
Citation: Khan, A.M.; Li, Q.; Saqib,

Z.; Khan, N.; Habib, T.; Khalid, N.;

Majeed, M.; Tariq, A. MaxEnt

Modelling and Impact of Climate

Change on Habitat Suitability

Variations of Economically Important

Chilgoza Pine (Pinus gerardiana Wall.)

in South Asia. Forests 2022, 13, 715.

https://doi.org/10.3390/f13050715

Academic Editors: Juan A. Blanco

and Olga Viedma

Received: 6 February 2022

Accepted: 29 April 2022

Published: 2 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

MaxEnt Modelling and Impact of Climate Change on Habitat
Suitability Variations of Economically Important Chilgoza Pine
(Pinus gerardiana Wall.) in South Asia
Arshad Mahmood Khan 1,† , Qingting Li 2,†, Zafeer Saqib 3, Nasrullah Khan 4, Tariq Habib 5 , Nadia Khalid 6,
Muhammad Majeed 7 and Aqil Tariq 8,*

1 Department of Botany, Government Hashmat Ali Islamia Associate College Rawalpindi,
Rawalpindi 46300, Pakistan; arshadbotanist@gmail.com

2 Airborne Remote Sensing Center, Aerospace Information Research Institute, Chinese Academy of Sciences,
Beijing 100094, China; liqt@radi.ac.cn

3 Department of Environmental Science, International Islamic University Islamabad, Islamabad 45710, Pakistan;
zafeer@iiu.edu.pk

4 Department of Botany, University of Malakand Chakdara Dir Lower, Dir Lower 18800, Pakistan;
nasrullah.uom@gmail.com

5 Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan;
tariqhabib76@gmail.com

6 Department of Botany, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi,
Rawalpindi 46300, Pakistan; nadia.khalid347@gmail.com

7 Department of Botany, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan;
majeedmohal@gmail.com

8 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, Wuhan 430079, China

* Correspondence: aqiltariq@whu.edu.cn
† These authors contributed equally to this work.

Abstract: Chilgoza pine is an economically and ecologically important evergreen coniferous tree
species of the dry and rocky temperate zone, and a native of south Asia. This species is rated as
near threatened (NT) by the International Union for Conservation of Nature (IUCN). This study
hypothesized that climatic, soil and topographic variations strongly influence the distribution pattern
and potential habitat suitability prediction of Chilgoza pine. Accordingly, this study was aimed to
document the potential habitat suitability variations of Chilgoza pine under varying environmental
scenarios by using 37 different environmental variables. The maximum entropy (MaxEnt) algorithm
in MaxEnt software was used to forecast the potential habitat suitability under current and future (i.e.,
2050s and 2070s) climate change scenarios (i.e., Shared Socio-economic Pathways (SSPs): 245 and 585).
A total of 238 species occurrence records were collected from Afghanistan, Pakistan and India, and
employed to build the predictive distribution model. The results showed that normalized difference
vegetation index, mean temperature of coldest quarter, isothermality, precipitation of driest month
and volumetric fraction of the coarse soil fragments (>2 mm) were the leading predictors of species
presence prediction. High accuracy values (>0.9) of predicted distribution models were recorded, and
remarkable shrinkage of potentially suitable habitat of Chilgoza pine was followed by Afghanistan,
India and China. The estimated extent of occurrence (EOO) of the species was about 84,938 km2,
and the area of occupancy (AOO) was about 888 km2, with 54 major sub-populations. This study
concluded that, as the total predicted suitable habitat under current climate scenario (138,782 km2) is
reasonably higher than the existing EOO, this might represent a case of continuous range contraction.
Hence, the outcomes of this research can be used to build the future conservation and management
plans accordingly for this economically valuable species in the region.

Keywords: GIS and remote sensing; species distribution modelling; species niche shift; resource
management and conservation
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1. Introduction

Species distribution modelling (SDM) is one of numerous modeling approaches used
by modern ecologists, conservationists and forest managers to infer environmental variables
influencing past, current and/or future species distribution patterns. These methods have
a wide range of applications, especially in the identification of core geographical areas
where a targeted species is more likely to exist. Such studies effectively help in biological
field work to find and study a target taxon in any area based on probability of presence,
making field operations more cost-effective [1]. Similarly, researchers can predict the
invasion patterns of invasive species, carry out effective gap analysis, perform species
risk assessments, assess the impacts of climate change, and detect regions of high habitat
suitability for protecting and appropriately stocking any species [2–6].

Species distribution models (SDMs) require geo-referenced observations of species
occurrence data and a variety of predictors, and by using predictive statistical algorithms
and machine learning methods, desired results can be achieved [7]. These SDM tools are
frequently used to investigate the quality and quantity of biota microhabitats which help
in the detection and delimitation of core geographical areas for species conservation and
management [8]. All of these efforts also effectively help to avoid local extinction by using
species restocking activities within any area when required, whereas threatened species
can be conserved promptly [9]. Spatial predictive mapping of suitable habitats for species
help in valuable species conservation and effective management in its native geographical
areas [10], or suggest potential geographical areas for species restocking [9]. Predictive
species ecological niche models (ENMs) can detect biotas environmental requirements [11];
however, the use of appropriate predictors based on local environmental constraints is very
important, especially for narrow ranged endemic species in any region [12].

In SDMs, various environmental restrictions are assessed in space and time [13] by
implementing different statistical approaches and algorithms. The Maximum Entropy
(MaxEnt) algorithm is the most widely used, and is an important statistical technique for
species predictive distribution modelling. MaxEnt can be effectively used to predict and
delimit the existing core geographical areas for the considered species, whereas future
projection based on predicted environmental changes can help in assessing the impacts
of proposed changes and possible niche shifts (a very important phenomenon to build
the future plans linked to survival of valuable species) [14]. Species presence probabilities
obtained by using SDMs can be defined as “how much choice is involved in the selection of
an event” [15,16]. In SDM, the MaxEnt algorithm has some notable advantages including
a user-friendly interface in MaxEnt software, and robust and intuitive predictions even
with a low number of species occurrence records [13,17]. Accordingly, MaxEnt is preferred
over several other modelling tools as it only requires species occurrences and predictors
data [18,19] to evaluate the relations among different variables including both categorical
and/or continuous data [20–22].

The MaxEnt algorithm can limit the worth of every variable corresponding to its
factual average [20,23]. MaxEnt combines environmental variables with geographical
coordinates of the species and eventually generates an ecological niche map displaying the
probable dispersal and dissemination of species with diverse regions signifying distinct
or analogous suitability levels for any considered species [24,25]. SDMs can forecast no
and or low to high presence probability values at certain pixel cells, and accordingly
represent the probability of finding the modelled species and environmental requirements
in a geographical space [26,27].

Predictive distribution modelling of various valuable tree species have been performed
by the various workers in different parts of the world [28–34], and communicated the im-
pacts of future possible climatic variations on biodiversity. Chilgoza pine (Pinus gerardiana
Wall. ex D.Don), also referred to as “Chilgoza pine and/or Neoza pine”, inhabits South
Asia [35,36], and is famous for its edible pine-seeds or pine-nuts. These are rich in carbohy-
drates, proteins, oils and important minerals and considered as a valuable food [37–49]. The
seeds of the species serve as an important cash crop, especially for the native communities
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residing in the remote rural mountainous areas [50]. Chilgoza pine cones are primarily
collected from the natural wild forests by the native communities to extract pine-nuts,
and rarely from the privately owned land that supports Chilgoza populations. Hence, the
over-exploitation of Chilgoza seeds, deforestation, poverty and corruption, and poor forest
management for sustainable use are the major hurdles towards appropriate regeneration
of the species in the area [43,44,50]. Human influences may be contributing to the decline
in Chilgoza seed production. Therefore, understanding the factors that are required to
mitigate for these reductions and to develop strategies to improve forest management
are critical for forest conservation. For this, SDMs of Chilgoza pine is a prerequisite to
understand the role of climate, topography and soil towards its potential habitat suitability
prediction under current and future climate change scenarios.

Accordingly, this study is aimed at developing a potential habitat suitability model
that depicts current and future distribution patterns of the Chilgoza pine in south Asia. The
findings of this study might help in identification and delimitation of core habitat suitability
areas at local and regional (south Asia) levels. Similarly, the results might be helpful in
developing habitat conservation and restoration plans where required. The outcomes of
this study might further help in afforestation and/or reforestation of this near threatened
pine species at potential sites. All of these will ensure sustainable livelihood earning by the
dependent local communities. The detailed study objectives include;

• Predictive distribution modelling of Pinus gerardiana under current climatic/
environmental conditions.

• Forecasting of potential distribution variations under proposed future climate
change scenarios;

• The identification of the most influential environmental factors, and;
• The identification of the possible impacts of future ditributional variations of the

species on the associated local communities.

2. Materials and Methods
2.1. Chilgoza Pine and Study Area

Pinus gerardiana is a dynamic ecological and economical tree species. The forests of this
tree species favorably inhabit dry temperate areas, and prefer rocky microhabitats [35,36].
The individuals of this pine species are usually found clustered into small groups. The
species is primarily found between 31◦–36◦ north latitude and 69◦–80◦ east longitude
in south Asia [37]. Chilgoza pine, as a native tree species, is primarily found in the
Hindu Kush and western Himalayan mountainous areas. It is commonly reported in the
northern parts including Gilgit-Baltistan and northwestern parts of Khyber Pakhtunkhwa,
Pakistan. Similarly, it is frequently reported in the southeastern parts of Afghanistan and
the northwestern areas of Jammu and Kashmir, Kinnaur and Himachal Pradesh, India,
and rarely from the Xizhang and Tibet areas of China [38–43]. The elevation range of
this tree species varies from 1800–3350 m above sea level (m a.s.l.) [43]. Pakistan is the
leading host of this tree species, which mainly inhabits dry rocky slopes. These slopes are
directed to a variety of solar aspects (i.e., north, south, east and west facing) especially in
the northern and northwestern Baluchistan, Khyber Pakhtunkhwa, Gilgit-Baltistan and
the western Himalayan parts of Pakistan [44–46]. The important microhabitats within the
country include the Kurram valley, Koh-e-Sulaiman mountain range, Zhob, Ziarat, Swat,
Chitral, Dir, Chilas, Daimer, Ghorabad, and north and south Waziristan [42,47–50], where
Chilgoza pine occurs primarily in a mixed coniferous forest and rarely in single species
stands. Natural and pure stands of the species are mainly found in the Koh-e-Sulaiman
mountain range, Pakistan. According to Urooj and Jabeen [50] and Saeed and Thanos [51],
the total geographical area of these natural pure strands of Chilgoza pine forests spread
over approximately 200–260 km2 of geographic area.

Afghanistan and Pakistan are the leading hosts of the Chilgoza pine [52,53], and few
photographs of the species captured during the field surveys are presented (Figure 1).
The tree species is mainly distributed in the dry temperate regions of Pakistan that spur
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towards the west into eastern parts of Afghanistan and towards the east into the western
edge of Indian administered Jammu and Kashmir. The collected occurrence data of the tree
species vary from 69–80 East longitude, and 31–36 North latitude, covering parts of Hindu
Kush-western Himalaya-Karakoram mountainous ranges in South Asia. A geographic area
with extent (viz. 67, 82, 29, 38 (xmin, xmax, ymin, ymax)) by using ±2 degree was selected
accordingly to perform SDM.
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populations in Koh-e-Sulaiman and Koh-e-Hindu Kush mountain ranges in Pakistan.

2.2. Species Occurrence Data

The species occurrence records were collected two ways; (1) field surveys were
conducted from 2018–2020 in the study area (i.e., the Hindu Kush-western Himalaya-
Karakoram mountain ranges), and (2) Global Biodiversity Information Facility (GBIF) data.
A total of 332 presence locations of Chilgoza pine were recorded during the field surveys,
whereas 47 occurrence records were downloaded from the GBIF database. Four GBIF
records were omitted because they do not represent individual trees occurring within
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the native area. It was followed by the removal of 15 duplicate records, and then spatial
filtering of the remaining 360 presence records was performed by using buffer analysis
in ArcGIS ver. 10.3. The resolution of the predictor data is about 1 km2 employed in
this study, and accordingly, a 1 km2 radius was selected to create a circular buffer zone
around each presence point. Spatial thinning of presence points was done by removing
all of the overlapping buffer zones. Therefore, the minimum ground distance between
any two closely lying presence points was approximately 2 km2. This filtering process
finally resulted in 238 presence points which belong to Afghanistan, India, Pakistan and
China. These 238 filtered presence points were finally used in predictive modelling of
Chilgoza pine.

2.3. Predictors Data

Environmental data was selected based on plant growth and survival, and include
climatic, topographic, and edaphic predictor variables. A total of 37 independent predictor
variables were employed in this study. These include 19 bioclimatic variables (Source:
https://worldclim.org/data/worldclim21.html; accessed on 18 October 2020) belonging
to near current climate (1970–2000), 10 edaphic variables (Source: https://soilgrids.org/;
accessed on 29 March 2022), seven topographic variables (Source: Earth Engine Data
Catalog), and one remote sensing variable (i.e., Normalized Difference Vegetation Index
(NDVI); mean value of the growing season (April–August) from 2001 to 2020). The soil
data of different soil depth is available on SoilGrids. The raster data of each of 10 soil
variables for three different soil depth (viz. 0–5 cm; 5–15 cm; 15–30 cm) were targeted,
and mean (0–30 cm) raster were created. The details of these environmental variables is
provided in Table 1. Bioclimatic and elevation variables were directly obtained from the
WorldClim, whereas remainder variables were accessed and clipped to study area extent by
using the Google Earth Engine. The solar aspect variable was cos-transformed (Northness;
0–1). Coarse predictor layers were resampled to bioclimatic variables (~1 km2). For future
projection under predicted climate change scenarios, a total of four predicted future (2050s
= 2041–2060 and 2070s = 2061–2080) climate change scenarios (SSPs 245 and 585) of Coupled
Model Intercomparison Project, Phase 6 (CMIP6) and Global Climate Model of BCC-CSM2-
MR (resolution: 2.5 arc min) were downloaded and resampled accordingly [54,55].

Table 1. The details of environmental predictors employed in MaxEnt SDM of P. gerardiana in the
study area.

Code Name of Variable & Description Database Resolution Unit

Bio1 Annual Mean Temperature WorldClim 30 arc s ◦C

Bio2 Mean Diurnal Range WorldClim 30 arc s ◦C

Bio3 Isothermality (Bio2/Bio7) (×100) WorldClim 30 arc s Percent

Bio4 Temperature Seasonality (sd ×100) WorldClim 30 arc s ◦C

Bio5 Max. Temperature of Warmest Month WorldClim 30 arc s ◦C

Bio6 Min. Temperature of Coldest Month WorldClim 30 arc s ◦C

Bio7 Temperature Annual Range WorldClim 30 arc s ◦C

Bio8 Mean Temperature of Wettest Quarter WorldClim 30 arc s ◦C

Bio9 Mean Temperature of Driest Quarter WorldClim 30 arc s ◦C

Bio10 Mean Temperature of Warmest Quarter WorldClim 30 arc s ◦C

Bio11 Mean Temperature of Coldest Quarter WorldClim 30 arc s ◦C

Bio12 Annual Precipitation WorldClim 30 arc s Mm

Bio13 Precipitation of Wettest Month WorldClim 30 arc s Mm

Bio14 Precipitation of Driest Month WorldClim 30 arc s Mm

https://worldclim.org/data/worldclim21.html
https://soilgrids.org/
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Table 1. Cont.

Code Name of Variable & Description Database Resolution Unit

Bio15 Precipitation Seasonality (CV) WorldClim 30 arc s Percent

Bio16 Precipitation of Wettest Quarter WorldClim 30 arc s Mm

Bio17 Precipitation of Driest Quarter WorldClim 30 arc s Mm

Bio18 Precipitation of Warmest Quarter WorldClim 30 arc s Mm

Bio19 Precipitation of Coldest Quarter WorldClim 30 arc s Mm

Bdod Bulk Density SoilGrids 30 arc s cg/cm3

Cec Cations Exchange Capacity (pH: 7) SoilGrids 30 arc s mmol(c)/kg

Cfvo Volumetric fraction of coarse fragments (>2 mm) SoilGrids 30 arc s cm3/dm3

Clay Clay Contents SoilGrids 30 arc s g/kg

Nitrogen Total Nitrogen SoilGrids 30 arc s cg/kg

Ocd Organic Carbon Density SoilGrids 30 arc s hg/dm3

Phh2o Soil pH × 10 SoilGrids 30 arc s Nil

Sand Sand Contents SoilGrids 30 arc s g/kg

Silt Silt Contents SoilGrids 30 arc s g/kg

Soc Soil Organic Carbon SoilGrids 30 arc s dg/kg

NDVI NDVI (MODIS/006/MOD13A2) NASA LP DAAC 30 arc s Nil

Elevation Elevation SRTM DEM
Global 30 arc s meter

Alf Global ALOS Landforms Global Science
Partners 30 arc s Nil

Chin Continuous Heat-Insolation Load Index (Global
ALOS CHILI)

Global Science
Partners 30 arc s Nil

Hillshade Hillshade SRTM DEM
Global 30 arc s Degree

Northness Cos-Transformed-Aspect (0–1) Derived 30 arc s Nil

Slope Slope SRTM DEM
Global 30 arc s Degree

Tdiv Topographic Diversity Cons. Science
Partners 30 arc s Nil

2.4. Variables Selection

To perform a SDM of Chilgoza pine, the maximum entropy algorithm was used with
the open software package MaxEnt ver. 3.4.4 (American Museum of Natural History, New
York, NY, USA; Available at: https://biodiversityinformatics.amnh.org/open_source/
maxent/; (accessed on 22 March 2022)). The detailed flow chart of methodology used
in this study is presented in Figure 2. In the first step of SDM, a full model with all
variables and default MaxEnt settings was run to screen most influential variables. A
threshold of >4% variable importance was used. This process excluded 27 variables. The
geographic coordinates of the tree species were then used to extract the values of the
remaining 10 predictor variables for further pairwise Pearson’s correlation analysis by
using “reshape2” and “ggplot2” packages in R-statistical software. A threshold value of
Pearson’s correlation coefficient (r = ±0.8) was used to select the final variables. If any two
variables were found correlated above the threshold, the one having the least contribution
in the model was omitted. This sequential processing finally resulted in the selection of
five predictor variables (Figure 3) to be used in SDMs. This criteria was chosen to avoid
the inclusion of redundant information that might lead to model over-fitting [56,57]. The

https://biodiversityinformatics.amnh.org/open_source/maxent/
https://biodiversityinformatics.amnh.org/open_source/maxent/
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final five variables included in Chilgoza pine SDMs were comprised of Bio3 (Isothermality),
Bio11 (mean temperature of coldest quarter), Bio14 (precipitation of driest month), CFVO
(Volumetric fraction of coarse soil fragments), and NDVI.
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of Pinus gerardiana.

2.5. Model Optimization, Calibration, Validation and Prediction Reclassification

The selection of the optimal MaxEnt model was made by using the 10th percentile
presence probability of the tree species, and the 10-fold cross-validation method to generate
binary maps. For this, a total of 48 different models were evaluated by using multiple com-
binations of six feature classes (i.e., L, LQ, H, LQH, LQHP and LQHPT where L = Linear,
Q = Quadratic, H = Hinge, P = Product, T = Threshold) and eight regularization multiplier
(RM) values (i.e., 0.5–4, 0.5) by using “dismo” “SDMtune” and “raster” packages in R statis-
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tical software. Additionally, the “ENMeval” package was used to develop the bias file to
be used in all MaxEnt models. The finalized predictor layers (five variables) were stacked
and used to rasterize species occurrence data to estimate two-dimensional kernel density.
The inclusion of this bias file in the MaxEnt model effectively manipulated the background
by using environmental data, and introducing the same spatial bias like that which exists
in the presence data [58,59]. In MaxEnt settings, the other run options include: comple-
mentary log-log (clog-log) output format, 15,000 background points, 10 replicate runs, and
500 iterations (with randomly varying model training and testing points). Response curves
of the predictor variables were developed, and Jackknife importance was tested in the final
optimal model [21].

Evaluation of predictive models by using different accuracy measures is a prime
topic in ENM/SDM. Multiple pros and cons of different widely used accuracy measures
including area under curve (AUC) of the receiver-operator characteristic (ROC) curve
values, Kappa, and True Skill Statistics (TSS) are communicated by the Gao et al. and
Allouche et al. [59,60], hence, alternative measures like use of partial area under ROC curve
(p-ROC-AUC) to estimate AUC ratios are conveyed [59–61]. Li et al. [61] suggested using
more than one accuracy measure to seek the reliability of SDMs predictions. Accordingly,
all of the considered SDMs accuracies were evaluated by using AUC-ROC values, p-AUC-
ROC, AUC ratios, Kappa statistics and TSS [59,60] in this study. p-AUC-ROC curve values
were estimated by using 95% confidence intervals. Large (>0.9; more close to 1) accuracy
values indicate excellent predictive performance of the models [62,63], whereas a value >0.8
is regarded as good [64–66]. Similarly, an accuracy value close to 2 (or >1.8) for AUC ratios
is considered as excellent model fit [59]. Following these communications, five different
accuracy measures including AUC, pROC, AUC ratios, Kappa statistics and TSS were
calculated in this study by using “SDMTune”, “pROC”, and “spm” packages in R statistical
software.

The averaged prediction maps of the final uncorrelated models for five considered
climate scenarios were further analyzed. These raster files depict presence probability (as
environmental values are translated into the ecological niche in the form of geographic
space) of the species with continuous values ranging from 0–1. This presence probability
was classified into five equal-sized categorical classes. Many SDMs studies used a predic-
tion probability value of 0–0.2 threshold to recognize unsuitable area for the considered
species, and these authors also believe that the use of equal-sized (0.2) five probability
classes are more intuitive and meaningful, as conveyed by [61], especially while comparing
pairwise inter-conversions of different habitat suitability classes among varying climate
scenarios by using maps. Such classification also helps in the extraction of more fine details
of the species predictions in a geographical context. Accordingly, this study developed
five equal-sized classes, and these include; HSC-5 = very high habitat suitability (p > 0.8);
HSC-4 = high (0.6 > p ≤ 0.8); HSC-3 = moderate (0.4 > p ≤ 0.6); HSC-2 = least suitability
(0.2 > p ≤ 0.4); and HSC-1 = no suitability (p < 0.2).

The area under each of the classified categories was then calculated using map algebra
through a two-step procedure [67–70] in ArcGIS ver. 10.3., whereby the reference area set at
the equator was equal to 0.694 km2 (predictor variables pixel resolution: 0.833 × 0.833 km)
and the areas of the pixels at other latitudes to be equal to the square root of their cosine.
The rate of change in potential habitat suitability prediction is calculated as conveyed
by [30]. The mapping is performed by using ArcGIS 10.3. Presence points were used to
calculate the area of occupancy (AOO) and extent of occurrence (EOO) polygon of the tree
species. The alpha hull method was employed to create EOO polygon by using “ConR”
package in R statistical software. The statistically significant difference among the group
(five considered models: the current and four future climate change scenarios) means
of predicted probabilities at the presence locations was performed by using univariate
analysis of variance (ANOVA) with a post-hoc Tukey’s test to seek statistical differences in
potential habitat suitability predictions of Chilgoza pine.
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3. Results
3.1. Model Performance and Variables Importance

The maximum entropy modelling (MaxEnt) algorithm in MaxEnt software is used
to forecast the probable niche range and variations and the distribution pattern of the
Pinus gerardiana under current and predicted future (i.e., 2050s and 2070s) climate change
scenarios (i.e., SSPs 245 and 585). The results of preliminary MaxEnt models evaluation
depicted that the selection of LQHPT feature classes along with an RM value of 2 produced
the optimal performing model. The same MaxEnt settings were used in the subsequent
five SDMs to assess the current and four predicted future climate scenarios.

The averaged test omission rate and predicted area of P. gerardiana indicated that
the model performed significantly better than the random when tested for omission. The
accuracy values of AUC-ROC for the test data represent “fit of the model”, and present the
prediction reliability of the model. This study obtained the AUC-ROC values of 0.957 and
0.948 for both the training and test data of the current climate model, respectively. However,
as some inherent flaws are linked with AUC-ROC, some other measures were calculated
whose pros and cons are also communicated from time to time. This study recorded the
model training values of 1.68, 0.939, 0.951 and 0.84 for AUC ratios, TSS, Kappa statistics,
and p-AUC-ROC, respectively, and suggested a good predictive performance of the SDMs
under current the climate scenario. All of the five types of accuracy values of the four
future predictions depicted good prediction reliability as well (Table 2).

Table 2. Different accuracy measures and their averaged values over 10 replicate runs for considered
predictive maximum entropy models of P. gerardiana in the study area.

Climatic Scenario AUC AUC Ratios TSS Kappa p-AUC-ROC

Current climate 0.957 1.68 0.939 0.951 0.84

SSPs–245 (2050s) 0.951 1.64 0.926 0.933 0.82

SSPs–585 (2050s) 0.953 1.66 0.933 0.945 0.83

SSPs–245 (2070s) 0.954 1.66 0.932 0.947 0.83

SSPs–585 (2070s) 0.956 1.64 0.936 0.952 0.82

The results of percent contribution and permutational importance of predictor vari-
ables (leading five most influential) based on Jackknife testing are presented in Table 3 and
Figure 4, respectively. Based on percent contribution, all five variables in order include:
NDVI (40.2%); Bio11 (mean temperature of coldest quarter: 37.5%); Bio3 (Isothermality:
11.7%); Bio14 (precipitation of driest month: 6.3%); and CFVO (Volumetric fraction of the
coarse soil fragments: 4.3%) (Table 3). These results depicted that NDVI, temperature,
precipitation, and soil texture were the principal influential variables in predicting potential
habitat suitability of Chilgoza pine (Table 3).

Table 3. Contribution (%) of the leading five environmental variables in species distribution modelling
of Pinus gerardiana in the study area.

Variable Code Percent Contribution

Normalized Difference Vegetation Index NDVI 40.2

Mean temperature of coldest quarter Bio11 37.5

Isothermality (Bio2/Bio7) (×100) Bio3 11.7

Precipitation of driest month Bio14 6.3

Volumetric fraction of coarse fragments CFVO 4.3
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variables and their importance for habitat suitability prediction of Pinus gerardiana. (For codes detail,
please see Table 3).

The Jackknife testing represents the permutation-based importance of explanatory
variables, and revealed the variables' importance in order as: Bio11 (mean temperature of
coldest quarter), NDVI, Bio3 (Isothermality), CFVO (Volumetric fraction of the coarse soil
fragments), and Bio14 (precipitation of driest month) (Figure 4). These results showed that
each variable contributed towards the model gain. Hence, all of the included explanatory
variables contributed to the enhancement of the predictive probability with better reliability.
These results also depicted that the environmental variable with the highest gain when
used in isolation was the mean temperature of the coldest quarter (Bio11), which means
that it had the most useful information by itself. In other words, it decreases the gain the
most when it is omitted, which means that it has the most information that isn’t present in
the other variables (Figure 4).

3.2. Variables Response Curves

The MaxEnt model response curves of the leading five variables are presented in
Figure 5. The marginal response curves illustrate how the variations in the variable in-
fluence the occurrence probability of a species while setting all the remainder considered
variables to their mean values across all occurrence localities of the species under study.
Hence, in case of strong variable multicollinearity, marginal response curves might produce
highly uncertain results. To avoid this, additional set of MaxEnt model response curves can
also be generated. The optimal environmental conditions that better represent the occur-
rence probability of P. gerardiana concerning five leading variables (MaxEnt model response
curves) in the study area are presented in Figure 5. The optimal detected environment
included Bio3 or Isothermality (30–38%); Bio11 or mean temperature of coldest quarter
(−5–5 ◦C); Bio14 or precipitation of driest month (10–20 mm), CFVO or volumetric fraction
of the coarse soil fragments (200–300 cm3/dm3), and NDVI in the range of 0.3–0.5 during
the growing season (April-August) in the study area.
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3.3. Present Distribution and Extent of Occurrence

The MaxEnt species occurrence probability output raster for Chilgoza pine were
classified, mapped, and evaluated for land area calculation for each considered HSC and
time period. The total potential suitable habitat (p > 0.2) for the considered species under
the current climate is estimated at about 138,782 km2, out of which the prediction about
the very high suitability (p > 0.8) of the land area was comprised of about 26,387 km2.
Accordingly, the high suitability (0.6 < p ≤ 0.8) land area was 26,154 km2, moderate
suitability (0.4 < p ≤ 0.6) as 36,037 km2, and least suitability (0.2 < p ≤ 0.4) as 50,204 km2 in
south Asia. The country-wise proportion of prediction about the very high suitability land
area results showed that Pakistan is the leading (11,344 km2) host, followed by Afghanistan
(8472 km2), and India (6564 km2) (Figure 6 and Table 4).

Accordingly, prediction about the high suitability (0.6 < p ≤ 0.8) land area depicted
about 26,154 km2, and was divided among countries in order, as follows: Afghanistan
(9125 km2), Pakistan (8696 km2), India (8060 km2), and China (273 km2) (Figure 6, Table 4).
The most important very high suitability potential locations include northern areas of Giligit
Baltistan and Upper Dir, Chitral, Swat, Waziristan, Sheringal of Khyber Pakhtunkhwa
and Zhob, Baluchistan (Takht e Sulaiman range), Darazinda, and the Sheerani areas in
Pakistan. Similarly, northeastern areas like nearby areas of the Panjshir valley, Paktia,
Paktika, Parum and Mandool valleys and some areas of Khost in Afghanistan are important
potential microhabitats. As far as India is concerned, northwestern parts comprising
Padder, Kishtwar in Jammu and Kashmir, Kalpa, Ropa, Pooh, Akpa, Ribba, Moorang,
Telangi, Pangi, Boktu and Purbani in Kinnaur, and Dharwas and Luj in Chamba, Himachal
Pradesh are important potential microhabitats (Figure 6).

This study detected an extent of occurrence (EOO) of the considered tree species equal
to 84,938 km2 based on the method delineated by IUCN. The area of occupancy (AOO) was
estimated as 888 km2 with 54 major sub-populations. These results depicted that predicted
suitable geographic habitat under the current climate scenario (138,782 km2), which is
reasonably higher than the existing EOO of the species.
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Figure 6. Predicted habitat suitability classification of Pinus gerardiana under current (1970–2000)
climate scenario (Colour coding: No colour = No suitability; Turquoise = Least suitability; Green =
Moderate suitability; Yellow = High suitability; Red = Very high suitability) Extent of occurrence
(light purple) polygon is also added.

Table 4. Habitat suitability classification (HSC) by using predicted probability of species occurrence
values (five equal-sized intervals) and potential spatial distribution (area in km2) of Pinus gerardiana
under current and future climate change scenarios (HSC-1 = No suitability; HSC-2 = Least suitability;
HSC-3 = Moderate suitability; HSC-4 = High suitability; HSC-5 = Very high suitability).

Climate
Scenario Country HSC-1

(0–0.2)
HSC-2
(0.2–0.4)

HSC-3
(0.4–0.6)

HSC-4
(0.6–0.8)

HSC-5
(0.8–1)

Total
Suitable Area

Current climate Afghanistan 605,974 16,441 12,848 9125 8472 46,886

SSPs 245 (2050s) Afghanistan 607,043 17,812 11,665 9172 7167 45,817

Rate of change (%) 0 8 −10 1 −17 −2

SSPs 585 (2050s) Afghanistan 605,706 17,961 11,363 9778 8052 47,154

Rate of change (%) 0 9 −12 7 −5 1

SSPs 245 (2070s) Afghanistan 613,207 16,555 8844 7972 6282 39,653

Rate of change (%) 1 1 −37 −14 −30 −17

SSPs 585 (2070s) Afghanistan 616,072 13,836 7824 8699 6428 36,788
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Table 4. Cont.

Climate
Scenario Country HSC-1

(0–0.2)
HSC-2
(0.2–0.4)

HSC-3
(0.4–0.6)

HSC-4
(0.6–0.8)

HSC-5
(0.8–1)

Total
Suitable Area

Rate of change (%) 2 −17 −50 −5 −28 −24

Current climate China 9,697,953 7266 1294 273 7 8840

SSPs 245 (2050s) China 9,689,273 7313 6296 3348 564 17,521

Rate of change (%) 0 1 158 251 437 68

SSPs 585 (2050s) China 9,687,491 7404 7024 4559 315 19,302

Rate of change (%) 0 2 169 282 379 78

SSPs 245 (2070s) China 9,691,178 7800 6465 1246 104 15,615

Rate of change (%) 0 7 161 152 268 57

SSPs 585 (2070s) China 9,687,158 10,862 7420 1324 29 19,635

Rate of change (%) 0 40 175 158 141 80

Current climate India 3,249,627 9114 9664 8060 6564 33,402

SSPs 245 (2050s) India 3,255,598 9870 7051 4341 6170 27,432

Rate of change (%) 0 8 −32 −62 −6 −20

SSPs 585 (2050s) India 3,252,309 10,250 8975 4979 6516 30,720

Rate of change (%) 0 12 −7 −48 −1 −8

SSPs 245 (2070s) India 3,266,559 8455 4105 2589 1322 16,471

Rate of change (%) 1 −8 −86 −114 −160 −71

SSPs 585 (2070s) India 3,263,276 9709 5384 3400 1260 19,754

Rate of change (%) 0 6 −59 −86 −165 −53

Current climate Pakistan 832,259 17,384 12,230 8696 11,344 49,654

SSPs 245 (2050s) Pakistan 852,249 11,259 8552 5733 4120 29,664

Rate of change (%) 2 −43 −36 −42 −101 −52

SSPs 585 (2050s) Pakistan 855,573 8569 7307 6466 3998 26,340

Rate of change (%) 3 −71 −52 −30 −104 −63

SSPs 245 (2070s) Pakistan 859,874 8953 5360 4056 3669 22,039

Rate of change (%) 3 −66 −82 −76 −113 −81

SSPs 585 (2070s) Pakistan 864,221 6171 4510 4456 2556 17,692

Rate of change (%) 4 −104 −100 −67 −149 −103

Current climate Total 14,385,814 50,204 36,037 26,154 26,387 138,782

SSPs 245 (2050s) Total 14,404,163 46,255 33,564 22,594 18,021 120,433

Rate of change (%) 0 −8 −7 −15 −38 −14

SSPs 585 (2050s) Total 14,401,080 44,184 34,670 25,782 18,881 123,516

Rate of change (%) 0 −13 −4 −1 −33 −12

SSPs 245 (2070s) Total 14,430,817 41,764 24,774 15,864 11,377 93,779

Rate of change (%) 0 −18 −37 −50 −84 −39

SSPs 585 (2070s) Total 14,430,727 40,579 25,138 17,879 10,274 93,869

Rate of change (%) 0 −21 −36 −38 −94 −39

3.4. Future Predicted Distributions

This study used a total of four projected climate change conditions (viz. SSPs: 245 and
585) for the 2050s and 2070s to predict the potential distribution variation of P. gerardiana.
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This study found that total potential habitat suitability (p > 0.2) in south Asia might shrink
to 120,433 km2 (−14% = rate of change compared to current distribution range) under SSPs
245 of 2050s; 123,516 km2 (−12%) under SSPs 585 of 2050s; 93,779 km2 (−39%) under SSPs
245 of 2070s; and 93,869 km2 (−39%) under SSPs 585 of 2070s (Figure 7 and Table 4).
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In the 2050s, based on SSPs 245, a very high suitability habitat is predicted to decrease
from 26,387 to 18,021 km2 (−38%) compared to the current climate (Figure 7 and Table 4).
Accordingly, within HSC-5, the potential suitable land area is predicted to decrease to
18,881 km2 (−33%), 11,377 km2 (−84%) and 10,274 km2 (−94%) under SSPs 585 of 2050s,
SSPs 245 of 2070s, and SSPs 585 of 2070s, respectively. Similarly, country-wise, HSC-5
prediction results showed that the potential suitable land area is predicted to contract (from
11,344 to 4120 km2) in Pakistan; Afghanistan (from 8472 to 7167 km2); and India (from 6564
to 6170 km2) under SSPs 245 of 2050s. However, an opposite gaining trend would likely
appear in China where the predicted suitable area under HSC-5 might expand from the
existing 7 to 564 km2 under SSPs 245 by the 2050s. Similar results for HSC-5 were detected
for each country under the remaining three climate change scenarios as well. All of the
remainder potential habitat suitability classes (HSC2-4) are predicted to show a remarkable
shrinkage under all the considered future climate change scenarios overall but not in China.
Hence, the results suggested that all of the considered habitat suitability classes, and overall
potential suitable area for Chilgoza pine is predicted to decrease remarkably in the study
area under all considered climate change scenarios, and the same impact (habitat loss)



Forests 2022, 13, 715 15 of 23

is further predicted to increase in the case of SSPs 245 and 585 of the 2070s than in the
corresponding scenarios of the 2050s. Based on four considered future climate change
scenarios, Pakistan, Afghanistan and India are predicted to face the maximum habitat loss
(Table 4 and Figure 7). All of the predicted pairwise inter-conversions of habitat suitability
classes for each of the four considered future climate change scenarios are mapped and
presented in Figure 8.
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Figure 8. Maps showing pairwise inter-conversions of considered habitat suitability classes (HSC) of
Chilgoza pine under four different climate change scenarios (HSC-1 = No suitability; HSC-2 = Least
suitability; HSC-3 = Moderate suitability; HSC-4 = High suitability; HSC-5 = Very high suitability);
(A) = SSPs 245; (B) = SSPs 585 of 2050s and (C) = SSPs 245; (D) = SSPs 585 of 2070s.

3.5. Significance Testing of MaxEnt Predictions

The predicted probability values of the study locations (i.e., 238 occurrences of
Chilgoza pine) for all the five models were extracted, and included 1190 observations
(i.e., species occurrences × models = 238 × 5), and were distributed in five categorical
groups (or considered climate scenarios) to perform ANOVA. The results showed that
there was a statistically significant mean difference (F = 22.07; p < 0.001) among the five
considered climate scenarios. The post-hoc results depicted that probability of occurrence
of the considered species at study locations might significantly decrease under SSPs 245 and
585 of future climate (2050s and 2070s) (Figure 9). Therefore, potential geographic habitat
suitability of the considered species is predicted to decrease significantly under both the
2050s and 2070s climate change scenarios at the present species occurrence sites. This loss
of habitat suitability might further led to shrinkage of the distribution range. These results
suggested that local communities depending on Chilgoza pine to earn their livelihood
might face serious socio-economic issues in future due to predicted climate change.
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Figure 9. Tukey’s post-hoc test results depicting the significant difference in the predicted probabil-
ities of occurrences of Pinus gerardiana under considered climate change scenarios at the observed
species locations.

4. Discussion

Chilgoza pine is a very important tree species, both economically as well as ecologically.
This species has a highly fragmented distribution within an enormous geographic range
within south Asia [43,71,72]. The considered species is found in dry temperate rocky forests
in the Hindu Kush-western Himalaya-Karakoram mountain ranges in south Asia, and faces
severe anthropogenic and climate change pressure in term of over-exploitation of its cones
from the natural habitat/range to extract edible Chilgoza nuts [43,46,73], and increasing
temperature and abnormal precipitation patterns in the study area. Additionally, it provides
a wider range of socio-ecological services such as delicious and nutritive seeds that are
eaten as raw snacks and as a constituent of multiple traditional foods, fuelwood, torchwood,
timber and bird food [37,38,43,44,50,51]. The leading concern affecting Chilgoza pine in its
spatial range is over-harvesting (sometimes even 100% in some parts of Pakistan) of its cones
leading poor or even no regeneration [74], causing rapid decline of species populations
and its associated socio-economic and ecological role, and it has been declared as "near
threatened" based on the red list criterion of the IUCN [34,75]. Climate change is another
important factor, and more drastic results might appear for Chilgoza pine [30,76–78]. The
protection, regular monitoring and better management of such micro-habitats supporting
highly valuable species is necessary for constant provisioning and regulating ecosystem
services. Thus, detailed ecological work was required to forecast the potential effects
of climate change. Accordingly, this is the first ever study that is targeted to predict
potential habitat suitability variations of Chilgoza pine under different future climate
change scenarios in south Asia. Many other researchers have adopted the same procedures
to record the influence of the changing climate on valuable species and as a prerequisite for
conservation e.g., [79] to find out the distribution modelling of Olea ferruginea, [80] on Stipa
purpurea, [81] on Rosa arabica, [82–84] on Taxus wallichiana, [85] on Juglans regia, and [86] on
western Tragopan, (Tragopan melanocephalus). By using SDMs tools, many workers reported
the shrinkage of the distribution range of different valuable species under predicted climate
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change [77,87]; similarly, based on immense eco-economic value, Pinus gerardiana is being
contracted in south Asia.

Different software tools/programs have been introduced to perform predictive mod-
elling [65,88–92]; however, maximum entropy modelling by using MaxEnt is detected as
very robust, requiring presence only and with a user friendly interface. It also maintains
higher fidelity in predictive accuracy under different limitations [93,94]. It works best to
avoid model over-fitting, has a small degree of biased sampling, and handles small-sized
sampling adequately [19–21,95,96], therefore, we selected the maximum entropy algorithm
in MaxEnt for predictive modelling of the valuable and ever-decreasing Chilgoza pine like
many others [81,97–99].

Many workers [29–32,56,57,100] reported the important role of temperature, precipita-
tion, topography, and soil which influence the distribution pattern of tree species, especially
in the mountainous parts of south Asia. Accordingly, a total of 19 bioclimatic, 10 edaphic,
seven topographic and one remote sensing variable were utilized in the distribution mod-
elling of the considered species. The total precipitation during different seasons in a year
and its seasonal variation pattern, temperature variations and its seasonality, and topogra-
phy and soil were recognized as important variables for SDMs [34,101–105], and the same
were detected as the most influential in this study as well.

This study recorded a high precision, and the reliability for all of the predictions as the
models accuracy values were most close to 1 (>0.9), whereas AUC ratios were found more
close to 2 (>1.6), as also conveyed by [59–61,106]. Accordingly, high model accuracy values
for all considered measures represented excellent model performance. This study also
recognized that the use of better contributing and least correlated (r = ±0.8), least possible
number of predictor variables in SDMs is very important [82,85,107]. The use of superfluous
and highly correlated variables might lead to model over-fitting and consequently result in
high erroneous accuracy values. Hence, the joint criterion of more than 4% contribution and
±0.8 threshold value for Pearson’s correlation coefficient amongst the predictor variables
for selection of predictors to be used in the final model is an adequate strategy, as used in
this study, for more robust and reliable predictions.

This study detected the contribution of the five leading predictor variables used in
Chilgoza pine predictive modelling. This depicted that NDVI and the mean temperature of
the coldest quarter in the study area are the most important for Chilgoza pine in its distri-
bution range [107–109]. This depicted that the tree species prefer relatively thick vegetation
areas where the mean temperature of the coldest quarter remain around the freezing point
of water. The relative contribution of predictor variable is tested by using Jackknife tests
(Figure 4). All these significance testing of predictors suggested that the precipitation of the
driest month should be around 15 mm along with a CFVO of 200–300 cm3/dm3, and as
mentioned earlier it prefers dry rocky habitats [60,61]. The isothermal variation (day and
night temperature oscillation compared to summer and winter temperature oscillation) is
another important factor. These results also suggested that any drastic change in these five
influential variables in the study area might significantly influence potential Chilgoza pine
distribution, as conveyed in many studies [79,82,110–112] for different species and regions.
Climate, topography and soil always play a central role in vegetation composition and
distribution [56,57]. Species distribution patterns and responses are remarkably dependent
on precipitation quantity, timing and seasonality, temperature extremes and seasonality,
and global warming [30,32,61,87], etc. All of these influential predictors decreased water
availability, and temperature extremes might remarkably alter Chilgoza responses such as
seed germination and regeneration, plant height and cover, leaf area, phenology, pollination,
reproduction, dispersal of propagules, and physiological processes like photosynthesis, as
reported by [61].

The analytical findings of this study suggested that the most important very high suit-
ability (p > 0.8) locations for Chilgoza pine included the Giligit Baltistan, Upper Dir, Chitral,
Swat, Waziristan, Sheringal, Zhob (extension of Takht e Sulaiman range), Darazinda, and
Sheerani districts in Pakistan, and the Panjshir valley, Paktia, Paktika, Parum and Mandool
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valleys and Khost in Afghanistan, and the Kishtwar, Kinnaur, and Chamba areas in India
(Figure 6). All of the analyzed future climate change scenarios predicted a remarkable
decline in potential habitat suitability as suggested by many other workers for different
species [113,114]; hence, suggesting conservation and regular monitoring for habitat pro-
tection [79,115,116] to save the valuable species. Potential habitat suitability shifts along
the elevation gradient might be another factor. We also predicted that Pakistan and India
might face the majority of decline in potential microhabitats of Chilgoza pine under SSPs
245 and 585 of the 2050s and 2070s. The local communities in these remote mountainous
areas are strongly associated with the local biodiversity to earn their livelihood [111], and
thousands of families are involved in the collection and trade/export of Chilgoza pine,
especially in Pakistan, Afghanistan and India [37,38,43,44,50,74,75], and the future possible
decline in potential distribution due to climate change might significantly influence the
socio-economic status of associated communities.

To safeguard Chilgoza pine for future generations, habitat conservation and manage-
ment, regular monitoring and sustainable use of existing resources in the study area is
required. The core areas of the species needs special attention. Additionally, according
to local communities, a mutualistic bird species (Nucifraga multipunctata: the Asian Nut
Cracker) is strongly linked with Chilgoza pine regeneration, as the bird collects and hides
pine nuts underground to be used as food. Therefore, the bird and the Chilgoza pine are
strongly dependent on each other for survival, as the loss of one will influence the other,
and the immediate response of policy makers and conservationists is needed. Different
projects like the Billion Tree Tsunami (BTT) in Pakistan can be used to reintroduce the
species and afforestation of the Chilgoza pine in predicted high to very high potential suit-
ability zones as detected in this study. We further recommend some future studies focusing
on the documentation of spatially varying intensities of anthropogenic disturbances and
the associated socio-economic activities linked to P. gerardiana in the study area to protect
species hotspots.

5. Conclusions

Chilgoza pine is a native evergreen coniferous tree species of the dry temperate zones
of Hindu Kush-Karakoram-Western Himalaya, mainly in south Asia. The Maximum
Entropy algorithm in MaxEnt software was used to predict the potential habitat suitability
variations under varied climate change scenarios. We concluded that besides the reported
poor regeneration, the predicted future climate change (SSPs 245 and 585 of 2050s and
2070s) might remarkably decrease its overall potential habitat suitability in its native
range. The environmental niche of the species was predicted with a slight shift to the
northwest (China), hence, the present potential habitat supporting the species in South
Asia (especially western Himalaya) might be negatively influenced the most, followed
by Pakistan (western Himalaya followed by Karakoram ranges). We also concluded
that isothermality, mean temperature of the coldest quarter, precipitation of the driest
month, NDVI, and volumetric fraction of the soul coarse fragment (rocky loose dry soil)
are influential factors for species growth and survival. Local communities linked to the
gathering, marketing, and trade/export of Chilgoza pine nuts might face serious socio-
economic effects due to the potential predicted shrinkage of species distribution as a
consequence of climate change. The outcomes of this study can be used to build future
conservation, afforestation, reforestation and management plans for this economically
valuable species in the region. We also recommend some future studies focusing on the
documentation of spatially varying intensities of anthropogenic disturbances and the
associated socio-economic activities linked to Pinus gerardiana in the study area to protect
species hotspots.
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