 65 years or older (%) 188 8.61 6.12 6.22 1.14 27.05 10.42
Percentage of population living in extreme poverty (%) 125 13.88 20.25 2.50 0.10 77.60 20.80
Percentage of female smokers (%) 146 10.82 10.85 6.30 0.10 44.00 17.35
Percentage of male smokers (%) 144 32.90 13.67 32.25 7.70 78.10 19.00
Hospital beds (per 1000 people) 171 3.04 2.45 2.40 0.10 13.80 2.80
ferpgr}tagf of population with basic handwashing 95 50.69 3028 49,54 119 100.00 62.77
acilities (%)
Human development index 189 0.72 0.15 0.74 0.39 0.96 0.23

Regarding the outcome and main factors of interests, we found a strong correlation
between the COVID-19 CFR and CO, emission per capita (spearman p = —0.37, p < 0.001).
However, we did not observe a distinct linear correlation between the COVID-19 CFR
and forest coverage rate (spearman p = 0.01, p = 0.859) or forest area per capita (spearman
p =0.07, p = 0.314) (Figure 1).

In the linear correlation analysis for log-transformed variables (Supplemental Figure
51), high linear correlations were found between the forest coverage rate and forest area
per capita (r = 0.70, p < 0.001); between CO, emission per capita and GDP per capita
(r=10.89, p <0.001), the median age of the population (r = 0.76, p < 0.001), percentage of the
population living in extreme poverty (r = —0.83, p < 0.001), percentage of the population
with basic handwriting facilities (r = 0.80, p > 0.001), and the human development index
(r=10.87, p < 0.001); and between life expectancy and the percentage of the population
aged 65 years or older (r = 0.85, p < 0.001), therefore, forest area per capita, GDP per
capita, median age of the population, percentage of population aged 65 years or older,
percentage of the population living in extreme poverty, percentage of the population with
basic handwriting facilities, and the human development index were excluded in later
regression analysis.
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Figure 1. The relationships between forest coverage rage, CO, emission per capita, and COVID-19
CFR. Note: the solid line indicates significant linear correlation (p < 0.05); the dotted lines indicate
non-significant linear correlation (p > 0.05).

3.2. Worldwide Distributions of Forest, CO, Emission, and COVID-19 CFR

Distributions of forest coverage rate and area per capita, CO, emission per capita, and
COVID-19 CFRs of the countries with data available are shown in Figure 2. The highest
values for the forest coverage rate and area per capita were found in North America,
northern Europe, northern South America, and southern Africa; for CO, emissions per
capita, in North America, Western Europe, the Middle East, and Australia; for the COVID-19
CFR, in southern North America, western South America, northern Africa, and eastern Asia.

(@) (b)
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(35.36,194.91]

Figure 2. Global distribution of (a) forest coverage rate, (b) forest area per capita, (¢) CO, emission
per capita, and (d) COVID-19 CFR. CFR: case-fatality rate. NA: not available.

3.3. Spatial Autocorrelation of the COVID-19 CFR

The residuals of the COVID-19 CFR from the common (non-spatial) multivariate
linear regression model show apparent spatial dependence among the countries/ territories
(Figure 3). The p-value from Moran’s I test for the spatial autocorrelation of the residuals
is 0.021.
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Figure 3. Residuals from the common (non-spatial) multivariate linear regression model.

The estimated spatial autocorrelation coefficient of the COVID-19 CFR between two
locations against their distance is shown in Supplemental Figure S2, with a strength param-
eter v = 10.33 and a decay parameter p = 0.89. Basically, the autocorrelation coefficient is
smaller than 0.5 if the distance between a pair of locations is larger than 6.2° in terms of the
difference between their longitudes or latitudes. The ranges of longitude and latitude are
(—177.1508°, 178.5574°) and (—54.4881°, 78.8286°), respectively. (Supplemental Figure S2).

3.4. Association of Ecological and Socioeconomic Variables with COVID-19 CFR

After controlling for the spatial dependence, the multivariable-adjusted associations
of the investigated ecological variables (i.e., forest coverage rate and CO, emission per
capita) and socioeconomic variables are presented as changes in the COVID-19 CFR per
10% increase in the variables in Table 2.

Worldwide, no statistically significant associations of forest coverage rate or CO,
emission per capita with COVID-19 CFRs were found. However, the stratified results by
economic level of the countries indicate that per 10% increase in forest coverage rate was
associated with a 2.37 %o (95%CI: 1.62-3.12%0) decrease in the COVID-19 CFR in low-income
countries, and per 10% increase in CO, emission per capita was associated with a 0.94 %o
(95%CI: 0.42-1.46%0) decrease in the COVID-19 CFR in lower-middle-income countries
(Figure 4).

Regarding the socioeconomic variables, life expectancy and the CVD death rate were
associated with 0.12%o0 (95%CI: 0.04—-0.20%0) and 1.05%o (95%CI: 0.12—1.98 %0 ) increases in
the COVID-19 CEFR, respectively, and the stringency index was associated with a 0.80 %o
(95%CTI: 0.51-1.09%0 ) decrease in the COVID-19 CFR worldwide (Table 2).

In low-income countries, besides the forest coverage rate, female smokers and COVID-
19 vaccinations were associated with increased (2.14 %o: 95%CI: 1.64-2.65%0) and decreased
(—2.37%0; —3.12-—1.62%0) COVID-19 CFRs, respectively.

In lower-middle-income countries, total population and population density were
associated with decreased (—0.94%o: 95%CI: —1.46——0.42%0) and increased (0.33 %o; 0.08—
0.57%0) COVID-19 CFRs, respectively.

In upper-middle-income countries, only the stringency index was associated with a
decreased (—0.95%o: 95%CI: —1.50-—0.41%0) COVID-19 CFR.

In high-income countries, female smokers and CVD death rates were associated
with increased COVID-19 CFRs, with increments of 0.32%. (95%CI: 0.12—-0.51%0) and
1.01%0 (95%Cl: 0.56—1.49%.), respectively; and the stringency index was associated with a
decreased (—0.36%o (95%CI: —0.49-0.23%.) COVID-19 CFR.
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Table 2. Changes in COVID-19 CER (%o) per 10% increase in the ecological and socioeconomic variables.

Lower-Middle-Income Countries  Upper-Middle-Income Countries

All Countries (N = 186) Low-Income Countries (N = 26) High-Income-Countries (N = 59)

Variables (N =50) (N =51)

CFR Change (95% CI) 14 CFR Change (95% CI) p CFR Change (95% CI) 4 CFR Change (95% CI) 14 CFR Change (95% CI) 4
Forest cover —0.16 (—0.37, 0.06) 0.198 —2.37 (—3.12, —1.62) 0.003 0.09 (—0.18, 0.36) 0.557 0.17 (—0.20, 0.53) 0.426 0.05 (—0.02, 0.13) 0.215
CO, emission per capita —0.24 (—0.61,0.13) 0.215 0.93 (—0.02, 1.87) 0.120 —0.94 (—1.46, —0.42) 0.004 0.13 (—0.77,1.04) 0.646 —0.13 (—0.34, 0.08) 0.274
Population 0.04 (—0.11, 0.18) 0.635 0.46 (—0.32,1.23) 0.173 0.33 (0.08, 0.57) 0.030 0.17 (—0.13, 0.46) 0.308 0.02 (—0.04, 0.08) 0.397
Population density —0.10 (—0.31, 0.11) 0.359 —1.89 (—2.82, —0.95) 0.085 —0.31 (—0.65, 0.02) 0.135 —0.21 (—0.56, 0.14) 0.306 0.03 (—0.05, 0.11) 0.553
Life expectancy 0.12 (0.04, 0.20) 0.009 0.36 (0.18, 0.53) 0.121 0.09 (0, 0.19) 0.068 0.11 (—0.03, 0.24) 0.155 0.02 (—0.03, 0.08) 0.437
Male smoker —0.01 (—0.03, 0.02) 0.522 —0.05 (—0.15, 0.04) 0.189 0(—0.02,0.02) 0.485 0.00 (—0.04, 0.04) 0.650 —0.01 (—0.03, 0.00) 0.118
Female smoker 0.25 (—0.02, 0.52) 0.112 2.14 (1.64, 2.65) 0.002 0.11 (—0.27,0.5) 0.312 0.07 (—0.32, 0.45) 0.578 0.32 (0.12, 0.51) 0.018
CVD death rate 1.05 (0.12, 1.98) 0.034 —0.30 (—3.86, 3.25) 0.228 —0.64 (—1.77,0.49) 0.364 —0.65 (—2.01, 0.71) 0.390 1.03 (0.56, 1.49) <0.001
Diabetes prevalence 0.31 (—0.32,0.93) 0.354 0.33 (—0.89, 1.56) 0.150 —0.12 (—0.63,0.4) 0.571 —0.40 (—1.9,1.09) 0.605 0.19 (—0.17, 0.55) 0.355
Hospital beds —0.17 (—0.64, 0.30) 0.458 2.07 (0.61, 3.54) 0.107 0.1(-0.5,0.7) 0.548 —0.09 (—1.06, 0.87) 0.670 0.17 (—0.11, 0.45) 0.343
Stringency index —0.80 (—1.09, —0.51) <0.001 —0.60 (—1.54, 0.33) 0.231 —0.47 (—0.84, —0.1) 0.087 —0.95 (—1.50, —0.41) 0.003 —0.36 (—0.49, —0.23) <0.001
Tests 0.24 (—0.06, 0.54) 0.151 —0.23 (—0.83, 0.36) 0.101 0.2 (—0.2,0.6) 0.357 —0.58 (—1.40, 0.24) 0.177 0.07 (—0.54, 0.68) 0.484

Vaccinations —0.16 (—0.37, 0.06) 0.198 —2.37(=3.12, —1.62) 0.003 0.09 (—0.18, 0.36) 0.557 0.17 (—0.20, 0.53) 0.426 0.05 (—0.02, 0.13) 0.215
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Figure 4. The stratified analyses on associations between forest coverage rate, CO, emission per
capita, and COVID-19 CFR.

4. Discussion

This study examined the association between COVID-19 CFRs and forest or CO,.
Although no general patterns were observed at the global level, some notable results
were observed in specific countries. Our findings imply the indicative functions of forests
and CO, emission in the global pandemic. We could not provide solid mechanisms for
explaining the observed phenomenon due to our study design. Nevertheless, we have
tried to propose some potential clues or reasons to help understand the findings, which are
presented in the following sections.

4.1. Forest Coverage and COVID-19 CFR

The current study included forest coverage rate and forest area per capita to indicate
forest resources. The global analysis did not reveal a statistically significant association
between the COVID-19 CFR and any of the forest variables. This result is inconsistent
with a previous study where a dose-response association was spotted between green space
and a reduced risk of COVID-19 mortality among counties in the USA from January to
July 2020 [23]. However, another study reported that greenness was not associated with
COVID-19 mortality in all counties in the USA [49]. These differences may come from
different measures for the “natural environment” (leaf area index for the previous study),
statistical methods, and spatiotemporal frameworks employed for analysis. The null effect
we observed indicates that the role of and measures for “exposure to nature” should be
considered cautiously. Currently, global urbanization has gathered most of the population
into cities [50]. However, most forest areas are outside cities, especially in highly urbanized
countries. Since distance strongly affects green space utilization [51,52], urban green spaces
within or around cities may be the most popular and accessible type of natural environment
for urban residents during the pandemic [53]. Thus, the forest variables calculated based
on national forest area may not necessarily indicate the actual utilization or exposure to
natural environments among residents in urbanized countries.

In the analysis stratified by income, we found that both the forest coverage rate and
forest area per capita (Supplemental Table S1) were associated with decreased COVID-
19 CFRs in low-income countries. Previous studies have speculated on some mecha-
nisms to understand the decreased COVID-19 CEFR, such as pollution reduction, phys-
ical activity promotion, and immunoregulation induced by microorganisms in natural
environments [22,23,54]. However, these mechanisms did not consider low-income coun-
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tries, and they cannot explain the discrepancies among countries with different income
levels. As discussed above, the accessibility of forests may be a problem in urbanized
countries. In contrast, those low-income countries are less urbanized due to being highly
reliant on agriculture [55], and more residents are distributed in rural areas, such as living
in small villages and small towns. Therefore, the residents in low-income countries may
live closer to natural environments than residents in urbanized countries. According to
Pichlerova, M., D. Onkal, A. Bartlett, ]J. Vybost'ok, and V. Pichler [17], forest coverage
rate and settlement size are both factors of forest accessibility. A higher forest coverage
and a smaller settlement size both indicate more forest visits. Therefore, for residents
scattered in rural areas, a higher forest coverage rate may imply a greater chance of forest
visits. In addition to physically entering forests, forests around neighborhoods may also
benefit them remotely. For example, a recent study in Italy found that the percentage of
COVID-19 deaths was lower in greener areas when compared to the regions with low forest
coverage [56]. The phenomenon, explained by the author, might partially result from non-
deciduous Mediterranean plants, which emit volatile immunomodulatory and antiviral
compounds. These volatile biogenic compounds are likely to benefit local residents and
reduce COVID-19 CFRs [18]. According to the classification of the World Bank, most of the
low-income countries are in tropical or subtropical Africa, where the climate is mild, and
evergreen forests play a dominant role. Therefore, residents in low-income countries may
have more chances to be affected by forests in their residential neighborhoods.

4.2. CO, Emission and COVID-19 CFR

We did not observe a distinct association between CO, emission per capita and COVID-
19 CFRs worldwide, which is inconsistent with a recent study, where data from 119 countries
or regions indicated a nonlinear relationship between the CFR and CO, emission [27].
Some points may explain the inconsistency, such as the differences in countries or regions
included, dates of data access, and the measures for CO, emission (per capita vs. per
country). Nevertheless, our results may, to a certain extent, challenge the view that CO,
emission is a critical factor likely to increase total coronavirus cases and death rates [27].

Aside from being a common environmental indicator [57], CO, emission may some-
what reflect economic conditions, as economic growth mostly depends on the consumption
of energy resources [58]. For example, many studies have suggested the potential relation-
ship between CO, emissions and GDP [59]. A recent study on COVID-19 has underlined
the method of estimating the changes in CO, emission with the aid of GDP when detailed
energy activity data are unavailable [60]. In the current study, we also observed a strong
positive correlation between the GDP per capita and CO, emission (r = 0.89), implying
that CO, emission may be a surrogate of GDP. For this reason, we conducted a sensitivity
analysis, which includes GDP (per capita) instead of CO; emission in the model. We did not
observe a distinct association between the GDP per capita and COVID-19 CFR in the global
analysis either (Supplemental Table 52), suggesting that GDP might not be a critical factor
associated with the COVID-19 CFR worldwide. This finding appears counter-intuitive, as
GDP is associated with financial resources for health protection [29]. However, we should
realize that pressures on medical and public health services due to COVID-19 varied among
countries. For well-developed countries, such as Japan, healthcare services were affordable,
and the medical system has remained functional throughout [61]. Therefore, other factors
may play dominant roles in well-developed countries, such as age structure [62,63], which
may mask the role of GDP in fighting the COVID-19 pandemic globally.

In the analysis stratified by income level, we found that CO, emission was associated
with a decreased COVID-19 CFR in lower-middle-income countries, and the association
remained statistically significant in the sensitivity analysis when CO, emission was replaced
with GDP per capita (Supplemental Tables S2 and S3). This result is not surprising, given
the reasons mentioned above. Compared to upper-middle and high-income countries,
where medical and infrastructure resources are usually sufficient [64], lower-middle-income
countries are more vulnerable to the pandemic [65], especially developing countries with
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poor economic conditions [66]. Therefore, a better economic condition may be more critical
for lower-middle-income countries to fight against the pandemic.

In addition, the association between GDP and the COVID-19 CFER in low-income
countries was ambiguous when the model was loaded with different forest variables
(Supplemental Tables S2 and S3). We cannot conclude if GDP is an essential factor for
low-income countries. Theoretically, they may face a similar crisis to lower-middle-income
countries because resource shortage has also been reported as a common issue in low-
income countries [64]. Further studies are warranted to check their differences.

4.3. Limitations

There are several notable limitations to the current study. First, to indicate the typical
natural environment worldwide, we used forest coverage rate and forest area per capita in
the analysis. As discussed above, these measures may not necessarily indicate a potential
exposure to nature. There is not a satisfactory measure to indicate the actual exposure
to natural environments at a worldwide level. Even if the results were limited to the
residential areas, common measures such as the normalized difference vegetation index or
enhanced vegetation index may not explore the properties of natural environments, as well
as their qualities, accessibility, and availability [67]. Future studies may refer to the data of
population mobility, such as location reports of smartphone applications, and incorporate
it with green space indicators to quantify actual green space usage.

Second, there is no globally accepted definition of a COVID-19-related death. Thus,
reporting bias cannot be ruled out. Moreover, given the fact that medical standards can
vary with regions, it is not clear if some low-income countries can effectively report COVID-
19-related deaths. Thus, their CFR values may be underestimated.

Third, though we tried to access the latest data worldwide, there are some discrepan-
cies in their timeframes. Due to the impact of COVID-19, the patterns of CO, emissions
may be changed with time and region. Therefore, the identified relationships may need
re-examination in further work.

5. Conclusions

This study aimed to examine the roles of forest and CO, emission on COVID-19
CFRs while controlling known confounders. We conducted a spatial analysis that included
worldwide-level data obtained from public access databases. Although we did not observe
a distinct association between the COVID-19 CFR and forest coverage rate or forest area per
capita worldwide, we found that the forest coverage rate and forest area per capita were
associated with lower COVID-19 CFRs in low-income countries, which is preliminarily
speculated to be related to their lower urbanized levels.

On the other hand, we did not find a distinct association between CO, emissions per
capita and COVID-19 CFRs at the worldwide level either. Nevertheless, we found that CO,
emissions per capita were associated with lower CFRs in lower-middle-income countries.
Notably, we assumed that CO;, emission might be a surrogate of GDP as they showed
a strong correlation. Similar results were obtained when we replaced the CO; emission
per capita with GDP per capita in the regression. These findings suggest that economic
conditions may be a critical factor for lower-middle-income countries to fight against the
current pandemic.

Generally, our findings suggest that forest and CO, emissions are two potential
ecological factors that may help to monitor and predict the global pandemic. Given
the limitation of the public access data, further research is warranted to uncover the
mechanisms behind the associations.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/£13050736/s1, Figure S1: Pairwise scatter plots and Pearson’s
correlation coefficients of the independent variables; Figure S2: Strength and decay of the spatial
autocorrelation between pair of locations: Table S1: Changes in COVID-19 CFR (%) per 10% increase
in the ecological and socioeconomic variables (including forest area per capita instead of forest cover);
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Table S2: Changes in COVID-19 CFR (%.) per 10% increase in the ecological and socioeconomic
variables (including GDP per capita instead of CO, emission per capita); Table S3: Changes in
COVID-19 CER (%o) per 10% increase in the ecological and socioeconomic variables (including GDP
per capita instead of CO, emission per capita; and forest area per capita instead of forest cover).
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